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Abstract

The goal of pre-attentive segmentation is to mark conspic-
uous image locations such as region boundaries, smooth
contours and popout targets against backgrounds. This
salience detection relies on not only feature similarity anal-
ysis but also local feature contrast. We identify these two
measures with attraction and nondirectional repulsion, and
unify the dual processes of association by attraction and
segregation by repulsion in one grouping framework. We
generalize normalized cuts to multi-way partitioning with
these dual measures and show that the criterion can be
viewed as a stochastic jump-diffusion process, where the
probability of jump is determined by the relative strengths of
attraction and repulsion. We demonstrate that this extended
model can deal with salience detection under various situ-
ations as well as the asymmetry in visual search. Through
these results, we provide a clear understanding of the role of
negative weights in the graph partitioning framework. This
opens up the possibilities of encoding negative correlations
in constraint satisfaction problems, where solutions by sim-
ple and robust eigendecomposition become possible.

1. Introduction
Visual processing starts by extracting local features such
as oriented edges. As a prerequisite for higher-level tasks
such as objection recognition, these features detected at an
early stage must be grouped into meaningful global entities
such as regions, boundaries and surfaces. The goal of pre-
attentive visual segmentation [15] is to mark conspicuous
image locations and make them more salient for perceptual
popout. These locations not only include boundaries be-
tween regions, but also smooth contours and pop-out targets
against backgrounds (Fig. 1).

It has long been assumed that regions are first character-
ized by features which are homogeneous within the areas.
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a. Boundary. b. Contour. c. Pop-out.

Figure 1: Pre-attentive segmentation is to mark conspicuous im-
age locations, which could be caused by a) region boundaries, b)
smooth contours and c) pop-out targets. In these examples, the
similarity of features within figure and ground compounds with
the dissimilarity between figure and ground. Figure and ground
are well segregated in feature maps tuned to different orientations.

These feature measures are then compared at neighboring
locations to locate boundaries between regions [15]. This
view of feature discrimination for grouping is supported
by evidence in neurophysiology on elaborate feature detec-
tors in visual cortex [6], in psychophysics on visual search
[26] and in modeling on texture segmentation [12, 4, 18].
Some other approaches of texture segmentation go beyond
the analysis of features obtained from image filters and
model the interactions between filters [30]. These Markov
Random Field models [8] capture context dependences and
other statistical characteristics of texture features [15].

However, it has been shown [3, 13, 23, 19] that when
feature similarity within an area and feature differences be-
tween areas are teased apart, the two aspects of perceptual
organization, grouping and segregation, can contribute in-
dependently to perception. In particular, when features are
varied continuously within areas, it is the local feature con-
trast, rather than the feature properties themselves, that is
more important for the perceived grouping. Fig. 2 demon-
strates that local feature contrast plays an active role in bind-
ing (even dissimilar) elements together [19].
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a. Boundary. b. Incoherent. c. Disconnected.

Figure 2: Local feature contrast alone is sufficient to perceptually
link dissimilar elements together. a) Boundary by local orienta-
tion contrast. b) Figure without curvilinearity. c) Spatially discon-
nected figure without element similarity.

These results motivate models of preattentive vision
where region boundaries are directly localized through lat-
eral interactions between edge detectors [20, 15]. The
breakdown of spatial homogeneity in features causes
changes in contextual influences, resulting in higher re-
sponses at the border than at surrounding locations.

This contextual feature analysis for grouping can be best
understood in a relational graph framework, where each lo-
cation is denoted by a node and feature compatibility be-
tween locations is captured by a weight associated with the
edge between nodes. A good segmentation is a graph parti-
tioning which cuts the graph into components of relatively
large interior weights and relatively small exterior weights.
Gestalt grouping factors, such as proximity, similarity, con-
tinuity and symmetry, can be encoded and combined in
pairwise similarity measures [28, 25, 22, 7, 24]. Complex
grouping phenomena can emerge from simple computation
on these local cues [10, 17].

