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Bayesian boundary models often assume that the evidence
for each contour is derived from the entire image. Consequently, the nor-
malization term in the Bayes rule is the same for every contour and
becomes irrelevant when seeking the optimal. However, in practice these
models only use the vicinity of a contour, making the normalization term
contour-specific. We propose a formulation that acknowledges the nor-
malization term and includes it in the optimization. We show that it can
be interpreted as a confidence measure promoting contours which are far
better than other nearby candidate contours. We validate our approach in
an interactive boundary delineation setting and demonstrate that com-
plex boundaries can be extracted with significantly smaller amount of
user input than when traditional Bayesian models are employed.

1 Introduction

The Bayesian formulation for finding boundaries in the image seeks contour C

with the maximal posterior probability P (C|O) given observation O:

P (C|O) =
P (O|C) P (C)

P (O)
(1)

Our work concerns the normalization term P (O) in the formulation (Fig 1).

O
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O

a: traditional dependencies b: proposed dependencies

Fig. 1. The observation O for a contour C depends on the entire image in traditional
Bayesian models (a), and only on the vicinity of C in our model (b).
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Previous work has assumed that O always consists of features extracted from
the entire image and it is the same for every C (Fig. 1a). Hence the normalization
term P (O) becomes irrelevant and can be ignored during the optimization of
P (C|O). However, this assumption does not typically hold in implementations:
each contour is often characterized with locally extracted features (Fig. 1b). In
other words, O and thus P (O) are in fact different for different contour C’s,
and P (O) cannot be omitted from the optimization; it affects the maximum of
P (C|O) and the optimal contour C.

Our formulation adopts the same criterion in Eqn. 1, but acknowledges the
normalization term P (O), so that boundaries are optimal contours in terms of
both appearance and area of support. An optimal contour not only best explains
the image evidence P (O|C) (e.g. delineating the intensity discontinuities in the
image), and have the desired properties P (C) (e.g. smooth), but they are also
the best candidates in their vicinity with respect to their local evidence P (O)
(e.g. weak but distinctive boundaries).

The normalization term not only helps promote distinctively better contours,
but also addresses the length bias problem which plagues energy models for
boundaries: short contours automatically have a lower energy than longer ones.

The bias problem has been long recognized and tackled in a number of ways.
One approach is to provide a good initialization of boundaries [1, 2], or guide
the user during the delineation process [3–5]. A significant amount of human
intervention is often required in these cases. Other approaches have incorpo-
rated heuristics in the optimization method [6–8]. These methods essentially
extract the boundary in a piecewise fashion and it is unclear whether the col-
lection of these boundary segments is optimal. Additional image features [9–11]
and stronger contour priors [12–14] have also been explored. Such methods im-
pose additional constraints but do not fundamentally tackle the bias problem.
The most direct attempt to solving the bias problem has been to normalize the
contour goodness score by the length of the contour [15, 16]. These approaches
however are applicable to closed contours and do not admit user interaction.

Our formulation by design does not favor degenerate solutions such as short
contours. The normalization term serves as a confidence measure and only favors
contours which are significantly better than other candidates.

Including the normalization term results in a more complex criterion. How-
ever, the criterion can be globally optimized using dynamic programming in
polynomial time, with little loss in computational efficiency.

We develop and analyze our Bayesian formulation in Section 2, address com-
putational issues related to the global optimization in Section 3, evaluate our
method in Section 4, and conclude in Section 5.

2 Bayesian Formulation

We first develop our formulation and explain why the contour-specific normaliza-
tion term favors contours distinctive in their vicinity. In this sense, our method
is similar to non-maximum suppression used in edge detection [17]. While both
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methods enhance boundaries, non-maximum suppression does so in a heuristic
and local fashion, whereas our method is principled and operates globally.

We then relate our criterion to entropy and show that the normalization term
can be seen as a confidence measure of the quality of a boundary.

