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Abstract

Perceptual organization is scale-invariant. In turn, a
segmentation that separates features consistently at all
scales is the desired one that reveals the underlying struc-
tural organization of an image. Addressing cross-scale cor-
respondence with interior pixels, we develop this intuition
into a general segmenter that handles texture and illusory
contours through edges entirely without any explicit charac-
terization of texture or curvilinearity. Experimental results
demonstrate that our method not only performs on par with
either texture segmentation or boundary completion meth-
ods on their specialized examples, but also works well on a
variety of real images.

1. Introduction

The task of image segmentation is to organize pixels into
regions of homogeneous features based on measurements
taken from intensity values. This problem is easy if adjacent
regions have different but uniform intensity (areas B, W in
Fig. 1a): compute contrast and declare edges as boundaries.
However, this idea of edges-for-boundaries runs into trou-
ble in areas T and C in Fig. 1a: T has numerous edges within
the region, whereas C has no edges along the boundary. The
goal of this paper is to show that, by formalizing the single
notion of scale invariance for segmentation, we can develop
a general segmenter that is based entirely on edges yet able
to deal with both texture and illusory contours.

Texture and illusory contours, present in the same image
as in Fig. 1a, have often been studied in isolation using typ-
ical images as in Fig. 1b,c. Clearly, texture segregation re-
quires pooling features over a local window in order to sup-
press within-region edges [3, 2], while contour completion
requires high-precision edge localization in order to com-
plete gaps along the boundaries [12]. These requirements
do not function at the same scale. Consequently, boundary
completion methods are easily confused by massive texture
edges (Fig. 1b:Canny), while texture segmentation methods

are oblivious to sharp contrast at boundaries (Fig. 1c:Pb).
Furthermore, both methods have trouble producing satisfac-
tory results on what they are designed for: determining the
pooling window size for texture (Fig. 1b:Pb) and edge filter
size for illusory contours (Fig. 1c:Canny) is crucial to their
success, yet estimating the optimal size locally is nontrivial
if not impossible [13].
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Figure 1. Segmentation should handle both texture and illusory
contours. For a: a general image (313× 166), b: a typical texture
image (256×256), c: a typical illusory contour image (100×100),
columns 2-4 show our results in comparison with those from two
local boundary detectors: Canny and probabilistic boundary detec-
tors [9]. Default parameters in MATLAB implementations were
used. By design, Canny uses hysteresis to complete boundary gaps
without considerations for texture, while Pb uses textons to sup-
press texture edges without considerations for illusory contours.
Furthermore, their performance on what they are designed for is
critically dependent on local scale estimation, which is nontrivial.



Some universal approaches to segmentation have also
been proposed [8, 11]. Their idea for reconciling the
dilemma posed by texture and illusory contours is to ex-
plicitly model and monitor both of them, determine which
phenomenon dominates and then choose the right segmen-
tation tool to apply. For a generative approach such as [11],
it remains to be seen whether it is applicable and practical
for general images other than those that fit a small number
of constituent models. For a discriminative approach such
as [8, 4, 9], as can be seen in Fig. 1:Pb, employing more fea-
tures does not always help: texture is not fully suppressed
and boundaries could be hallucinated in simple images.

Therefore, explicitly monitoring texture and contours not
only wastes computation, but also introduces cross interfer-
ence against each other. The reason why a local method
which attempts an ever complex operation to suppress tex-
ture and promote weak contours can hardly succeed is that
both texture and contours are intrinsically multiscale phe-
nomena, and they are best dealt with at a global integration
level. This is the alternative explored in this paper.

The key insight is simple: the perceived organization of
an image remains largely intact when the image is scaled
(Fig. 2). In turn, if a segmentation satisfies this necessary
condition of scale invariance, that is, it gets a good score at
each scale, then it probably is the grouping that we desire.
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Figure 2. Scale invariance of segmentation. Row 1: Perceived
grouping of an image remains stable despite that pixels and edges
change their identities across scales. Row 2: A key issue in scoring
a segmentation across scales is correspondence, since as scale in-
creases, pixels become fuzzier, and edges could shift locations(S),
disappear(D) or newly emerge(E).

Scale invariance of grouping is often illustrated by the
Gestalt law of proximity, where equal scaling of horizontal
and vertical separations of a dot array is shown to have little
effects on the perceived grouping [7]. However, such invari-
ance to global scaling is trivial: the elements to be grouped,
the dots, remain in one-to-one correspondence over scales,
and the feature used in grouping, the distance, remains con-
sistent and indicative of the same grouping over scales.