While Gestalt laws [27] have always stressed the as-
pects of similarity of elements in grouping, the effect of
saliency, or feature contrast, or local dissimilarity, cannot
be described in a framework that models similarity group-
ing. It has already been pointed out [21] the asymmetry be-
tween figure and ground might have to be described by an
unbalanced criterion which favors figure (but not ground)
being coherent. We see in Fig. 2c that, completely dissimi-
lar elements that are spatially disconnected can be grouped
together in a figure simply due to the fact they are locally
dissimilar to a common ground. This suggests that it may
not be the problem with a balanced criterion, but rather it
is the transcription problem from an image to a relational
graph where dissimilarity measures are lacking.

In this paper, we present a grouping method which
integrates pairwise attraction and repulsion information.
Whereas the attraction measures the degree of association
by feature similarity, the repulsion measures the segrega-
tion by feature dissimilarity. We generalize normalized cuts
criteria [25] to a multi-way partitioning on these dual mea-
sures in one framework. We derive the necessary and suffi-

cient conditions on the graph weights for objects to be seg-
mented in a variety of settings. We show that grouping by
the dual procedures of association and segregation can be
viewed as a jump-diffusion process [9], where the probabil-
ity of jump between two diffusion processes is determined
by the relative strengths of attraction and repulsion. We
demonstrate that both salience detection and the asymmetry
in visual search [14] can be accounted for by our method.

The rest of the paper is organized as follows. Section 2
expands our grouping method in detail. Section 3 provides
a probabilistic view of our criterion. Section 4 presents ex-
perimental results. Section 5 concludes the paper.

2. Method
In graph approaches, an image is described by an undirected
weighted graph G = (V;E), in which each pixel is associ-
ated with a vertex v 2 V and an edge e 2 E between vertex
j and k is associated with weight Wjk . Suppose we are
given two nonnegative measures, AGa and AGr, for attrac-
tion and nondirectional repulsion (as opposed to directional
repulsion that describes ordinal relationships such as rela-
tive depth cues [29]). Both of them are assumed symmetri-
cal: AGa = A

T
Ga and AGr = A

T
Gr.

2.1. Criteria
For two vertex sets P and Q, let A(P;Q) and R(P;Q) de-
note the total attraction and repulsion from P to Q, i.e.

A(P;Q) =
P

j2P;k2Q AGa(j; k);

R(P;Q) =
P

j2P;k2Q AGr(j; k):

In particular,A(P;V) and R(P;V) measure total attraction
and repulsion of set P respectively. For attraction, we ask
the association by within-group attraction to be as large as
possible; whereas for repulsion, we ask the segregation by
between-group repulsion to be as large as possible (Fig. 3).

We extend the bipartitioning in normalized cuts [25] to a
k-way partitioning based on both attraction and repulsion.
A k-way vertex partitioning fVl; l = 1; : : : ; kg on graph
G = (V;E) has V = [kl=1Vl and Vi \ Vj = ?;8i 6= j.
We unify the association by attraction and segregation by
repulsion in one criterion by a linear combination of nor-
malized ratios weighted with their relative strengths. Our
normalized association and normalized cuts criteria are de-
fined as:
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In �a, for each of the k partitions, we measure the goodness
of association by its within-group attraction ratio, the good-
ness of segregation by its between-group repulsion ratio, re-
sulting in the goodness of grouping as the linear summation
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a) Association by attraction. b) Segregation by repulsion.