2.1 Criterion: Contour-Dependent Observations

Let OC denote the observations associated with candidate contour C (Fig. 1b).
We assume that contour points Ci are conditionally independent and that the
observations are conditionally independent given the contour points. We have:

log P (C|OC) =
∑

i

{log P (OCi
|Ci) + log P (Ci|Ci−1)} − log P (OC) (2)

P (OC) =
∑

C

P (OC |C) P (C) (3)

The difference of Eqn. 2 with all previous Bayesian formulations is the term
P (OC). In traditional formulations, it is the same for all contours and does not
play any role in the optimization. When this term is not present, the proba-
bility of a contour decreases monotonically with its length; short contours are
significantly more likely than long ones.

In contrast, our criterion contains two competing terms: While the term
log P (OC |C)+ log P (C) expresses the quality of a boundary in terms of features
and smoothness, the term P (OC) sums the probabilities of all the possible con-
tours in the vicinity of the contour C. The favored contours are not just the ones
with high log P (OC |C)+log P (C), but also the ones with low P (OC). The latter
occurs when all the contours in the vicinity of C have very low probabilities, or
in other words, when C is the best contour in a given image area.

We show how the normalization term promotes certain contours in the simple
case where all the candidate contours except the optimal one have the same cost
(Fig. 2). Assume the desired contour connecting points A and B is the straight

A

B

A

B

a: single best C b: multiple good C’s

Fig. 2. The thickness of the line indicates the quality of the boundary. a) There is a
single best candidate connecting points A and B (straight line). b) There exist several
good candidate contours connecting points A and B.
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line C∗. In Fig. 2a, C∗ is a much better candidate than other possible contours
connecting A and B, unlike Fig. 2b where other good candidates exist as well.
In both cases the quantity P (OC |C

∗) P (C∗) is α. The corresponding quantities
P (OC |C)P (C) for all other candidate contours C are β and γ for Fig. 2 a and
b respectively, with γ > β. If there are n + 1 possible ways of connecting points
A and B, then:

log(n β + α) < log(n γ + α)

log α − log(n β + α) > log α − log(n γ + α)

Our criterion favors contours for which there are no other competitors in the
same neighborhood. Degenerate solutions of very short contours in image areas
with no characteristic features will receive very low probability.

2.2 Analysis: Entropy Interpretation

We show that our criterion (Eqn. 2) can be understood from an entropy point
of view. Let P (OC |C) P (C) = βj , where each βj corresponds to a different
candidate contour C. βj is the probabilistic cost of a contour according to Eqn. 1
without the normalization term and we will refer to it as “cost”. We also have
P (OC) =

∑

j βj . The log probability of Eqn. 2 is a function of βj :

E(βj) = log βj − log
∑

i

βi (4)

The maximum of E(βj) is obtained at 0, since E(·) is the log of a probability
distribution:

E(βj) = 0 ⇒ βj = βj +
∑

i6=j

βi ⇒
∑

i6=j

βi ≃ 0 (5)

The last condition holds when all the contours, except the j-th one, have costs
close to 0. The minimum of E(βj) is achieved at −∞ and this occurs when

∑

i

βi ≃ ∞ (6)

i.e., when there are many strong candidate paths in the given image area.
The behavior E(βj) is reminiscent of the inverse behavior of the entropy of

a distribution. Most informative or high-entropy distributions are the ones who
do not favor any particular data points. For example, the most informative one-
dimensional distribution is the uniform distribution. On the other hand, least
informative distributions are the ones favoring a single value. E(βj) is maximized
when a single candidate contour is assigned high cost and is minimized when all
the candidate contours have very high costs.

In fact, we can find an entropy lower bound for E(βj), which offers an inter-
esting interpretation of the normalization term P (OC). We have:

E(βj) ≥ log βj −
∑

i

log βi ≥ log βj −
∑

i

βi log βi (7)
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where the above holds for βi < 1, for all i. The term −
∑

i βi log βi is a pseudo-
entropy term since the costs βi do not sum up to 1. The entropy of a distribution
can be seen as a measure of the uncertainty of the distribution. Thus, the normal-
ization factor P (OC) can be seen as a confidence measure regarding the image
location a contour belongs to. Contours that belong to low-uncertainty image
regions, that is, they are the sole candidates, are assigned high cost. On the other
hand, contours from high-uncertainty image regions are assigned low costs.