What is truly remarkable about the scale invariance of
perceptual organization is that the perceived grouping of an
image remains stable despite the fact that pixels at different
scales designate different grouping elements and the fea-
tures that we are able to extract also change characteristics
across scales (Fig. 2). A coarse-scale pixel denotes a local
assembly of fine-scale pixels. However, it does not repre-
sent them equally well. Furthermore, edges extracted at a
coarse scale could shift locations from their fine-scale coun-
terparts, disappear or emerge simply as new features that do
not have a counterpart at fine scales.

Hence, to evaluate a grouping at multiple scales, pixel
correspondence must be established. Observe that both
aforementioned deformation problems are most severe for
border pixels, while interior pixels often sustain their cor-
respondence over scales. Our idea is thus to find interior
pixels at each scale and use them to relate to the next scale.
They often appear as medial axes [5] at various scales.

Roughly speaking, as scale increases, texture evens out,
while boundary gaps become smaller and thus easier to
complete. A further insight is illustrated in Fig. 3. The
homogeneity of local statistics has always been the prop-
erty used to tackle texture segmentation [3, 2], whereas con-
tour continuity has always been the property used to tackle
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Figure 3. Why a multiscale framework can deal with both texture
(Fig. 1b) and illusory contours (Fig. 1c). Row 1: Texture bound-
aries are revealed in multiscale edges which consistently separate
interior pixels at their corresponding scales. Row 2: Boundary
gaps are completed for conforming to grouping cues obtained with
larger apertures. Lack of edges in a small surround (thin outlines)
tends to group the two marked pixels, but configuration of edges
in a larger surround (thick outlines) tends to segregate them.
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Figure 4. Algorithm overview. Is: Multiscale versions of the original image are computed. Es: Edges are extracted at each scale.
Bs: Interior pixels are subsequently computed. Ws: Grouping cues that are originally defined on coarse-scale pixels from coarse-scale
edges are rectified for original pixels. Xs: Optimizing the total goodness of grouping based on Ws leads to a hierarchy of coarse-to-fine
segmentations. These are the segmentations that respect scale invariance, with texture and illusory contours naturally taken care of.

boundary completion [10, 12], yet both of them result natu-
rally when an image is examined across scales.

With refinement, the edges-for-boundaries doctrine is
correct after all: boundaries manifest themselves in multi-
scale edges that separate interior pixels consistently, a char-
acteristic that texture edges lack while illusory contours
possess as well as ordinary boundaries do.

Illustrated schematically in Fig. 4, our approach formu-
lates scale invariance as an optimization of one type of
grouping criterion, based on one type of grouping cue, from
one type of feature, i.e., edges. Fig. 1 shows our segmenta-
tion results on typical texture and illusory contour images.

The rest of the paper details how we extract features, find
the correspondence, derive grouping cues in multiple aper-
tures, rectify them for original pixels, and finally integrate
them to discover segmentations that are consistently good
over scales. Our results on a variety of images demonstrate
that a universal segmenter based on entirely edges is possi-
ble without explicitly modelling texture or curvilinearity.

2. Model

A straightforward implementation of scale-invariant seg-
mentation would be: given an image, generate its scaled
versions; score a segmentation on every scaled image;
search over all segmentations and pick the one that gives
the best total score. Four issues are involved.

1. What features to extract from the image? We will use
one type of feature, that is, edges.

2. What grouping cues to derive from these features? We
will use one type of grouping cue, that is, pixel affinity from
elongated intervening contours.

3. How to relate segmentations across scales? We will
derive data-driven correspondence between pixels across
scales, through which goodness of grouping at coarse scales
can be projected back to the original image and be summed.

4. How to find the optimum of the total goodness ef-
ficiently? We will formulate the segmentation problem
in graph theory as a simultaneous cut through a stack of
graphs, each capturing the goodness of grouping at a scale.
Near-global optima can then be computed efficiently.

2.1. Feature: Multiscale Edges

A coarse-scale image is often obtained by Gaussian
smoothing followed by subsampling. Subsampling has two
advantages: reduce redundancy and allow the same feature
extractor at each scale. However, sufficient smoothing is
required in order not to introduce spurious features.