Figure 3: Grouping criterion. Illustrated here is �
2

G =

ff1; 2g; f3; 4gg. We want to maximize normalized sums
of thick-lined edge weights in �a, while minimizing those
of dotted-lined weights in �c. a) For attraction, we aim at
maximizing within-group association. b) For repulsion, we
aim at maximizing between-group segregation. These two
goals are combined into one grouping criterion �a weighted
by their relative strengths of total connections.

of the two ratios, weighted by their relative strengths. A
good partitioning is the one which maximizes the sum of
such k ratios. Because �a+ �c = k, �c is a dual formulation
of �a. Therefore, maximizing �a is equivalent to minimiz-
ing �c. Intuitively, we aim at having tight attraction within
clusters and loose attraction between clusters at the same
time, strong repulsion between clusters and weak repulsion
within clusters at the same time. The duality between �a

and �c relieves us of such two goals to either one of them.
Whenever one is maximized, the other is automatically min-
imized. Such a balance in the criterion underlies its success
in real image processing.

2.2. Computational solution

It is readily seen from the criterion that repulsion can be
regarded as negative attraction:

�a(�
k
G) =

kX
l=1

�
A(Vl;Vl) +R(Vl;V n Vl)
A(Vl;V) +R(Vl;V)

�

=

kX
l=1

�
A(Vl;Vl)�R(Vl;Vl) +R(Vl;V)

A(Vl;V) +R(Vl;V)

�
:

We introduce a few symbols to turn the above criterion
into a computable form. Let Xl be a membership indica-
tor vector for class l, l = 1; : : : ; k. Let the degree matrices
DGa and DGr be diagonal matrices, where DGa(j; j) =P

k AGa(j; k) and DGr(j; j) =
P

k AGr(j; k), 8j. Let

W = AGa �AGr +DGr;

D = DGa +DGr:

It can be verified that [31]

�a(�
k
G) =

kX
l=1

X
T
l WXl

X
T
l DX

T
l

= trace(Y T
WY );

s. t. Y

T
DY = I;

where Y = X(X
T
DX)

� 1

2 andX = [X1; : : : ; Xk]. There-
fore, if we relax the discreteness constraints on Y , by using
the method of Lagrange multipliers, the above quadratic
formulation leads to the standard generalized eigenvalue
problem, i.e., the maximizer of �a is given by the k largest
generalized eigenvectors of (W;D). Based on Gersh-
gorin’s theorem, we can estimate j�l(W;D)j � 2;8l, where
�l(W;D) is the l-th largest eigenvalue of (W;D).

Let’s examine two extreme cases. If there is no repul-
sion, i.e. AGr = 0, we have W = AGa and D = DGa,
which reduces to the conventional normalized cuts [25],
where 1 is the eigenvector of (W;D) with the largest eigen-
value of 1. If there is no attraction, i.e. AGa = 0, we have
W = DGr � AGr and D = DGr, where 1 is the eigenvec-
tor of (W;D) with the smallest eigenvalue of 0. Between
these two extremes is the case where we have both attrac-
tion and repulsion, usually 1 is no longer an eigenvector of
(W;D). Indeed, attraction tends to bind elements together,
while repulsion tends to break elements apart. The optimal
partitioning results from the balance of such two forces.

2.3. Bipartitioning case
The formulation in the continuous domain can become even
stronger if we exploit the constraints among indicator vec-
tors. It seems nontrivial to derive the constraints for general
k-way partitioning, but we can get a good handle on k = 2.

Let M = 1
T
D1, � =

XT

1
DX1

M
and y = (1� �)X1 � �X2.

By using X1 +X2 = 1 and XT
1
X2 = 0, we can prove that:

�a(�
2

G) =
y
T
Wy

y
T
Dy

+ C; C =
1TW1

1TD1
:

Notice that C is a constant and it measures the attraction
to total degree ratio, i.e. 0 � C =

1
TAGa1

1TD1
� 1: C = 1

when and only when AGr = 0, C = 0 when and only when
AGa = 0. Ideally, a good grouping seeks the solution of the
following optimization problem,

yopt = argmax
y

y
T
Wy

y
T
Dy

s.t. y

T
D1 = 0; 8j; yj 2 f(1� �);��g:

