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Abstract. Grouping is a global partitioning process that integrates lo-
cal cues distributed over the entire image. We identify four types of
pairwise relationships, attraction and repulsion, each of which can be
symmetric or asymmetric. We represent these relationships with two di-
rected graphs. We generalize the normalized cuts criteria to partitioning
on directed graphs. Our formulation results in Rayleigh quotients on Her-
mitian matrices, where the real part describes undirected relationships,
with positive numbers for attraction, negative numbers for repulsion,
and the imaginary part describes directed relationships. Globally opti-
mal solutions can be obtained by eigendecomposition. The eigenvectors
characterize the optimal partitioning in the complex phase plane, with
phase angle separation determining the partitioning of vertices and the
relative phase advance indicating the ordering of partitions. We use di-
rected repulsion relationships to encode relative depth cues and demon-
strate that our method leads to simultaneous image segmentation and
depth segregation.

1 Introduction

The grouping problem emerges from several practical applications including im-
age segmentation, text analysis and data mining. In its basic form, the problem
consists of extracting from a large number of data points, i.e., pixels, words and
documents, the overall organization structures that can be used to summarize
the data. This allows one to make sense of extremely large sets of data. In human
perception, this ability to group objects and detect patterns is called perceptual
organization. It has been clearly demonstrated in various perceptual modalities
such as vision, audition and somatosensation [6].

To understand the grouping problem, we need to answer two basic questions:
1) what is the right criterion for grouping? 2) how to achieve the criterion com-
putationally? At an abstract level, the criterion for grouping seems to be clear.
We would like to partition the data so that elements are well related within
groups but decoupled between groups. Furthermore, we prefer grouping mech-
anisms that provide a clear organization structure of the data. This means to
extract big pictures of the data first and then refine them.
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To achieve this goal, a number of computational approaches have been pro-
posed, such as clustering analysis through agglomerative and divisive algorithms
[5], greedy region growing, relaxation labeling [13], Markov random fields (MRF)
[4] and variational formulations [2,7,9]. While the greedy algorithms are compu-
tationally efficient, they can only achieve locally optimal solutions. Since group-
ing is about finding the global structures of the data, they fall short of this
goal. MRF formulations, on the other hand, provide a global cost function in-
corporating all local clique potentials evaluated on nearby data points. These
clique potentials can encode a variety of configuration constraints and probabil-
ity distributions [18]. One shortcoming of these approaches is a lack of efficient
computational solutions.

Recently we have seen a set of computational grouping methods using local
pairwise relationships to compute global grouping structures [1,3,12,11,14,15,16].
These methods share a similar goal of grouping with MRF approaches, but they
have efficient computational solutions. It has been demonstrated that they work
successfully in the segmentation of complex natural images [8].

However, these grouping approaches are somewhat handicapped by the very
representation that makes them computationally tractable. For example, in
graph formulations [16,15,3,11], negative correlations are avoided because nega-
tive edge weights are problematic for most graph algorithms. In addition, asym-
metric relationships such as those that arise from figure-ground cues in image
segmentation and web-document connections in data mining cannot be con-
sidered because of the difficulty in formulating a global criterion with efficient
solutions.

In this paper, we develop a grouping method in the graph framework that
incorporates pairwise negative correlation as well as asymmetric relationships.
We propose a representation in which all possible pairwise relationships are char-
acterized in two types of directed graphs, each encoding positive and negative
correlations between data points. We generalize the dual grouping formulation
of normalized cuts and associations to capture directed grouping constraints.
We show that globally optimal solutions can be obtained by solving generalized
eigenvectors of Hermitian weight matrices in the complex domain. The real and
imaginary parts of Hermitian matrices encode undirected and directed relation-
ships respectively. The phase angle separation defined by the eigenvectors in the
complex plane determines the partitioning of data points, and the relative phase
advance indicates the ordering of partitions.

The rest of the paper is organized as follows. Section 2 gives a brief review of
segmentation with undirected graphs in the normalized cuts formulation. Section
3 expands our grouping method in detail. Section 4 illustrates our ideas and
methods on synthetic data. Section 5 concludes the paper.

