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Abstract

Segmentation and recognition have long been treated as two separate pro-
cesses. We propose a mechanism based on spectral graph partitioning
that readily combine the two processes into one. A part-based recogni-
tion system detects object patches, supplies their partialsegmentations as
well as knowledge about the spatial configurations of the object. The goal
of patch grouping is to find a set of patches that conform best to the object
configuration, while the goal of pixel grouping is to find a setof pixels
that have the best low-level feature similarity. Through pixel-patch in-
teractions and between-patch competition encoded in the solution space,
these two processes are realized in one joint optimization problem. The
globally optimal partition is obtained by solving a constrained eigenvalue
problem. We demonstrate that the resulting object segmentation elimi-
nates false positives for the part detection, while overcoming occlusion
and weak contours for the low-level edge detection.

1 Introduction

A good image segmentation must single out meaningful structures such as objects from
a cluttered scene. Most current segmentation techniques take a bottom-up approach [5],
where image properties such as feature similarity (brightness, texture, motion etc), bound-
ary smoothness and continuity are used to detect perceptually coherent units. Segmentation
can also be performed in a top-down manner from object models, where object templates
are projected onto an image and matching errors are used to determine the existence of the
object [1]. Unfortunately, neither approach alone produces satisfactory results.

Without utilizing any knowledge about the scene, image segmentation gets lost in poor data
conditions: weak edges, shadows, occlusions and noise. Missed object boundaries can then
hardly be recovered in subsequent object recognition. Gestaltlists have long recognized this
issue, circumventing it by adding a grouping factor calledfamiliarity [6]. Without subject
to perceptual constraints imposed by low level grouping, anobject detection process can
produce many false positives in a cluttered scene [3]. One approach is to build a better part
detector, but this has its own limitations, such as increasein the complexity of classifiers
and the number of training examples required. Another approach, On the other hand, is



based on the observation that the falsely detected parts arenot perceptually salient (Fig. 1),
thus they can be effectively pruned away by perceptual organization.
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Figure 1:Human body part detection. A total of27 parts are detected, each labeled by one of the
five part detectors for arms, legs and head. False positives cannot be validated on two grounds. First,
they do not form salient structures based on low-level cues,e.g. the patch on the floor that is labeled
left leg has same features as its surroundings. Secondly, false positives are often incompatible with
nearby parts, e.g. the patch on the treadmill that is labeledhead has no other patches in the image to
make up a whole human body. These two conditions, low-level image feature saliency and high-level
part labeling consistency, are essential for the segmentation of objects from background. Both cues
are encoded in our pixel and patch grouping respectively.

We propose a segmentation mechanism that is coupled with theobject recognition pro-
cess (Fig. 2). There are three tightly coupled processes. 1)Top-level: part-based object
recognition process. It learns classifiers from training images to detect parts along with the
segmentation patterns and their relative spatial configurations. A few approaches based on
pattern classification have been developed for part detection [9, 3]. Recent work on object
segmentation [1] uses image patches and their figure-groundlabeling as building blocks
for segmentation. However, this is not the focus of our paper. 2)Bottom-level: pixel-based
segmentation process. This process finds perceptually coherent groups using pairwise local
feature similarity. 3)Interactions: linking object recognition with segmentation by coupling
patches and corresponding pixels. With such a representation, we concurrently carry out
object recognition and image segmentation processes. The final output is an object seg-
mentation where the object group consists of pixels with coherent low-level features and
patches with compatible part configurations.

We formulate our object segmentation task in a graph partitioning framework. We repre-
sent low-level grouping cues with a graph where each pixel isa node and edges between the
nodes encode the affinity of pixels based on their feature similarity [4]. We represent high-
level grouping cues with a graph where each detected patch isa node and edges between
the nodes encode the labeling consistency based on prior knowledge of object part config-
urations. There are also edges connecting patch nodes with their supporting pixel nodes.
We seek the optimal graph cut in this joint graph, which separates the desired patch and
pixel nodes from the rest nodes. We build upon the computational framework of spectral
graph partitioning [7], and achieve patch competition using the subspace constraint method
proposed in [10]. We show that our formulation leads to a constrained eigenvalue problem,
whose global-optimal solutions can be obtained efficiently.

2 Segmentation model

We illustrate our method through a synthetic example shown in Fig. 3. Suppose we are
interested in detecting a human-like configuration. Furthermore, we assume that some
object recognition system has labeled a set of patches as object parts. Every patch has a
local segmentation according to its part label. The recognition system has also learned the
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Figure 2:Model of object segmentation. Given an image, we detect edges using a set of oriented
filter banks. The edge responses provide low-level groupingcues, and a graph can be constructed
with one node for each pixel. Shown on the middle right is affinity patterns of five center pixels
within a square neighbourhood, overlaid on the edge map. Dark means larger affinity. We detect a
set of candidate body parts using learned classifiers. Body part labeling provides high-level grouping
cues, and a consistency graph can be constructed with one node for each patch. Shown on the middle
left are the connections between patches. Thicker lines mean better compatibility. Edges are noisy,
while patches contain ambiguity in local segmentation and part labeling. Patches and pixels interact
by expected local segmentation based on object knowledge, as shown in the middle image. A global
partitioning on the coupled graph outputs an object segmentation that has both pixel-level saliency
and patch-level consistency.