With attraction and repulsion working together, the con-
straint yTD1 = 0 is not automatically satisfied by the solu-
tion of the generalized eigensystem. Instead, according to
the Courant minimax theorem, we have

�2(W;D) = min
y1

max

fy: yTDy1=0g

y
T
Wy

yTDy

� max

fy: yTD1=0g

y
T
Wy

yT Dy

� �1(W;D):
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Let the set of eigenvectors for eigenvalue �(W;D) be
�(W;D; �). In other words, y1 2 �(W;D; �1) and y2 2
�(W;D; �2) yield an upper and lower bound for the opti-
mal �a. Stated in Theorem 1 are the necessary and sufficient
conditions when the second largest eigenvector does give
the optimal solution in the continuous domain.

Theorem 1 For W = AGa � AGr + DGr, where both
AGa and AGr are nonnegative and symmetric, yopt =

argmaxfy: yTD1=0g
yTWy

yTDy
2 �(W;D; �2) iff 9� � 0, s.t.

DGr = �DGa and �1(W;D) � 1

1+�
.

Theorem 1 states two requirements. One is the balance be-
tween attraction and repulsion among all vertices. The ratio
of total repulsion to total attraction for every node should
be the same across the network. The other requirement can
be interpreted as the dominance of attraction, since when
� is small, the second condition is more likely to be satis-
fied. Due to the continuity, the closer these conditions are
satisfied, the closer the solution to the original formulation.

2.4. Partitioning with a symmetrical matrix
In the framework of attraction and nondirectional repulsion,
we can formulate the normalized cuts on an arbitrary sym-
metrical weight matrix W . Let

W =W+ � (�W�) = AGa �AGr;

whereW+ andW� contain respectively all nonnegative and
negative entries ofW . We regardW+ as attractionAGa and
�W� as repulsion AGr, and interprete the normalized cuts
on this pair of AGa and AGr as that on W .

For vertex sets P and Q, let DW (P ) denote the degree
of connections of P , CW (P;Q) denote the total W connec-
tions from P to Q, SW (P;Q) denote the connection ratio
from set P to Q, based on which we can define the normal-
ized association (�a) and cuts (�c) criteria:

DW (P ) =
P

j2P;k2V jW (j; k)j;
CW (P;Q) =

P
j2P;k2QW (j; k) +DW�(P );

SW (P;Q) =
CW (P;Q)

DW (P )
;

�a(�
k
G) =

Pk

l=1 SW (Vl;Vl);

�c(�
k
G) =

Pk

l=1 SW (Vl;V n Vl):

Since SW (Vl;Vl) +SW (Vl;V nVl) = 1, �a + �c = k. The
maximizer of �a is given by the k largest eigenvectors of an
equivalent eigensystem (Weq ; Deq):

Weq =W +DW� ; Deq = DW ;

where DW is the diagonal degree matrix for any matrix W :
DW (i; i) =

P
j jW (i; j)j.

With the introduction of nondirectional repulsion, we re-
move the nonnegative constraints on weight matrices and

thus graph partitioning algorithms can directly apply to any
symmetrical matrices. This opens up new possibilities of
encoding negative correlations among constraints in opti-
mization problems, e.g. those formulated in an energy func-
tion on Markov Random Fields [11, 5], whereby global op-
timal solutions through simple and robust eigendecomposi-
tions become available.

2.5. Regularization
The above decomposition of W into an attraction field and
a repulsion field is not unique. In fact,

W = (W+ +�)� (��W�) = AGa �AGr;

where � could be any nonnegative matrix. The previous
case corresponds to � = 0. If we interprete W using
AGa = (W+ +�) and AGr = (��W�), the partitioning
is then given by the eigensystem

(Weq +D�; Deq + 2D�):

We see that the only effect of � on the solution is the ma-
trix D�. As D� increases its magnitude, the first largest
eigenvalue approaches 0:5.