2 Review on Grouping on One Undirected Graph

The key principles of grouping can often be illustrated in the context of image
segmentation. In graph methods for image segmentation, an image is described
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by an undirected weighted graph G = (V,E,W ), where each pixel is a vertex
in V and the likelihood of two pixels belonging to one group is described by a
weight in W associated with the edge in E between two vertices. The weights
are computed from a pairwise similarity function of image attributes such as
intensity, color and motion profiles. Such similarity relationships are symmetric
and can be considered as mutual attraction between vertices.

After an image is transcribed into a graph, image segmentation becomes a
vertex partitioning problem. A good segmentation is the optimal partitioning
scheme according to some partitioning energy functions, evaluating how heav-
ily each group is internally connected (associations) and/or how weakly those
between-group connections (cuts) are. We are particularly interested in the nor-
malized associations and cuts criteria [15], for they form a duality pair such that
the maximization of associations automatically leads to the minimization of cuts
and vice versa.

A vertex bipartitioning (V1,V2) on graph G = (V,E) has V = V1 ∪ V2 and
V1 ∩ V2 = ∅. Given weight matrix W and two vertex sets P and Q, let CW (P,Q)
denote the total W connections from P to Q,

CW (P,Q) =
∑

j∈P,k∈Q

W (j, k).

In particular, CW (V1,V2) is the total weights cut by the bipartitioning, whereas
CW (Vl,Vl) is the total association among vertices in Vl, l = 1, 2. Let DW (P )
denote the total outdegree of P ,

DW (P ) = CW (P,V),

which is the total weights connected to all vertices in a set P . Let SW (P,Q)
denote the connection ratio from P to Q,

SW (P,Q) =
CW (P,Q)
DW (P )

.

In particular, SW (Vl,Vl) is called the normalized association of vertex set Vl as it
is the association normalized by its degree of connections. Likewise, SW (V1,V2)
is called the normalized cuts between V1 and V2. The sum of these ratios respec-
tively over two partitions are denoted by

εa =
∑2

l=1 SW (Vl,Vl),
εc =

∑2
l=1 SW (Vl,V \ Vl).

εa and εc are called normalized associations and cuts criteria. Since ∀l, SW (Vl,
Vl)+SW (Vl,V\Vl) = 1, εa+εc = 2, thus εa and εc are dual criteria: maximizing
εa is equivalent to minimizing εc. We seek the optimal solution maximizing εa
such that within-group associations are maximized and between-group cuts are
minimized.

The above criteria can be written as Rayleigh quotients of partitioning vari-
ables. Let Xl be a membership indicator vector for group l, l = 1, 2, where Xl(j)
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assumes 1 if vertex j belongs to group l and 0 otherwise. Let DW be the diagonal
degree matrix of the weight matrix W , DW (j, j) =

∑
k Wjk,∀j. Let 1 denote

the all-one vector. Let k denote the degree ratio of V1: k = XT
1 DW X1

1T DW 1 . We define
y = (1 − k)X1 − kX2. Therefore, the optimization problem becomes:

max εa =
yTWy

yTDW y
+ 1; min εc =

yT (DW − W )y
yTDW y

,

s. t. yT DW 1 = 0; yj ∈ {1 − k,−k},∀j.
When the discreteness constraint is relaxed, the second largest generalized

eigenvector of (W,DW ) maximizes εa subject to the zero-sum constraint yT

DW 1 = 0. For eigensystem M1y = λM2y of a matrix pair (M1,M2), let λ(M1,
M2) be the set of distinctive generalized eigenvalues λ and Υ (M1,M2, λ) be the
eigenspace of y. It can be shown that ∀λ ∈ λ(W,DW ), |λ| ≤ 1. Let λk denote the
k-th largest eigenvalue, then λ1 = 1 and 1 ∈ Υ (M1,M2, λ1). Thus the optimal
solution is:

εa(yopt) = 1 + λ2, yopt ∈ Υ (W,DW , λ2).