3 Optimization Using Dynamic Programming

Our criterion can be globally optimized with dynamic programming. The al-
gorithm proposed merges the optimization scheme employed by the computer
vision community for P (OC |C) P (C) ([18, 2, 19, 3–5]) with the algorithm used to
calculate P (OC) [20]. We first show how to calculate P (OC) using scaling accord-
ing to [20]. We then describe some additional approximations needed. Finally,
we show how to optimize our criterion in a graph-based framework using Dijk-
stra’s algorithm in low-order polynomial time. Dijkstra’s algorithm can globally
optimize our criterion when points on the boundary to be extracted are known
(either automatically or via user input).

3.1 Calculation of P (OC)

We calculate P (OC) using the well-known forward-backward algorithm employed
in HMM inference problems [20]. Let C = (c1, . . . cn) be the hidden random
variables corresponding to a contour of n points. The set of the values each of
these random variables can take is D = {0, . . . , 7} corresponding to the possible
directions employed by the chain code curve representation. Let also OC =
{Oc1

, . . . , Ocn
} be the observations associated with the individual contour points.

For the forward-backward algorithm, we define

αi(dk) = P (Oc1
, . . . , Oci

, qi = dk)

where qi is the label assigned to the i-th contour point ci and dj takes values
from D = {0, . . . , 7}. Recursively we can compute:

α1(dk) = P (Oc1
|c1 = dk) (8)

αi+1(dk) =





∑

dj

αi(dj)P (ci+1 = dj |ci = dk)



 P (Oci+1
|ci+1 = dk) (9)

The probability of the observations is now given as:

P (OC) =
∑

dj∈D

αn(dj) (10)
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3.2 Scaling

The calculation of P (OC) involves multiplications of very small quantities and
very quickly the results are outside the range of machine precision. To this need
we need to apply the scaling procedure in [20], so that each time an αi(dj) value
is computed, it is scaled by si:

si =
1

∑

dj
αi(dj)

(11)

α̂i(dj) =
αi(dj)

∑

dj
αi(dj)

(12)

With this scaling method, log P (OC) is given by::

log P (OC) =
n

∑

i=1

log
1

si

(13)

3.3 Approximations

log P (OC) is usually computed as log
∑n

i=1 e−xi . The summation of exponentials
often approaches 0 very fast. To calculate it reliably, we have:

n
∑

i=1

e−xi = e−xm



1 +
∑

xi 6=xm

e−(xi−xm)



 = e−xm (1 + S) (14)

where xm = min
i

xi (15)

Therefore, log

n
∑

i=1

e−xi = −xm + log(1 + S) (16)

where S =
∑

xi 6=xm

e−(xi−xm) (17)

When |S| < 0.1, we can use the approximation log(1 + S) ≃ S.

3.4 Graph-based Optimization

We use Dijkstra’s algorithm [21] to simultaneously compute P (OC) and find
the optimal boundary. We assume that points {A1, A2, · · · , Ap} on the desired
boundary are given. The optimal boundary passing from {A1, A2, · · · , Ap} is the
concatenation of the optimal contours connecting A1 to A2, A2 to A3 and so on.

To find the optimal contour connecting two given points, we represent the
image with a graph, where each pixel corresponds to a graph node and each
node is connected with its 8 neighbors. The weight between adjacent nodes u, v

consists of two terms. The first term is a constituent of P (OC |C) P (C) and the
second of P (OC). Assuming u, v are points on the desired boundary, we have:

w(u, v) = log P (Ou, Ov|u, v) + log P (v|u)) − log
∑

dj

α̂v(dj) (18)
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where the summation takes place over all possible directions dj . The calculation
of α̂v(dj) depends on values calculated at neighboring nodes. Thus, the com-
plexity of Dijkstra’s algorithm increases by a small multiplicative factor, equal
to the number of different directions dj (in our case 8).

4 Experimental Validation

We first explain our choices regarding the calculations of P (Oci
|ci) and P (ci−1|ci),

and then present boundary delineation results on a variety of images.

4.1 Feature Calculations

For reliable computations, we will assume second-order dependencies among the
contour points and we will compute P (O{ci}|ci+1, ci, ci−1) and P (ci+1|ci, ci−1),
where O{ci} denotes the observations associated with contour points ci+1, ci, ci−1.