This extra degree of freedom provides us with solu-
tion regularization. Practical experiences have indicated
that when Deq have near-zero connection degrees for some
nodes, the segmentation computed by (Weq ; Deq) becomes
highly unstable. This situation occurs when a coherent fig-
ure is embedded in a random ground. In the attraction case,
this problem can be remedied by the addition of a small
constant baseline pairwise connections. However, such a
technique lacks any theoretical justification and the resulted
solutions are no longer the same. In our current frame-
work, we can in fact introduce any constant baseline pair-
wise connection to the attraction matrix W+, and its effect
can be cancelled by the same addition to the repulsion ma-
trix �W�. In other words, we choose D� = Æ I , where Æ
is a scalar and I is the identity matrix. This does not change
the information contained in the variation of the original
graph weights, but as it increases the degree of total connec-
tions, it regularizes the solutions in eigendecomposition.

2.6 Conditions for popout

To help understanding repulsion measures and regulariza-
tion process in this computational framework, we study a
simple case of 4-node graph (Fig. 3). Let

AG =

2
664

0 x y y

x 0 y y

y y 0 z

y y z 0

3
775 ; V =

2
664

1 1 1 0

1 0 0 0

0 1 0 1

0 0 0 0

3
775 ;
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where x, y, z denote figure-to-figure, figure-to-ground,
ground-to-ground connections [1, 2] respectively; each col-
umn of V gives a labeling of the graph. Due to the weight
symmetry, we only need to consider the four cases in V ,
all others leading to one of the four �a values. We analyze
what are the conditions on x, y and z so that figure-ground
as �2G = ff1; 2g; f3; 4gg can be guaranteed.

Since scaling on AG does not change grouping, we as-
sume z of unit affinity. The feasible set of x and y can
be found (after a lengthy derivation!) by requiring � a for
the first column of V having the largest value over the other
three cases (Table 1a) . The change of feasible sets with reg-
ularization is illustrated in Fig. 4. The closed-form feasible
solutions are also given for the limit case where regulariza-
tion parameter Æ approaches infinity (Table 1b).

a)

z y x

1 (�1; 0) (1� y �

p
1� 2y + 9y2; +1)

1 [0; 1] ( 2y
2

1+y
; +1)

1 (1; +1) (�y + 2y2; +1)

�1 (�1; �1) (�2y
2

1�y
;
�1+2y+8y

2

2
)

�1 [�1; � 1

2
] (�y � 2y2; �1+2y+8y

2

2
)

b)

z y x

1 (�1; 0) (�1 + 2y; +1)

1 [0; 1] (max(0; �3+24y
21

); +1)

1 (1; +1) (0; +1)

�1 (�1; �1) ( 3+24y
21

; 1)

�1 [�1; � 7

8
] (�3+5y+2y

2

2
; 0)

�1 [0; 1) (1 + 2y; 1)

Table 1: Feasible sets of parameters for Fig. 3. a) No regu-
larization: Æ = 0. b) Regularization at a limit: Æ =1.

The effects of both repulsion measures and regulariza-
tion are evident in Fig. 4, which can be summarized in the
Table 2. We see that 1) with negative figure-ground connec-
tions such as those in figures defined by local feature con-
trast, repulsion measures allow weak figure-figure connec-
tions for an object to be segmented, while 2) with negative
ground-ground connections such as those in fragmented or
incoherent background cases, regularization allows moder-
ately coherent foreground to stand out.

The problem of fragmented background has led [21] to
adopt an unbalanced criterion which favors figure (but not
ground) being coherent. However, an unbalanced criterion
tends to pick out small local clusters and thus miss global
structures. Here we show that the same goal can be achieved
with a balance criterion in the attraction-repulsion frame-
work. We demonstrate these effects in the results section.

