Angular Embedding: from Jarring Intensity Differences to Perceived Luminance

Stella X. Yu
Computer Science
Boston College

Acknowledgements: Edward H. Adelson Clare Boothe Luce Professorship NSF CAREER IIS-0644204

Distinction: Intensity, Brightness, and Lightness

intensity = measured luminance: $I_1 > I_2 = I_3 > I_4 = I_5 > I_6$ brightness = perceived luminance: $B_1 > B_2 > B_3 > B_4 > B_6 > B_5$ lightness = perceived reflectance: $L_1 = L_2 > L_3 = L_4 = L_6 > L_5$

Helmholtz and Hering Debate

- 1. Helmholtz: byproduct of high-level cognitive cause
- recover reflectance from luminance with unknown illumination
- Land & McCann, Retinex, 1971
- Barrow & Tenenbaum, intrinsic images, 1978

2. in-between

- Ross & Pessoa, selective integration model, 2000
- Kelly & Grossberg, Form-And-Color-And-DEpth, 2000
- 3. Hering: manifestation of low-level physiological cause
- lateral inhibition, center-surround filtering
- Blakeslee et al, multiscale filtering, 2005

Basic Brightness Illusions

Simultaneous Contrast

Textbook Explanation: Center-Surround Filtering

Selective Enhancement is a Must but not by Size

Enhancing small edges only explains one of the two illusions!

Insight: Selective Enhancement by Edge Geometry

Coarse-scale differences provide the right selective enhancement.

Brightness differences across an edge increase with its curvature.

Brightness is Analogous to Motion Perception

- 1. Feature → *enable* brightness with short-range cues fine-scale for interiors, and coarser-scale across edges
- 2. Aperture → reinforce brightness with long-range cues paths of higher confidence, originating from corners, dominate
- 3. Integration → realize brightness from pairwise local cues maximally fulfill local orderings in accordance with confidence levels

Brightness Modeling is Global Brightness Ordering

New Integration Method: Angular Embedding

input: local ordering

O = pairwise differences

output: global ordering

x = positions on a line, or

C =confidence in Oz = positions on the unit circle

Criterion: Minimize Distance to Local Average

minimize:
$$\varepsilon(z; O, C) = \sum_{a} D(a, a) \cdot |z(a) - \tilde{z}(a)|^2$$

local average:
$$\tilde{z}(a) = \sum_{b} \frac{C(a,b)}{D(a,a)} z(b) e^{jO(a,b)}$$

total confidence:
$$D(a,a) = \sum_{b} C(a,b)$$

Optimum: Angles of the Smallest Eigenvector

angular embedding

minimize: $\varepsilon(z; O, C) = z'Wz$

representation: $z = e^{j\theta}$

error: $W = (I - D^{-1}M)'D(I - D^{-1}M)$

measurement: $M = C \bullet e^{jO}$

degree: D = Diag(C1)

optimum: $\theta^* = \angle z^* = \angle$ smallest-eigenvector-of (W, D)

least squares

minimize: $\varepsilon(x; O, C) = \sum C(a, b)(x(a) - x(b) - O(a, b))^2$

measurement: $M = C \bullet O + (C \bullet O)'$

degree: D = Diag((C + C')1)

transition: $P = D^{-1}(C + C')$

optimum: $x^* = (I - P)^{-1} \cdot (D^{-1}M1)$

An Efficient and More Robust Integration Method

Brightness as Intensity Deviating along Gradient

Brightness as Gestalt from Scale-Mixed Differences

input: objective intensity

 \downarrow

output: subjective brightness

brightness - intensity

Simultaneous Contrast

Anti-Snake

Snake

Koffka Ring

Benary Cross