3 Grouping on Two Directed Graphs

The above formulation addresses the grouping problem in a context where we can
estimate the similarity between a pair of pixels. This set of relationships arises
naturally in color, texture and motion segmentation. However, a richer set of
pairwise relationships exists in a variety of settings. For example, relative depth
cues suggest that two pixels should not belong to the same group; in fact, one of
them is more likely to be figure and the other is then the ground. Compared to the
similarity measures, this example encapsulates two other distinct attributes in
pairwise relationships: repulsion and asymmetry. This leads to a generalization of
the above grouping model in two ways. One is to have dual measures of attraction
and repulsion, rather than attraction alone; the other is to have directed graph
partitioning, rather than symmetric undirected graph partitioning.

3.1 Representation

We generalize the single undirected graph representation for an image to two
directed graph representations G = {GA,GR}: GA = (V,EA, A), GR = (V,ER, R),
encoding pairwise attraction and repulsion relationships respectively. Both A
and R are nonnegative weight matrices. Since GA and GR are directed, A and R
can be asymmetric. An example is given in Fig. 1.

Whereas directed repulsion can capture the asymmetry between figure and
ground, directed attraction can capture the general compatibility between two
pixels. For example, a reliable structure at one pixel location might have a higher
affinity with a structure at another location, meaning the presence of the former
is more likely to attract the latter to the same group, but not the other way
around.
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a. GA = (V;EA; A) b. GR = (V;ER; R)

Fig. 1. Two directed graph representation of an image. a. Didrected graph with non-
negative asymmetric weights for attraction. b. Directed graph with nonnegative asym-
metric weights for repulsion.

3.2 Criteria

To generalize the criteria on nondirectional attraction to directed dual measures
of attraction and repulsion, we must address three issues.

1. Attraction vs. repulsion: how do we capture the semantic difference between
attraction and repulsion? For attraction A, we desire the association within
groups to be as large as possible; whereas for repulsion R, we ask the segre-
gation by between-group repulsion to be as large as possible.

2. Undirected vs. directed: how do we characterize a partitioning that favors
between-group relationships in one direction but not the other? There are
two aspects of this problem. The first is that we need to evaluate within-
group connections regardless of the asymmetry of internal connections. This
can be done by partitioning based on its undirected version so that within-
group associations are maximized. The second is that we need to reflect our
directional bias on between-group connections. The bias favoring weights
associated with edges pointing from V1 to V2 is introduced by an asymmet-
ric term that appreciate connections in CW (V1,V2) but discourage those in
CW (V2,V1). For these two purposes, we decompose 2W into two terms:

2W = Wu +Wd, Wu = (W +WT ), Wd = (W − WT ).

Wu is an undirected version of graph GW, where each edge is associated
with the sum of the W weights in both directions. The total degree of the
connections for an asymmetric W is measured exactly by the outdegree of
Wu. Wd is a skew-symmetric matrix representation of W , where each edge
is associated with the weight difference of W edges pointing in opposite
directions. Their links to W are formally stated below:

CWu(P,Q) = CW (P,Q) + CW (Q,P ) = CWu(Q,P ),
CWd

(P,Q) = CW (P,Q) − CW (Q,P ) = −CWd
(Q,P ).

This decomposition essentially turns our original graph partitioning on two
directed graphs of attraction and repulsion into a simultaneous partitioning
on four graphs of nondirectional attraction and repulsion, and directional
attraction and repulsion.
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3. Integration: how do we integrate the partitioning on such four graphs into
one criterion? We couple connection ratios on these graphs through linear
combinations. The connection ratios of undirected graphs of A and R are
first combined by linear weighting with their total degrees of connections.
The connection ratios of directed graphs are defined by the cuts normalized
by the geometrical average of the degrees of two vertex sets. The total energy
function is then the convex combination of two types of connection ratios for
undirected and directed partitioning, with a parameter β determining their
relative importance.

With directed relationships, we seek an ordered bipartitioning (V1,V2) such
that the net directed edge flow from V1 to V2 is maximized. The above consid-
erations lead to the following formulation of our criteria.