Æ = 0

�3 x

y

�3 x

y

Æ = 5

�3 x

y

�3 x

y

Æ =1
�3 x

y

�3 x

y

z = 1 z = �1

Figure 4: Repulsion and regularization help figural popout.
Here x, y and z are figure-figure, figure-ground and ground-
ground affinity. The shaded areas indicate feasible sets for
figural popout. The darker areas are attraction alone cases.
When z = 1, the ground is made of similar elements. When
y gains its strength as attraction, x has to increase rapidly
(quadratic). However, if y is repulsion, x can be even more
repulsive than y. Therefore, with attraction, only coherent
figures can popout, while with repulsion, even incoherent
figures can popout. When z = �1, the ground is incoher-
ent. If y is attraction, any coherent figure (x > 0) will not
popout. If y is repulsion, then it will popout even if x < y.
With regularization, measured by Æ, the solution space in
general expands. In particular, a sufficiently coherent figure
(with linear x � y relationship) can popout from random
ground, which would be otherwise impossible.

Figure n ground coherent incoherent
coherent Attraction Regularization
incoherent Repulsion No figure-ground

Table 2: Popout through normalized cuts criteria on a
weight matrix with negative weights illustrates distinct ma-
jor contributions of attraction, repulsion and regularization
to various figure-ground combinations. Attraction is most
effective at detecting a coherent figure against a coherent
ground. With repulsion, dissimilar figural elements against
a common ground popout. With regularization, a coherent
figure can be segmented out from a random ground.
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3. Jump-diffusion process view

With attraction alone, the normalized cuts criterion can be
viewed as finding low conductivity sets in Markov random
walks [16]. When we have attraction and repulsion, the goal
of partitioning is to find low conductivity sets in a stochastic
jump-diffusion process, where the walk jumps between two
Markov chains with a probability determined by the relative
strengths of total attraction and total repulsion.

Let’s define two probability transition matrices, Pa =

D

�1
GaAGa and Pr = D

�1
GrAGr. Pa(i; j) describes the one-

step likelihood of a random walkerAwalking from i toward
j based on attraction measures, while Pr(i; j) describes the
one-step likelihood of a random walker R walking from i

away from j based on repulsion measures. The two ran-
dom walkers live in an identical state space. If both Markov
chains are ergodic, which happens under mild conditions
and means that the random walker can go between any
two states, then there exist unique stationary distributions
�a =

1
TDGa

1TDGa1
and �r =

1
TDGr

1TDGr1
. Here we have followed

the convention of representing stationary distribution � in
row vectors such that �P = � for transition probability ma-
trix P . Since AGa and AGr are symmetric, the two random
walks are reversible, i.e.,

�a(i)Pa(i; j) = �a(j)Pa(j; i) =
AGa(i; j)

1TDGa1
;

�r(i)Pr(i; j) = �r(j)Pr(j; i) =
AGr(i; j)

1TDGr1
:

Let !(t) denote the state of a mind-jumping random walker
at time t, where the change of the mind is governed by a
two-choice walker identity variable, denoted byH(t). H(t)

has a homogeneous distribution over attraction walker A
and repulsion walker R, i.e.,

Pr(H(t) = A) =
1
TDGa1

1TD1
=

A(V;V)

A(V;V)+R(V;V)
;

P r(H(t) = R) =
1
TDGr1

1TD1
=

R(V;V)

A(V;V)+R(V;V)
:

We can interpret our criterion in terms of a stochastic jump-
diffusion process [9]. When H(t) = A, it acts as random
walker A in its equilibrium �a; When H(t) = R, it acts as
random walker R in its equilibrium �r. There is diffusion
within each random walk space:

Pr(!(t + 1) 2 VljH(t) = A;!(t) 2 Vl) =
A(Vl;Vl)

A(Vl;V)
;

P r(!(t+ 1) 2 V n VljH(t) = R;!(t) 2 Vl) =
R(Vl;VnVl)

R(Vl;V)
:

The probability of the jump-walker staying in one set of
states is its average staying time with respect to H :

