Neural Information Processing Systems, Vancouver, Ded, 2Q102. 1

Concurrent Object Recognition and
Segmentation by Graph Partitioning

Stella X. Yu't, Ralph Gross' and Jianbo Shit
Robotics Instituté
Carnegie Mellon University
Center for the Neural Basis of Cognitibn
5000 Forbes Ave, Pittsburgh, PA 15213-3890
{stella.yu, rgross, jshi@cs.cmu.edu

Abstract

Segmentation and recognition have long been treated aspewate pro-
cesses. We propose a mechanism based on spectral grapiomadi
that readily combine the two processes into one. A partéesegni-
tion system detects object patches, supplies their paggahentations as
well as knowledge about the spatial configurations of theabjTrhe goal
of patch grouping is to find a set of patches that conform logkigt object
configuration, while the goal of pixel grouping is to find a eépixels
that have the best low-level feature similarity. Througkebipatch in-
teractions and between-patch competition encoded in thé@ospace,
these two processes are realized in one joint optimizatiohlem. The
globally optimal partition is obtained by solving a congted eigenvalue
problem. We demonstrate that the resulting object segrientalimi-
nates false positives for the part detection, while oveiognocclusion
and weak contours for the low-level edge detection.

1 Introduction

A good image segmentation must single out meaningful sirastsuch as objects from
a cluttered scene. Most current segmentation technigqiesatdoottom-up approach [5],
where image properties such as feature similarity (brigbdntexture, motion etc), bound-
ary smoothness and continuity are used to detect percgptoakrent units. Segmentation
can also be performed in a top-down manner from object mpudglsre object templates
are projected onto an image and matching errors are usedeiordee the existence of the
object [1]. Unfortunately, neither approach alone prodisaisfactory results.

Without utilizing any knowledge about the scene, image sagation gets lost in poor data
conditions: weak edges, shadows, occlusions and noisselsbject boundaries can then
hardly be recovered in subsequent object recognition.aBksiis have long recognized this
issue, circumventing it by adding a grouping factor cafadiliarity [6]. Without subject
to perceptual constraints imposed by low level groupingolject detection process can
produce many false positives in a cluttered scene [3]. Opeoggh is to build a better part
detector, but this has its own limitations, such as incréaslee complexity of classifiers
and the number of training examples required. Another aaproOn the other hand, is



based on the observation that the falsely detected panmaperceptually salient (Fig. 1),
thus they can be effectively pruned away by perceptual ézgéan.
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Figure 1:Human body part detection. A total @f parts are detected, each labeled by one of the
five part detectors for arms, legs and head. False positamsot be validated on two grounds. First,
they do not form salient structures based on low-level ceigs,the patch on the floor that is labeled
left leg has same features as its surroundings. Secondilg, fasitives are often incompatible with
nearby parts, e.g. the patch on the treadmill that is labiedéed has no other patches in the image to
make up a whole human body. These two conditions, low-lenabie feature saliency and high-level
part labeling consistency, are essential for the segmentaf objects from background. Both cues
are encoded in our pixel and patch grouping respectively.

We propose a segmentation mechanism that is coupled witbljeet recognition pro-
cess (Fig. 2). There are three tightly coupled processempilpvel: part-based object
recognition process. It learns classifiers from traininggs to detect parts along with the
segmentation patterns and their relative spatial configura. A few approaches based on
pattern classification have been developed for part detefdi 3]. Recent work on object
segmentation [1] uses image patches and their figure-grialneding as building blocks
for segmentation. However, this is not the focus of our pap@ottom-level: pixel-based
segmentation process. This process finds perceptuallyeotmroups using pairwise local
feature similarity. 3)Interactions: linking object recogion with segmentation by coupling
patches and corresponding pixels. With such a representatie concurrently carry out
object recognition and image segmentation processes. ndlediitput is an object seg-
mentation where the object group consists of pixels witheceht low-level features and
patches with compatible part configurations.

We formulate our object segmentation task in a graph pamtitg framework. We repre-
sent low-level grouping cues with a graph where each pixehisde and edges between the
nodes encode the affinity of pixels based on their featurdasity [4]. We represent high-
level grouping cues with a graph where each detected patimégle and edges between
the nodes encode the labeling consistency based on priar&dge of object part config-
urations. There are also edges connecting patch nodesheithsupporting pixel nodes.
We seek the optimal graph cut in this joint graph, which safearthe desired patch and
pixel nodes from the rest nodes. We build upon the computatimamework of spectral
graph partitioning [7], and achieve patch competition gs$ive subspace constraint method
proposed in [10]. We show that our formulation leads to a trairsed eigenvalue problem,
whose global-optimal solutions can be obtained efficiently

2 Segmentation model

We illustrate our method through a synthetic example showkig. 3. Suppose we are
interested in detecting a human-like configuration. Furttege, we assume that some
object recognition system has labeled a set of patches astqgigrts. Every patch has a
local segmentation according to its part label. The redognsystem has also learned the