εa(A,R;β) = 2β ·
2∑

l=1

SAu(Vl,Vl)DAu(Vl) + SRu(Vl,V \ Vl)DRu(Vl)
DAu(Vl) + DRu(Vl)

+ 2(1 − β) · CAd+Rd
(V1,V2) − CAd+Rd

(V2,V1)√[DAu
(V1) + DRu

(V1)
] · [DAu

(V2) + DRu
(V2)

] ,

εc(A,R;β) = 2β ·
2∑

l=1

SAu(Vl,V \ Vl)DAu(Vl) + SRu(Vl,Vl)DRu(Vl)
DAu

(Vl) + DRu
(Vl)

+ 2(1 − β) · CAd+Rd
(V2,V1) − CAd+Rd

(V1,V2)√[DAu
(V1) + DRu

(V1)
] · [DAu

(V2) + DRu
(V2)

] .

Note that the duality between εa and εc is maintained as εa + εc = 4β.
For undirected graphs, SAu

(Vl,Vl) is the old normalized association by at-
traction of set Vl; SRu(Vl,V\Vl) is the normalized dissociation by repulsion of set
Vl. They are summed up using weights from their total degrees of connections:
DAu

(Vl) and DRu
(Vl).

For directed graphs, only the asymmetry of ‘connections matters. We sum up
the cross connections regardless of attraction and repulsion: CAd+Rd

(V1,V2) −
CAd+Rd

(V2,V1), normalized by the geometrical average of the degrees of the two
involved sets. Similar to SW (P,Q), this again is a unitless connection ratio.

We write the partitioning energy as functions of (A,R) to reflect the fact that
for this pair of directed graphs, we favor both attractive and repulsive edge flow
from V1 to V2. They can also be decoupled. For example, the ordered partitioning
based on εa(AT , R;β) favors repulsion flow from V1 to V2, but attraction flow
from V2 to V1.

Finally, we sum up the two terms for undirected and directed relationships
by their convex combination, with the parameter β determining their relative
importance. When β = 1, the partitioning ignores the asymmetry in connection
weights, while when β = 0, the partitioning only cares about the asymmetry in
graph weights. When β = 0.5, both graphs are considered equally. The factor 2
is to introduced to make sure that the formula are identical to those in Section
2 for A = AT and R = 0, i.e., εa(A, 0; 0.5) + εc(A, 0; 0.5) = 2.
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3.3 Computational Solutions

It turns out that our criteria lead to Rayleigh quotients of Hermitian matri-
ces. Let i =

√−1. Let ∗ and H denote the conjugate and conjugate transpose
operators respectively. We define an equivalent degree matrix Deq and equiva-
lent Hermitian weight matrix Weq, which combines symmetric weight matrix U
for an equivalent undirected graph and skew-symmetric weight matrix V for an
equivalent directed graph into one matrix:

Deq = DAu
+DRu

, U = 2β · (Au − Ru +DRu
) = UT ,

Weq = U + i · V = WH
eq , V = 2(1 − β) · (Ad +Rd) = −V T .

We then have:

εa =
2∑

l=1

XT
l UXl

XT
l DeqXl

+
XT
1 V X2 − XT

2 V X1√
XT
1 DeqX1 · XT

2 DeqX2
.

We can see clearly what directed relationships provide in the energy terms.
The first term is for undirected graph partitioning, which measures the sym-
metric connections within groups, while the second term is for directed graph
partitioning, which measures the skew-symmetric connections between groups.
Such complementary and orthogonal pairings allow us to write the criterion in
a quadratic form of one matrix by using complex numbers. Let k denote degree
ratio of V1: k = XT

1 DeqX1

1T Deq1 . We define a complex vector z, the square of which
becomes a real vector we used in the single graph partitioning:

z =
√
1 − kX1 − i ·

√
kX2, z2 = (1 − k)X1 − kX2.

It can be verified that:

εa = 2
zHWeqz

zHDeqz
, εc = 2

zH(2βDeq − Weq)z
zHDeqz

,

subject to the zero-sum constraint of (z2)TDeq1 = 0. Ideally, a good segmenta-
tion seeks the solution of the following optimization problem,

zopt = argmax
z

zHWeqz

zHDeqz

s.t. (z2)TDeq1 = 0, ∀j, zj ∈ {√
1 − k,−i

√
k}.