Pr(!(t) 2 Vl) = EH(t)(!(t) 2 Vl) =
A(Vl;V) +R(Vl;V)
A(V;V) +R(V;V) :

Putting these equations together, we can parse the normal-
ized association criterion below:

�a =
Pk

l=1 Pr(!(t+ 1) 2 Vl; H(t) = Aj!(t) 2 Vl)

+
Pk

l=1 Pr(!(t+ 1) 2 V n Vl; H(t) = Rj!(t) 2 Vl):

The solution ! lies in a mixture space which consists of two
identical subspaces V [ V. If the normalized association �a
is large for a k-way vertex partitioning fV l; l = 1; : : : ; kg
on graph G = (V;E), then it means that once the walk is
in Vl, the average of the probabilities of staying in it as the
attraction walker and those of departing from it as the repul-
sion walker are large. Intuitively, we look for partitions that
once the walk enters one of the parts, it tends to remain in it,
due to strong attraction and weak repulsion from the inside.
This probabilistic view provides a framework for learning
parameters in feature integration.

4. Results
To calculate the affinity between two d�dimensional fea-
tures, we use a Mexican hat function of their difference. It
is implemented as the difference of two Gaussian functions:

h(X ; �1;�2) = g(X ; 0;�1)� g(X ; 0;�2);

g(X ;�;�) =
1

(2�)
d

2 j�j
1

2

exp
� 1

2
(X��)T��1(X��)

;

where �’s are d � d covariance matrices. The evaluation
signals pairwise attraction if positive, repulsion if negative
and neutral if zero. Assuming�2 = �

2
�1, we can calculate

two critical radii, r0, where affinity changes from attraction
to repulsion and r�, where affinity is maximum repulsion:

r0(�; d) =

q
2d ln(�)

1���2
;

r�(�; d) =

p
2 + d � r0(�; d):

The case of d = 1 is illustrated in Fig. 5. With this sim-
ple change from Gaussian functions [25, 17, 21] measuring
attraction to Mexican hat functions measuring both attrac-
tion and repulsion, we will show that negative weights play
a very unique and effective role in graph partitioning.

We compute pairwise affinity in a local neighborhood of
any pixel. We denote the neighborhood radius by r. The
larger the radius, the more computation is needed and larger
structures can be discovered by grouping.

Fig. 6 shows that repulsion has the advantages of com-
putational efficiency and binding objects against one com-
mon ground. For an image of two rectangles with equal
intensity against ground. With r = 1, incorporating repul-
sion measures by � = 5, which leads to only 3% negative
weights among evaluated affinity, can effectively segment
both rectangles out of the ground. The uniform grouping
valuation of the repulsion result on both figure and ground is
in sharp contrast with attraction results. For attraction, since
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Figure 5: Calculate pairwise affinity using Mexican hat functions
based on difference of Gaussians. When two features are identi-
cal, it has maximum attraction; when feature difference is r0, it is
neutral; when feature difference is r�, it has maximum repulsion.

zero affinity could mean either evaluated high dissimilarity
or out of evaluation neighborhood, the result with r = 1

has graded valuation over the ground and unclear boundary
over the larger rectangle. With larger r, the meaning of zero
connection becomes disambiguated and both objects come
out as different groups until r = 7. If we make the rect-
angles have opposite intensity polarities, attraction cannot
possibly group the two because they are more different in
their intensity values than each from the ground, whereas
repulsion captures local feature contrast and thus they are
readily grouped together and in turn lead to sharper contrast
between figure and ground.

Fig. 7 are results on bar configurations used in the in-
troduction (Fig. 1 and 2). As can be expected, attrac-
tion is good at detecting groups of interior coherence, but
poor at salience detection, especially when figure-figure
connections are weak. When ground-ground connections
are attraction (Fig. 4), repulsion between figure-ground can
greatly reduces the pressures on figural coherence, thus dis-
similar elements can be grouped together easily.