statistical distribution of the spatial configurations of object parts. Given such information,
we need to address two issues. One is the cue evaluation problem, i.e. how to evaluate
low-level pixel cues, high-level patch cues and their segmentation correspondence. The
other is the integration problem, i.e. how to fuse partial and imprecise object knowledge
with somewhat unreliable low-level cues to segment out the object of interest.
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Figure 3:Given image on the left, we want to detect the object on the right). 11 patches of various
sizes are detected (middle top). They are labeled as head(1), left-upper-arm(2, 9), left-lower-arm(3,
10), left-leg (11), left-upper-leg(4), left-lower-leg(5), right-arm(6), right-leg(7, 8). Each patch has a
partial local segmentation as shown in the center image. Object pixels are marked black, background
white and others gray. The image intensity itself has its natural organization, e.g. pixels across a
strong edge (middle bottom) are likely to be in different regions. Our goal is to find the best patch-
pixel combinations that conform to the object knowledge anddata coherence.

2.1 Representations

We denote the graph in Fig. 2 byG = (V, E, W ). Let N be the number of pixels and
M the number of patches. LetA be the pixel-pixel affinity matrix,B be the patch-patch
affinity matrix, andC be the patch-pixel affinity matrix. All these weights are assumed
nonnegative. Let βB andβC are scalars reflecting the relative importance ofB andC with
respect toA. Then the node set and the weight matrix for pairwise edge setE are:

V = { 1, · · · , N
︸ ︷︷ ︸

pixels

, N + 1, · · · , N + M
︸ ︷︷ ︸

patches

},

W (A, B, C; βB , βC) =

[

AN×N βC · CT
N×M

βC · CM×N βB · BM×M

]

. (1)



Object segmentation corresponds to a node bipartitioning problem, whereV = V1 ∪ V2

andV1∩V2 = ∅. We assumeV1 contains a set of pixel and patch nodes that correspond to
the object, andV2 is the rest of the background pixels and patches that correspond to false
positives and alternative labelings. LetX1 be an(N + M) × 1 vector, withX1(k) = 1
if nodek ∈ V1 and0 otherwise. It is convenient to introduce the indicator forV2, where
X2 = 1 − X1 and1 is the vector of ones.

We only need to process the image region enclosing all the detected patches. The rest
pixels are associated with a virtual background patch, which we denote as patchN + M ,
in addition toM − 1 detected object patches. Restriction of segmentation to this region of
interest (ROI) helps binding irrelavent background elements into one group [10].

2.2 Computing pixel-pixel similarity A

The pixel affinity matrixA measures low-level image feature similarity. In this paper, we
choose intensity as our feature and calcuateA based on edge detection results. We first
convolve the image with quadrature pairs of oriented filtersto extract the magnitude of
edge responsesOE [4]. Let i denote the location of pixeli. Pixel affinityA is inversely
correlated with the maximum magnitude of edges crossing theline connecting two pixels.
A(i, j) is low if i, j are on the two sides of a strong edge (Fig. 4):

A(i, j) = exp

(

−
1

2σ2
e

·

[
maxt∈(0,1) OE(i + t · j )

maxk OE(k )

]2
)

. (2)

A(1, 3) ≈ 1
A(1, 2) ≈ 0
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Figure 4:Pixel-pixel similarity matrixA is computed based on intensity edge magnitudes.

2.3 Computing patch-patch compatibility B and competition

For object patches, we evaluate their position compatibility according to learned statistical
distributions. For object part labelsa andb, we can model their spatial distribution by a
Gaussian, with meanµab and varianceΣab estimated from training data. Letṕ be the object
label of patchp. Letp be the center location of patchp. For patchesp andq, B(p, q) is low
if p, q form rare configurations for their part labelsṕ andq́ (Fig. 5a):

B(p, q) = exp

(

−
1

2
(p − q − µṕq́)

T Σ−1
ṕq́ (p − q − µṕq́)

)

. (3)

We manually set these values for our image examples. As to thevirtual background patch
node, it only has affinity of1 to itself.

Patch compatibility measures alone do not prevent the desired pixel and patch group from
including falsely detected patches and their pixels, nor does it favor the true object pixels to
be away from unlabeled backgroundpixels. We need further constraints to restrict a feasible
grouping. This is done by constraining the partition indicator X . In Fig. 5b, there are four
pairs of patches with the same object part labels. To encode mutual exclusion between
patches, we enforce one winner among patch nodes in competition. For example, only one
of the patches7 and8 can be validated to the object group:X1(N + 7) + X1(N + 8) = 1.