The above formulations show that repulsion can be regarded as the extension
of attraction measures to negative numbers, whereas directed measures com-
plement undirected measures along an orthogonal dimension. This generalizes
graph partitioning on a nonnegative symmetric weight matrix to an arbitrary
Hermitian weight matrix.

We find an approximate solution by relaxing the discreteness and zero-sum
constraints. Weq being Hermitian guarantees that when z is relaxed to take
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any complex values, εa is always a real number. It can be shown that ∀λ ∈
λ(Weq, Deq), |λ| ≤ 3, and

εa(zopt) = 2λ1, zopt ∈ Υ (Weq, Deq, λ1).

As all eigenvalues of an Hermitian matrix are real, the eigenvalues can still be
ordered in sizes rather than magnitudes. Because 1 ∈ Υ (Weq, Deq, λ1) when and
only when R = 0 and Ad = 0, the zero-sum constraint z2Weq1 = 0 is not, in
general, automatically satisfied.

3.4 Phase Plane Embedding of an Ordered Partitioning

In order to understand how an ordered partitioning is encoded in the above
model, we need to study the labeling vector z. We illustrate the ideas in the
language of figure-ground segregation. If we consider R encoding relative depths
with Rd(j, k) > 0 for j in front of k, the ordered partitioning based on εa(A,R;β)
identifies V1 as a group in front (figure) and V2 as a group in the back (ground).

There are two properties of z that are relevant to partitioning: magnitudes
and phases. For complex number c = a + i b, where a and b are both real, its
magnitude is defined to be |c| =

√
a2 + b2 and its phase is defined to be the

angle of point (a, b) in a 2D plane: ∠c = arctan b
a . As z =

√
1 − kX1 − i

√
kX2,

where k is the degree ratio of the figure, the ideal solution assigns real number√
1 − k to figure and assigns imaginary number −i

√
k to ground. Therefore, the

magnitudes of elements in z indicate sizes of partitions: the larger the magnitude
of zj , the smaller the connection ratio of its own group; whereas the relative
phases indicate the figure-ground relationships: ∠zj − ∠zk = 0◦ means that j
and k are in the same group, 90◦ (phase advance) for j in front of k, −90◦ (phase
lag) for j behind k. This interpretation remains valid when z is scaled by any
complex number c. Therefore, the crucial partitioning information is captured
in the phase angles of z rather than the magnitudes as they can become not
indicative at all when the connection ratios of two partitions are the same.

When the elements of z are squared, we get z2 = (1−k)X1−kX2. Two groups
become antiphase (180◦) in z2 labels. Though the same partitioning remains, the
figure-ground information could be lost in cz for constant scaling on z. This fact
is most obvious when Ad + Rd = 0, where both z and z∗ correspond to the
same partitioning energy εa. This pair of solutions suggests two possibilities:
V1 is figure or ground. In other words, the ordering of partitions is created
by directed graphs. When we do not care about the direction, z2 contains the
necessary information for partitioning. Indeed, we can show that

εa =
z2Weqz

2

z2Deqz2
+

1TWeq1
1TDeq1

, if Weq = 2β(Au − Ru +DRu).

Note that Weq now becomes a real symmetric matrix.
The phase-plane partitioning remains valid in the relaxed solution space. Let

W = D
− 1

2
eq WeqD

− 1
2

eq , the eigenvectors of which are equivalent (related by D
1
2
eq)
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to those of (Weq, Deq). Let U and V denote the real and imaginary parts of W :
W = U + i V , where U is symmetric and V is skew-symmetric. We consider
Ujk (the net effect of attraction A and repulsion R) repulsion if it is negative,
otherwise as attraction. For any vector z, we have:

zHWz =
∑
j,k

|zj | · |zk| ·
(
Ujk cos(∠zj − ∠zk) + Vjk sin(∠zj − ∠zk)

)

= 2
∑
j<k

|zj | · |zk| · |Wjk| · cos(∠zj − ∠zk − ∠Wjk) +
∑

j

|zj |2 · Ujj .