Fig. 8 shows the case of coherent figures against a ran-
dom ground. Since ground-ground connections are weak,
any coherent figures cannot popout without regularization.
Adding a small baseline connection to each weight results
in figural popout, whereas too much regularization over-
whelms useful information and the results get worse.

Finally, Fig. 9 shows that the asymmetry in visual search
can be accounted by the asymmetry in ground-ground con-
nections resulted from contextual influence (collinearity).
The figure-ground connections are comparable, but ground-
ground connections are weaker for vertical bars among 45 Æ

bars, which leads to smaller figure-ground contrast.

a)

30 x 30 image λ
2
 = 1.00

r = 1

λ
2
 = 0.99

r = 3

λ
2
 = 0.99

r = 5

λ
2
 = 0.97

r = 7

λ
1
 = 1.00

r = 1

b)

30 x 30 image λ
2
 = 1.00

r = 1

λ
2
 = 0.99

r = 3

λ
2
 = 0.99

r = 5

λ
2
 = 0.98

r = 7

λ
1
 = 1.00

r = 1

Figure 6: Repulsion has the advantages of computational ef-
ficiency and binding objects against one common ground. We
choose �1 = 0:1 for pairwise intensity difference so that there
is high figure-figure connections but weak figure-ground connec-
tions, which become negative with � = 5. The normalized cuts
results are shown next to the images, with corresponding eigen-
values on top and neighborhood radii on bottom. The first four
are the results with attraction measured by g(X; 0; �1) confined
to progressively larger r. The rightmost is the result with repul-
sion measured by h(X;�1; 5�1). a) The image has two rectangles
of equal average intensity 0:8 against background of 0:5, added
by Gaussian noise with standard deviation 0:03. A much larger
neighborhood size is needed for attraction to achieve a compara-
ble result with repulsion. b) The smaller object now has an av-
erage intensity of 0:2. The results show that attraction encodes
feature similarity and repulsion encodes feature contrast and they
play very different roles in grouping.

Figure 7: Pre-attentive segmentation on line segments (first row).
Row 2 and 3 are results by attraction and repulsion respectively,
�1 = 30Æ for orientation, �2 = 10 for distance, r = 2 and � = 2.
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λ
1
 = 0.92

δ = 0.6

λ
1
 = 0.68

δ = 6 d)

λ
2
 = 1.00 λ

1
 = 0.80 λ

1
 = 0.57

λ
1
 = 1.81

δ = 0

λ
1
 = 0.79

δ = 0.6

λ
1
 = 0.56

δ = 6

Figure 8: Regularization helps coherent figures to popout from a
random ground. a) Region. b) Contour. Their results in c) and d)
are organized row-wise for attraction and repulsion, with �1 = 5Æ

for orientation, �2 = 5 for distance, r = 2 and � = 2. Across the
columns varies regularization constant Æ, the last of which shows
that regularization becomes saturated as evidenced by eigenvalues
approaching 0:5. Small amount of regularization helps popout.

Figure 9: Asymmetry in visual search. The images contains
vertical and 45Æ bars. The first two are noiseless conditions,
the last two are added with the same �15Æ noise field. The
asymmetry is reflected in different figure-ground contrast.

5. Conclusions
We develop a computational grouping method with dual
procedures of association by attraction and segregation by
repulsion. Within this framework, we provide a theoretical
ground for solution regularization in normalized cuts algo-
rithms. We show that our criterion can be viewed as finding
low conductivity sets in a jump-diffusion process.

With attraction measuring feature coherence, with repul-
sion measuring local feature contrast, with regularization
improving signal-to-noise ratios, we show that all popout
phenomena can be modeled with a balanced criterion. The
conditions on element affinity for popout are derived.

We expand graph partitioning to weight matrices with
negative weights, which are shown to lead to computational
efficiency. This approach provides a representation for neg-
ative correlations in constraint satisfaction problems and
simple solutions to such formulations can thus be possible.
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