Figure 2: Model of object segmentation. Given an image, we detectedging a set of oriented
filter banks. The edge responses provide low-level groupures, and a graph can be constructed
with one node for each pixel. Shown on the middle right is #ffipatterns of five center pixels
within a square neighbourhood, overlaid on the edge mapk Baans larger affinity. We detect a
set of candidate body parts using learned classifiers. Badygbeling provides high-level grouping
cues, and a consistency graph can be constructed with oedooglach patch. Shown on the middle
left are the connections between patches. Thicker linesirhetier compatibility. Edges are noisy,
while patches contain ambiguity in local segmentation aard labeling. Patches and pixels interact
by expected local segmentation based on object knowledgdawn in the middle image. A global

partitioning on the coupled graph outputs an object segatient that has both pixel-level saliency
and patch-level consistency.



statistical distribution of the spatial configurations bfext parts. Given such information,
we need to address two issues. One is the cue evaluatioreprpbk. how to evaluate
low-level pixel cues, high-level patch cues and their segat@n correspondence. The
other is the integration problem, i.e. how to fuse partial anprecise object knowledge
with somewhat unreliable low-level cues to segment out tijeat of interest.
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Figure 3:Given image on the left, we want to detect the object on thetyig 1 patches of various
sizes are detected (middle top). They are labeled as hedelt-upper-arnt, 9), left-lower-armg,
10), left-leg (11), left-upper-legd), left-lower-leg6), right-armg), right-leg(7, 8). Each patch has a
partial local segmentation as shown in the center image. Objedispixe marked black, background
white and others gray. The image intensity itself has itsir@torganization, e.g. pixels across a
strong edge (middle bottom) are likely to be in differentioag. Our goal is to find the best patch-
pixel combinations that conform to the object knowledge daié coherence.

2.1 Representations

We denote the graph in Fig. 2 iy = (V,E, W). Let N be the number of pixels and
M the number of patches. Let be the pixel-pixel affinity matrix3 be the patch-patch
affinity matrix, andC be the patch-pixel affinity matrix. All these weights arewamsed
nonnegative. Let g andj¢ are scalars reflecting the relative importancé&andC' with
respect tad. Then the node set and the weight matrix for pairwise edgE aet:

vV = {]—7"'aN7 N+]—a7N+M}7
N——
pixels patches
T
W(A,B,C;Bp,Bc) = Anxn flo-COnsr | (1)
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Object segmentation corresponds to a node bipartitionioglem, wherev = V; U V,
andV; NV, = @. We assum#/; contains a set of pixel and patch nodes that correspond to
the object, and/; is the rest of the background pixels and patches that carnesip false
positives and alternative labelings. LE4 be an(N + M) x 1 vector, withX; (k) = 1

if nodek € V; and0 otherwise. It is convenient to introduce the indicatorV¥er where

Xs =1 — X; andl is the vector of ones.

We only need to process the image region enclosing all thectbat patches. The rest
pixels are associated with a virtual background patch, vhie denote as patcN + M,

in addition toM — 1 detected object patches. Restriction of segmentatiorigoeion of
interest (ROI) helps binding irrelavent background elets@mto one group [10].

2.2 Computing pixel-pixel smilarity A

The pixel affinity matrixA measures low-level image feature similarity. In this paper
choose intensity as our feature and calcudtbased on edge detection results. We first
convolve the image with quadrature pairs of oriented filtergxtract the magnitude of
edge respons&3F [4]. Let i denote the location of pixél Pixel affinity A is inversely
correlated with the maximum magnitude of edges crossingjribeconnecting two pixels.
A(i,7) is low if ¢, j are on the two sides of a strong edge (Fig. 4):
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Figure 4:Pixel-pixel similarity matrixA is computed based on intensity edge magnitudes.

2.3 Computing patch-patch compatibility B and competition

For object patches, we evaluate their position compaijtalccording to learned statistical
distributions. For object part labelsandb, we can model their spatial distribution by a
Gaussian, with meam,;, and varianc&,; estimated from training data. Lgbe the object
label of patchp. Let p be the center location of patgh For patchep andg, B(p, q) is low

if p, ¢ form rare configurations for their part labelsindg (Fig. 5a):

B(p,q) = exp (% (p—q—mpa) Sy (p—q— upq')) - 3)

We manually set these values for our image examples. As taittual background patch
node, it only has affinity of to itself.

Patch compatibility measures alone do not prevent theetepixel and patch group from
including falsely detected patches and their pixels, nesdbfavor the true object pixels to
be away from unlabeled background pixels. We need furthesteaints to restrict a feasible
grouping. This is done by constraining the partition intticgX . In Fig. 5b, there are four
pairs of patches with the same object part labels. To encadaahexclusion between
patches, we enforce one winner among patch nodes in coipetior example, only one
of the patche§ and8 can be validated to the object groul; (N +7) + X1 (N +8) = 1.