The term P (O{ci}|ci+1, ci, ci−1) is computed by estimating how well the pix-
els in the vicinity of ci+1, ci, ci−1 belong to the two sides of the boundary. The
statistical model required for this task is computed based on pixel labeling pro-
vided by the user in small image areas. Contour points ci+1, ci, ci−1 divide the
pixels in their vicinity into two regions RI and RII , as shown in Fig. 3. If MI(p)
and MII(p) are two functions estimating how well a pixel p is classified as be-
longing to side I or side II of the desired boundary, then

P (O{ci}|ci+1, ci, ci−1) =
∑

p∈RI

MI(p) +
∑

p∈RII

MII(p) (19)

The prior P (ci+1|ci, ci−1) is defined so that it takes higher values for contour
points forming a straight line than for contour points that form an angle.

II

i+1
c

c

c
i−1

i

R I

R

Fig. 3. The data term is calculated based on how likely the pixels in the vicinity of the
contour points belong to the two sides of the desired boundary.
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4.2 Boundary Delineation Results

We evaluate our formulation in an interactive boundary finding application
where the user places seed points sequentially in a manner similar to [3]. Figures
4, 5, and 6 show in three columns the part of the image used to statistically
characterize the interior of the object and the background, the delineation re-
sults obtained using Eqn. 1 without and with the normalization term. All the
results were obtained using the same parameters λc = 0.2, λs = 0.1, and the
same training data acquired at the beginning of the delineation process.

a: training samples b: old results c: new results

Fig. 4. Segmentation given user clicked boundary points (red dots) on images with
complex boundaries. a) Windows mark training samples for foreground (yellow) and
background (red). b) Results from traditional models. c) Our results.
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a: training samples b: old results c: new results

Fig. 5. Color image segmentation given user clicked boundary points (red dots). a)
Windows mark training samples for foreground (yellow) and background (red). b)
Results from traditional models that ignore the normalization term. c) Our results.
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a: training samples b: old results c: new results

Fig. 6. Texture image segmentation results. Same convention as Fig. 5.

Table 1 summarizes the number of mouse clicks required to delineate the
object boundaries, as a measure of the method effectiveness. Since the user is
always part of the interactive segmetnation system, the correctness of the output
of the segmentation algorithm is not to be contested.

image name # clicks in old method # clicks in our method

cheetah 16 5
zebra 12 7

cowboy 7 5
parrots 10 4

iris 8 2
pink flower 2 2

fuchsia flower 24 2
white flower 3 2

statue 12 9
woman 9 5

peppers1 2 2
peppers2 7 4
cover1 2 2
cover2 7 3
liver1 4 4
liver2 4 5
liver3 6 3

Table 1. Number of mouse clicks required to delineate the various boundaries using
the traditional formulation and our probabilistic criterion.
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Our criterion significantly outperforms traditional Bayesian formulations.
The most drastic difference between the amount of mouse clicks required to
delineate a boundary is for the image “cheetah”. The reason for this can be seen
in Fig. 7, where the classification of the image pixels is shown. These results were
obtained using the classifier trained on the data shown in Fig. 6. The results are
very noisy and the original criterion has trouble localizing the object bound-
ary. On the other hand, the observation-dependent criterion is quite effective
in eliminating the noise and tracking the desired discontinuities. In general, the
probabilistic criterion consistently produces contours that adhere to the object
boundary more faithfully, with fewer mouse clicks.

Fig. 7. Classification results using the classifier built from the training data in Fig. 6
.

5 Conclusions

Traditional Bayesian criteria for boundaries assume that the evidence for a can-
didate contour is derived from the entire image, and the normalization term can
thus be omitted during optimization. In practice however, evidence in the vicin-
ity of the contour is employed, and the normalization term is contour-specific
and cannot be ignored. Our formulation explicitly acknowledges this term and
it extacts the boudaries optimal in both appearance and area of support.

The normalization term helps promote contours that are better than alterna-
tives in their vicinity. Consequently, it alleviates the length bias problem present
in traditional Bayesian formulations. Degenerate solutions such as short contours
in featureless image areas are no longer favored by design.

Our formulation has the same asymptotic complexity as previous Bayesian
formulations, as it can be globally optimized with dynamic programming.

We validate our method with an interactive boundary delineation application,
where significantly fewer mouse clicks are needed to extract complex boundaries.
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