Proposition 1. To avoid aliasing while subsampling a dis-
crete image with period T following Gaussian smoothing,
the Gaussian must have a standard deviation σ ≥ T .

Proof. According to the Sampling Theorem, an image can
be represented by its samples of period T if it is band-
limited to the Nyquist frequency π

T
. Since Gaussian(σ)

in space domain corresponds to Gaussian( 1
σ

) in frequency
domain, assuming that Gaussian(σ) is practically zero out-
side the πσ range, any image convolved with Gaussian(σ)
is band-limited to π

σ
. Therefore, π

σ
≤ π

T
, or σ ≥ T .

Therefore, to reduce an image by half, σ = 2 should
be used. The often used filter [1, 4, 6, 4, 1] in constructing
a Gaussian pyramid [1] approximates Gaussian of σ = 1.1
and can cause aliasing. Aliasing in subband images is not an
issue for signal coding, but should be avoided when edges
are further extracted to be correlates of region boundaries.

Shown in Fig. 5, we first build a Gaussian pyramid with
σ = 2 and subsampling period of 2. An edge pyramid is
obtained by applying the same set of quadrature filters Fo

image pyramid edge pyramid full-size edges

Figure 5. Extract full-size multiscale edges Es through pyramids.
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and Fe [8] to each level of the pyramid. The edge strength
is measured by quadrature energy E:

E = (I ∗ Fo)
2 + (I ∗ Fe)

2. (1)

Upsampling the edge images brings them back to full size.
We denote each by Es, where s is the scale.

2.2. Cue: Elongated Intervening Contours

Intervening contours (IC) between two pixels, p and
q, refer to edges that intersect the line connecting them
(Fig. 6). The stronger the IC, the less likely that the two
pixels are in the same region [8]. We define pixel affinity:

AIC(p, q) = exp

(

−
maxt∈line(p,q) E(t)

σIC

)

. (2)

This definition effectively encodes pixel intensity similarity
(through E), convexity (through line(p, q)) and boundary
closure (through region segmentation on pixels).
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Figure 6. Pixel affinity AIC only looks at local edges cutting the
line connecting two pixels. It is susceptible to missing edges.

Just as image features should be extracted at multiple
scales, grouping cues from features should also be exam-
ined at multiple scales. Illustrated in Fig. 3, the key to illu-
sory contour completion is to capture pixel grouping rela-
tionships within multiple apertures. We rationalize the intu-
ition with elongated intervening contours (Fig. 7), log-polar
neighbourhood (Fig. 8), and pullback affinity (Fig. 9).

First, to derive desired pixel grouping cues in the pres-
ence of illusory contours, edges should be lengthened as
distance(p, q) increases (Fig. 7). We formalize the pixel
affinity from elongated intervening contours (EIC) using a
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Figure 7. Pixel affinity AEIC looks at increasingly lengthened
edges that cut through line(p, q) as distance(p, q) increases. It is
resistant to missing edges along illusory contours.

recursive definition on a kernel. The kernel K(p, d) denotes
the affinity between p and its immediate neighbour p + d

along direction d. For example, as in Eqn. (2), edges at
scale s define the following kernel KE(s):

KE(p, d; s) = exp

(

−
max(Es(p), Es(p + d))

σIC

)

. (3)

The EIC affinity from kernel K is defined by:

K1(p, d) = K(p, d), (4)

Kn(p, d) = min
q∈{p−d⊥,p,p+d⊥}

Kn−1(q, d), (5)

AEIC(p, p + n · d;K) = min
t=0:n−1

Kn(p + t · d, d), (6)

where d⊥ is the direction perpendicular to d. Kn(p, d) is
the affinity between p and p + d based on EIC of length
2n − 1, whereas AIC assumes Kn = K. Note that the
recursion is performed independently along each direction.

Second, to take advantage of the redundancy introduced
by the edge lengthening, we only need pixel affinity for log-
polar neighbours. This efficiently captures a pixel’s group-
ing preference in a large neighbourhood (Fig. 8).
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Figure 8. Log-polar neighbourhood (of the center pixel p).