We see that zHWz is maximized when ∠zj − ∠zk matches ∠Wjk. Therefore,
attraction encourages a phase difference of 0◦, whereas repulsion encourages a
phase difference of 180◦, and still directed edge flow encourages a phase differ-
ence of 90◦. The optimal solution results from a trade-off between these three
processes. If Vjk > 0 means that j is figural, then the optimal solution tends to
have ∠zj > ∠zk (phase advance less than 90◦) if Ujk is attraction, but phase
advance more than 90◦ if it is repulsion. Hence, when there is pairwise repulsion,
the relaxed solution in the continuous domain has no longer the ideal bimodal
vertex valuation and as a result the zero-sum constraint cannot be satisfied.
Nevertheless, phase advance still indicates figure-to-ground relationships.

3.5 Algorithm

The complete algorithm is summarized below. Given attraction measure A and
repulsion R, we try to find an ordered partitioning (V1,V2) to maximize
εa(A,R;β).

Step 1: Au = A+AT , Ad = A − AT ; Ru = R+RT , Rd = R − RT .
Step 2: Deq = DAu

+DRu
.

Step 3: Weq = 2β · (Au − Ru +DRu) + i · 2(1 − β) · (Ad +Rd).
Step 4: Compute the eigenvectors of (Weq, Deq).
Step 5: Find a discrete solution by partitioning eigenvectors in the phase plane.

4 Results

We first illustrate our ideas and methods using the simple example in Fig. 1. The
two directed graphs are decomposed into a symmetric part and a skew-symmetric
part (Fig. 2).

This example has clear division of figure as {1, 3, 5} and ground as {2, 4}
because: within-group connections are stronger for nondirectional attraction Au;
between-group connections are stronger for nondirectional repulsion Ru; there
are only between-group connections pointing from figure to ground for both
directional attraction Ad and directional repulsion Rd.
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c. GRu = (V;ERu ; Ru) d. GRd = (V;ERd ; Rd)

Fig. 2. Decomposition of directed graphs in Fig. 1. a. Nondirectional attraction Au.
b. Directional attraction Ad. c. Nondirectional repulsion Ru. d. Directional repulsion
Rd.

The equivalent degree matrix and weight matrix for β = 0.5 are:

Deq =




37 0 0 0 0
0 25 0 0 0
0 0 35 0 0
0 0 0 26 0
0 0 0 0 31



, Weq =




10 −8 10 3 12
−8 10 0 10 3
10 0 11 −7 10
3 10 −7 11 −2

12 3 10 −2 4




+ i ·




0 4 0 1 0
−4 0 0 0 −1
0 0 0 5 0

−1 0 −5 0 −2
0 1 0 2 0



.

We expect that the first eigenvector of (Weq, Deq) on {1, 3, 5} has phase advance
with respect to {2, 4}. This is verified in Fig. 3.

Fig. 4a shows that how attraction and repulsion complement each other and
their interaction gives a better segmentation. We use spatial proximity for at-
traction. Since the intensity similarity is not considered, we cannot possibly
segment this image with attraction alone. Repulsion is determined by relative
depths suggested by the T-junction at the center. The repulsion strength falls
off exponentially along the direction perpendicular to the T-arms. We can see
that repulsion pushes two regions apart at the boundary, while attraction carries
this force further to the interior of each region thanks to its transitivity (Fig.4b).
Real image segmentation with T-junctions can be found in [17].