We also set an exclusion constraint between a reliable patchand the virtual background
patch so that the desired object group stands out alone without these unlabeled background
pixels, e.gX1(N + 1) + X1(N + M) = 1. Formally, letS be a superset of nodes to be
separated and let| · | denote the cardinality of a set. We have:

∑

k∈Sm

X1(k) = 1, m = 1 : |S|. (4)

B(1, 2) ≈ 1
B(10, 5) ≈ 0

7 and 8 cannot both be
part of the object
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Figure 5:a) Patch-patch compatibility matrixB is evaluated based on statistical configuration plau-
sibility. Thicker lines for larger affinity. b) Patches of the same object part label compete to enter the
object group. Only one winner from each linked pair of patches can be validated as part of the object.

2.4 Computing pixel-patch association C

Every object part label also projects an expected pixel segmentation within the patch win-
dow (Fig. 6). The pixel-patch association matrixC has one column for each patch:

C(i, p) =

{
1, if i is an object pixel of patchp,
0, otherwise. (5)

For the virtual background patch, its member pixels are those outside the ROI.

 1

 2

 3

 4

 5

 6

 7  8

 9

10

11

Head detector→
Patch 1

Arm detector→
Patch 2

Leg detector→
Patch 11

 1

 2

 3

 4

 5

 6

 7  8

 9

10

11

patches expected local segmentation association

Figure 6:Pixel-patch associationC for object patches. Object pixels are marked black, background
white and others gray. A patch is associated with its object pixels in the givenpartial segmentation.

Finally, we desireβB to balance the total weights between pixel and patch grouping so that
M � N does not render patch grouping insignificant, and we wantβC to be large enough
so that the results of patch grouping can bring along their associated pixels:

βB = 0.01
1T A1

1TB1
, βC =

βB

max C
. (6)

2.5 Segmentation as an optimization problem

We apply the normalized cuts criterion [7] to the joint pixel-patch graph in Eq. (1):

max ε(X1) =
2∑

t=1

XT
t WXt

XT
t DXt

, s. t.
∑

k∈Sm

X1(k) = 1, m = 1 : |S|. (7)



D is the diagonal degree matrix ofW , D(i, i) =
∑

j W (i, j). Let x = X1 −
XT

1
DX1

1T D1
.

By relaxing the constraints into the form ofLT x = 0 [10], Eq. (7) becomes a constrained
eigenvalue problem [10], the maximizer given by the nontrivial leading eigenvector:

x∗ = arg max
xT Wx

xT Dx
, s. t.LT x = 0. (8)

QD−1Wx∗ = λx∗, (9)

Q = I − D−1L(LT D−1L)−1LT . (10)
Once we get the optimal eigenvector, we compare10 thresholds uniformly distributed
within its range and choose the discrete segmentation that yields the best criterionε. Below
is an overview of our algorithm.

1: Compute edge responseOE and calculate pixel affinityA, Eq. (2).
2: Detect parts and calculate patch affinityB, Eq. (3).
3: Formulate constraintsS andL among competing patches, Eq. (4).
4: Set pixel-patch affinityC, Eq. (5).
5: Calculate weightsβB andβC , Eq. (6).
6: FormW and calculate its degree matrixD, Eq. (1).
7: SolveQD−1Wx∗ = λx∗, Eq. (9,10).
8: Thresholdx∗ to get a discrete segmentation.

3 Results and conclusions

In Fig. 7, we show results on the120×120 synthetic image. Image segmentation alone gets
lost in a cluttered scene. With concurrent segmentation andrecognition, regions forming
the object of interest pop out, with unwanted edges (caused by occlusion) and weak edges
(illusory contours) corrected in the final segmentation. Itis also faster to compute the
pixel-patch grouping since the size of the solution space isgreatly reduced.
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Figure 7:Eigenvectors (row 1) and their segmentations (row 2) for Fig. 3. On the right, we show the
optimal eigenvector on both pixels and patches, the horizontal dotted line indicating the threshold.
Computation times are obtained in MATLAB 6.0 on a PC with1GHz CPU and1G memory.

We apply our method to human body detection in a single image.We manually label five
body parts (both arms, both legs and the head) of a person walking on a treadmill in all



32 images of a complete gait cycle. Using the magnitude thresholded edge orientations
in the hand-labeled boxes as features, we train linear Fisher classifiers [2] for each body
part. In order to account for the appearance changes of the limbs through the gait cycle, we
use two separate models for each arm and each leg, bringing the total number of models
to 9. Each individual classifier is trained to discriminate between the body part and a
random image patch. We iteratively re-train the classifiersusing false positives until the
optimal performance is reached over the training set. In addition, we train linear color-
based classifiers for each body part to perform figure-grounddiscrimination at the pixel
level. Alternatively a general model of human appearance based on filter responses as in [8]
could be used. In Fig. 8, we show the results on the test image in Fig. 2. Though the pixel-
patch affinity matrixC, derived from the color classifier, is neither precise nor complete,
and the edges are weak at many object boundaries, the two processes complement each
other in our pixel-patch grouping system and output a reasonably good object segmentation.

segmentation alone:68 seconds segmentation-recognition:58 seconds

Figure 8:Eigenvectors and their segmentations for the261× 183 human body image in Fig. 2.
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