The EIC affinity encodes curvilinearity by carving the
grouping relationships among the pixels that give rise to
boundaries. In Fig. 9a, a pixel has large affinity with the
adjacent pixel across an illusory contour, but little affinity
with far neighbours due to blockage from nearby edges.

a: AEIC(KE) b: external scale r̄ c: AEIC(KP )

Figure 9. Pullback affinity. a, c show the affinity fields at the
same four pixels overlaid on the image. b: external scale at each
pixel, lighter gray for larger values. KP is derived by pulling
AEIC(KE) values at radius r̄ back to radius 1. Pullback affinity
AEIC(KP ) propagates the kernel KP to the full neighbourhood.
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Third, we can thus further improve the accuracy of pixel
grouping cues by allowing each pixel to pull its affinity with
far neighbours back to its immediate neighbours. The dis-
tance at which we pull back the affinity depends on some
measure of the external scale [6] of the pixel. It is defined
as the smallest radius beyond which AEIC(K) is all trivial:

r̄(p) = min{r : AEIC(p, p+(r+1) ·d;K) < θ,∀d}, (7)

where θ is a threshold that indicates an affinity value trivial.
K = KE if s = 1; K = KB otherwise (defined in the next
section). Note that AEIC is a non-increasing function of r

for any direction d. The pullback kernel KP is defined by
the affinity with far neighbours at external scales:

KP (p, d) = AEIC(p, p + r̄(p) · d;K). (8)

Shown in Fig. 9c, KP not only assimilates the external scale
of individual pixels, but also robustly captures their non-
isotropic preferences. Since the pullback kernel reflects
pixel grouping cues seen from a larger aperture, the sub-
sequently propagated affinity AEIC(KP ) is more effective
at fulfilling contour completion requirements.

Our pullback affinity can be viewed as deblurring illu-
sory contours. The external scale r̄ adaptively determines
the extent of blurring and the pullback affinity AEIC(KP )
reflects the sharpened boundaries after deblurring.

2.3. Pixel Correspondence across Scales

When an image is smoothed, pixels become fuzzier, cor-
ners rounded and edges shifted. A pixel originally inside
a corner could become outside a corner (Fig. 5). Clearly,
grouping cues for fuzzy pixels cannot be directly transferred
to original pixels, except for those inside regions. We thus
use interior pixels as correspondence hubs, i.e., for an inte-
rior pixel, we use the coarse-scale pixel at the same location
to represent it at that scale; for a border pixel, we use the
coarse-scale representative of its best interior friend.

We rationalize the best interior friend as the center of the
mass of a pixel’s affinity field. It stays at the same location
for an interior pixel, while shifting towards the region inte-
rior for a border pixel. Formally, for pixel p at scale s, let
Bs,t(p) be its corresponding best interior friend at a coarser
scale t. We iterate the center of mass computation n times
(n = 5 is used) to obtain one-step forward mapping Bs,s+1,
and concatenation gives the mapping from scale 1 to s:

B
0
s,s+1(p) = p, (9)

B
n
s,s+1(p) =

∑

q
AEIC(p, q; KE(s))Bn−1

s,s+1(q)
∑

q
AEIC(p, q; KE(s))

, (10)

B1,s+1 = Bs,s+1B1,s, Bs,s+1 = B
5
s,s+1. (11)

Fig. 10 illustrates the evolution of the forward mapping and
the emergence of medial axes as best interior friends.

a: B0
1,2 b: B5

1,2 c: interior pixels

Figure 10. Pixel correspondence is established by mapping pixels
to their best interior friends. a,b: Forward mapping at the first and
the final iteration. c: Number of votes each pixel gets as the best
interior friend. The darker the more votes (more medial-axis like).

With B1,s, we define backprojected kernel KB for the
affinity between original pixels based on scale-s edges:

KB(p, d; s) = AEIC(B1,s(p), B1,s(p + d);KE(s)). (12)

Note that KB(p, d; s) is defined for pixels at a distance of
2s−1 pixels apart (Fig. 11), since coarse-scale edges are
only meaningful at that resolution [13]. The convexity im-
plied by EIC is preserved in AEIC(KB), since it is propa-
gated from KB to the full neighbourhood.

AEIC(KE(2)) AEIC(KB(2)) AEIC(KP (2))

Figure 11. Pixel affinity from coarse-scale edges. For the same
four pixels in Fig. 9, here are their affinity fields for scale-2 pixels,
their projection to scale-1 pixels, and then the pullback version at
scale 1. Note that neighbour distance increases to 2 at scale 1.