We also set an exclusion constraint between a reliable gatdithe virtual background
patch so that the desired object group stands out alone wtithese unlabeled background
pixels, e.gX; (N + 1) + X3 (N + M) = 1. Formally, letS be a superset of nodes to be
separated and l¢t | denote the cardinality of a set. We have:

> Xi(k)=1, m=1:]8|. 4)

keSm 7 and 8 cannot both be
part of the object

l'm' 0[]~
EI-—> BCI

[I]|]l[|] (5]

a) compatibility patches b) competition

Figure 5:a) Patch-patch compatibility matrig is evaluated based on statistical configuration plau-
sibility. Thicker lines for larger affinity. b) Patches oftlsame object part label compete to enter the
object group. Only one winner from each linked pair of pascten be validated as part of the object.
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2.4 Computing pixel-patch association C

Every object part label also projects an expected pixel sagation within the patch win-
dow (Fig. 6). The pixel-patch association matfihas one column for each patch:

.y __J 1, ifiisan object pixel of patch,
Cli,p) = { 0, otherwise. ®)

For the virtual background patch, its member pixels aredlgside the ROI.
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Figure 6:Pixel-patch associatiofi for object patches. Object pixels are marked black, backgto
white and others gray. A patch is associated with its obje&ipin the giverpartial segmentation.

Finally, we desiredp to balance the total weights between pixel and patch grggorthat
M < N does not render patch grouping insignificant, and we wanto be large enough
so that the results of patch grouping can bring along theo@ated pixels:

17 A1 BB
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2.5 Segmentation asan optimization problem
We apply the normalized cuts criterion [7] to the joint pipeltch graph in Eq. (1):
2
XIW X,
X)) =) —L—= st Xi(k)y=1, m=1:19|. 7
maxe(X0) =3 Yrpyy Sb 2 Xl =L m =1 (7)



D is the diagonal degree matrix &F, D(i,i) = >, W (i, j). Letz = X; — %.

By relaxing the constraints into the form &f 2 = 0 [10], Eq. (7) becomes a constrained
eigenvalue problem [10], the maximizer given by the noifikeading eigenvector:

T
1474
x* = argmaXiTDj, s.t.LTz =0, (8)
QD 'Wa* = I\, (9)
Q = I-D'L(L*D'L)~'LT. (10)

Once we get the optimal eigenvector, we compEiehresholds uniformly distributed
within its range and choose the discrete segmentation thldisythe best criterioa Below
is an overview of our algorithm.

. Compute edge respon&& and calculate pixel affinity, Eq. (2).

Detect parts and calculate patch affiniy Eq. (3).

Formulate constraints and L among competing patches, Eq. (4).

Set pixel-patch affinity”, Eq. (5).

Calculate weightgp andj¢, Eq. (6).

FormW and calculate its degree matiix, Eq. (1).

SolveQD~'Waz* = \z*, Eq. (9,10).

Thresholdc* to get a discrete segmentation.
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3 Resultsand conclusions

In Fig. 7, we show results on tH20 x 120 synthetic image. Image segmentation alone gets
lost in a cluttered scene. With concurrent segmentationracagnition, regions forming
the object of interest pop out, with unwanted edges (caugettiusion) and weak edges
(ilusory contours) corrected in the final segmentation.islalso faster to compute the
pixel-patch grouping since the size of the solution spageéatly reduced.
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Figure 7:Eigenvectors (row 1) and their segmentations (row 2) for BigOn the right, we show the
optimal eigenvector on both pixels and patches, the hotétaotted line indicating the threshold.
Computation times are obtained in MATLAB 6.0 on a PC withHz CPU andlG memory.

=)

We apply our method to human body detection in a single im¥¢ee manually label five
body parts (both arms, both legs and the head) of a persoringatk a treadmill in all



32 images of a complete gait cycle. Using the magnitude himlded edge orientations
in the hand-labeled boxes as features, we train linear Fidhssifiers [2] for each body
part. In order to account for the appearance changes oftis lihrough the gait cycle, we
use two separate models for each arm and each leg, bringngtdl number of models
to 9. Each individual classifier is trained to discriminate beg¢w the body part and a
random image patch. We iteratively re-train the classifiesing false positives until the
optimal performance is reached over the training set. Iritiaehgd we train linear color-
based classifiers for each body part to perform figure-gralisctimination at the pixel
level. Alternatively a general model of human appearansedban filter responses as in [8]
could be used. In Fig. 8, we show the results on the test imagigi 2. Though the pixel-
patch affinity matrixC, derived from the color classifier, is neither precise nanptete,
and the edges are weak at many object boundaries, the twegzex complement each
other in our pixel-patch grouping system and output a reatsigrgood object segmentation.

segmentation alon&8 seconds segmentation-recognitiél:seconds
Figure 8:Eigenvectors and their segmentations for2& x 183 human body image in Fig. 2.
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