The backprojected affinity AEIC(KB) is more accurate
for both texture and weak contours. The reason for the for-
mer is that pixels originally separated by texture edges tend
to have large affinity between their coarse-scale representa-
tives, while pixels across illusory contours are mapped far-
ther away and thus more likely to be segregated by EIC.
When examined across scales, pixel grouping cues based
entirely on edges are capable of both suppressing texture
and promoting illusory contours.

Our rectification from AEIC(KE) to AEIC(KB) is es-
sentially encoding coarse-scale dominant structures without
losing original pixel resolution via a denoising-deblurring
procedure: AEIC(KE) accentuates coarse-scale feature de-
tails as in denoising, whereas the backprojected version
AEIC(KB) sharpens the boundaries as in deblurring.

To recapitulate, edges at scale s lead to EIC affinity
AEIC(KE) between pixels at scale s. It is first rectified

5



to AEIC(KB) for pixels at scale 1, and then pulled back
to generate AEIC(KP ) (Fig. 11). If we have a total of ns

scales, we end up with a stack of 2ns pixel affinity measure-
ments all defined on the original pixels. We denote them by
matrices Wt, t = 1 : M , M = 2ns.

2.4 Grouping Criterion and Its Solution

To score a grouping with pairwise pixel affinity, we adopt
the criterion of average satisfaction that k groups assume:

goodness of grouping =
1

k

k
∑

l=1

∑

p∈group l
satisfaction(p)

size of group l
(13)

satisfaction(p) =

∑

q
affinity(p, q) : p, q in one group

total affinity p has
. (14)

The normalization by the size of each group is essential for
promoting size balance. Otherwise, a trivial grouping that
isolates a lone pixel from the rest would be highly desirable.

Given previously obtained affinity Wt, t = 1 : M , we
evaluate a segmentation using:

total score =

M
∑

t=1

goodness of grouping from affinity Wt. (15)

Such a criterion has been considered in [13]. It can be de-
scribed in a graph-theoretic framework as a simultaneous
cut across a stack of graphs with weight matrices {Wt}.
The optimal solution in the relaxed continuous domain is
shown to be the eigenvectors corresponding to the k largest
eigenvalues of W , where

W =

M
∑

t=1

WtD
−1
t + D−1

t Wt, (16)

and Dt is a diagonal matrix with Dt(p, p) =
∑

q Wt(p, q).
Ideally, pixels in the same group are mapped to similar val-
ues in the continuous eigensolutions (Fig. 12).

Figure 12. The first 5 eigenvectors. Thresholding these images
with mean values gives the center illusory square and 4 L-shapes.

In addition to encoding the right cues for texture seg-
mentation and contour completion in multiscale affinity,
the integration criterion which encapsulates scale invari-
ance through Eqn. (13) to (15) helps to bring out the de-
sired segmentation. Here, the satisfaction of individual pix-
els is defined by the proportion of affinity contained within
its group, so that the total affinity a pixel has (rich or poor)

does not matter. This boosts in the total score the signif-
icance of pullback affinity and backprojected coarse-scale
affinity, which often have fewer but more accurate connec-
tions. For example, consider a pixel near an illusory con-
tour in Fig. 9. AEIC(KE) dominates AEIC(KP ) in terms
of total affinity. However, as the total affinity is discounted,
separation from its neighbours across the illusory contour
induces a %100 satisfaction for AEIC(KP ), driving the op-
timal segmentation to occur along illusory contours.

2.5 Algorithm

Given affinity parameters σIC , neighbourhood radius r,
significance threshold θ, number of scales ns, number of
segments k, segmentation of image I is done in 3 steps.

Step 1: Compute full-size edges at multiple scales:
Is = subsample(Is−1∗ Gaussian(2), 2), I1 = I , s = 2 : ns

Es = upsample((Is ∗ Fo)
2 + (Is ∗ Fe)

2, 2s−1), s = 1 : ns

Step 2: Compute pixel grouping cues at multiple scales:
t = 0; B1,1(p) = p, ∀p

For s = 1 : ns,
Compute affinity kernel from edges at scale s

KE(p, d; s) = exp
(

−max(Es(p),Es(p+d))
σIC

)

, ∀p, d.

Find correspondence by one-step forward mapping
B0

s,s+1(p) = p, ∀p

Bn
s,s+1(p) =

∑

q
AEIC(p,q;KE(s))Bn−1

s,s+1
(q)

∑

q
AEIC(p,q;KE(s)) , n = 1 : 5

B1,s+1 = Bs,s+1B1,s, Bs,s+1 = B5
s,s+1.

Rectify affinity by backprojection, with d scaled by 2s−1

KB(p, d; s) = AEIC(B1,s(p), B1,s(p + d);KE(s)), ∀p, d

Wt = AEIC(KB(s)), t = t + 1

Derive pullback affinity at scale 1:
r̄(p) = min{r : AEIC(p, p + (r + 1)d;KB(s)) < θ,∀d}, ∀p

KP (p, d; s) = AEIC(p, p + r̄(p) · d;KB(s)), ∀p, d

Wt = AEIC(KP (s)), t = t + 1.

Step 3: Compute graph cuts:
W =

∑M

t=1 WtD
−1
t + D−1

t Wt

Solve for the first k eigenvectors V of W

Obtain a discrete segmentation from V (e.g. [14]).

3. Results and Discussions

We implement the algorithm in MATLAB. σIC = 0.02,
r = 25, θ = 0.3, k = 10, ns = 4, and quadrature filters of
8 orientations are used for all our images.

In Fig. 13 and Fig. 14, we compare results from two ad-
vanced edge detectors: Canny and Pb as in Fig. 1, and two
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Figure 13. Comparison of results on BSDS images [9]: Canny, Pb,
previous work [13] and this work. For the latter two, the number of
segments is manually chosen in order to outline objects of interest
with the fewest segments. Canny and Pb can only tell pixels on/off
a boundary. There is no sense of pixel grouping or differentiation
of boundary scales. Texture is not fully suppressed. These images
have gaps and elongated shapes that cause conflicting cues at dif-
ferent scales. Without cross-scale consistency, previous work eas-
ily gets confused; with cross-scale consistency, this work is able
to discover the major structures characterized by scale invariance.

region segmenters: previous work, which uses multiscale
edges but without addressing gap completion or cross-scale
consistency [13], and this work. These results demonstrate
that: 1) at the feature level, texture edges cannot be fully
suppressed, nor can contour gaps be correctly completed,
despite the best efforts to estimate optimal local scales; 2)
employing implicit gap completion and enforcing cross-
scale consistency, our edge-based approach can segment out
large scale-invariant regions without losing fine details of
their boundaries.

We can collapse our coarse-to-fine boundary maps into
a probabilistic boundaryness measure (Fig. 15) and bench-
mark our segmenter as in [9, 4]. Higher precision but lower
recall is expected over a local detector (e.g. Canny or Pb in
Fig. 1), since our global region segmenter finds big pieces
first (Fig. 15, Fig. 16).

These are low-level image segmentations based entirely
on intervening contours, which encode Gestalt laws of in-

Figure 14. Comparison of Canny, Pb, previous work and this work
on more BSDS images. Note that our segmentations have coarse-
scale regions, yet they retain fine boundary details. It takes about
2 minutes to segment these 160× 240 images on a linux machine
with 2GHz CPU and 2GB memory. There is no need to learn
any models or parameters from some training images about either
texture or contour completion.
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k = 3 k = 5 k = 9
∑10

k=1

Figure 15. Coarse to fine segmentations for the image in Fig. 1a
(Columns 1-3). Column 4: one probabilistic boundary map ob-
tained by summing all the boundaries from the coarse-to-fine seg-
mentations. Row 1: Previous work [13]. Row 2: this work. With
gap completion and cross-scale consistency, we have more accu-
rate and consistent boundaries. These are also relatively major
boundaries with respect to those in Fig. 1a:Canny or Pb.

Figure 16. More segmentation results on images that have promi-
nent texture, clutter or illusory contours.

tensity similarity, convexity, closure and curvilinearity. The
results thus reflect a tradeoff among these multitudes of
grouping factors. To human observers, we are constantly
subject to object attention and various forms of perceptual
constancy. To our algorithm, there are only 2 essential pa-
rameters, σIC and r, which are applied everywhere in an
image. For example, to make sure not to miss weak edges,
a very small σIC is used. This makes even unnoticeable
shadow edges significant. Nevertheless, our method is able
to rely on the more stable descriptors to handle both texture
and illusory contours: that is, grouping consistency across
scales for the former and robust spatial configuration over
longer ranges for the latter (Fig. 3). A global integration
over these local descriptors reveals foremost large low-level
organizations that a good segmentation should have.
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