Since nondirectional repulsion is a continuation of attraction measures into
negative numbers, we calculate the affinity between two d−dimensional features
using a Mexican hat function of their difference. It is implemented as the differ-
ence of two Gaussian functions:

h(X;Σ1, Σ2) = g(X; 0, Σ1) − g(X; 0, Σ2),
g(X;µ,Σ) = 1

(2π)
d
2 |Σ| 1

2
exp− 1

2 (X−µ)T Σ−1(X−µ),
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Fig. 3. Partitioning of eigenvectors in the phase-plane. Here we plot the first two
eigenvectors of (Weq, Deq) for the example in Fig. 1. The points of the first (second)
eigenvector are marked in circles (squares). Both of their phases suggest partitioning
the five vertices into {1, 3, 5} and {2, 4} but with opposite orderings. The first chooses
{1, 3, 5} as figure for it advances {2, 4} by about 120◦, while the second chooses it as
ground for it lags {2, 4} by about 60◦. The first scheme has a much larger partitioning
energy as indicated by the eigenvalues.

where Σ’s are d× d covariance matrices. The evaluation signals pairwise attrac-
tion if positive, repulsion if negative and neutral if zero. Assuming Σ2 = γ2Σ1,
we can calculate two critical radii, r0, where affinity changes from attraction to
repulsion and r−, where affinity is maximum repulsion:

r0(γ, d) =
√

2d ln(γ)
1−γ−2 , r−(γ, d) =

√
2 + d · r0(γ, d).

The case of d = 1 is illustrated in Fig. 5. With this simple change from Gaussian
functions [15,8,11] measuring attraction to Mexican hat functions measuring
both attraction and repulsion, we will show that negative weights play a very
effective role in graph partitioning.

Fig. 6 shows three objects ordered in depth. We compute pairwise affinity
based on proximity and intensity similarity. We see that partitioning with at-
traction measures finds a dominant group by picking up the object of the highest
contrast; with the additional repulsion measures, all objects against a common
background are grouped together. If we add in directional repulsion measures
based on occlusion cues, the three objects are further segregated in depth.

Unlike attraction, repulsion is not an equivalence relationship as it is not
transitive. If object 3 is in front of object 2, which is in front of object 1, object 3
is not necessarily in front of object 1. In fact, the conclusion we can draw from the
phase plot in Fig. 6 is that when relative depth cues between object 3 and 1 are



294 Stella X. Yu and Jianbo Shi

21 x 21 image

1

2

3
4

A: λ
2
 = 0.86 R: λ

1
 = 2.41 [A,R]: λ

1
 = 0.97

A at 1 A at 2 A at 3 A at 4

R
d
 at 1 R

d
 at 2 R

d
 at 3 R

d
 at 4

  0.002

  0.004

  0.006

30

210

60

240

90

270

120

300

150

330

180 0

1

2

3

4

R: λ
1
 = 2.41    

[A,R]: λ
1
 = 0.97

a. b.

Fig. 4. Interaction of attraction and repulsion. a). The first row shows the image and
the segmentation results with attraction A (the second eigenvector), repulsion R, both
A and R (the first eigenvectors). The 2nd and 3rd rows are the attraction and repulsion
fields at the four locations indicated by the markers in the image. The attraction is
determined by proximity, so it is the same for all four locations. The repulsion is
determined by the T-junction at the center. Most repulsion is zero, while pixels of
lighter(darker) values are in front of (behind) the pixel under scrutiny. Attraction
result is not indicative at all since no segmentation cues are encoded in attraction.
Repulsion only makes boundaries stand out; while working with the non-informative
attraction, the segmentation is carried over to the interiors of regions. b). Figure-ground
segregation upon directional repulsion. Here are the phase plots of the first eigenvectors
for R and A, R. The numbers in the circles correspond to those in the image shown
in a). We rotate the eigenvector for A, R so that the right-lower corner of the image
gets phase 0◦. Both cases give the correct direction at boundaries. However, only with
A and R together, all image regions are segmented appropriately. The attraction also
reduces the figure-to-ground phase advance from 135◦ to 30◦.

missing, object 1 is in front of object 3 instead. When there are multiple objects
in an image, the generalized eigenvectors subsequently give multiple hypotheses
about their relative depths, as shown in Fig. 7.

These examples illustrate that partitioning with directed relationships can
automatically encode border ownerships [10] in the phase plane embedding.

5 Summary

In this paper, we develop a computational method for grouping based on sym-
metric and asymmetric relationships between pairs of data points. We formulate
the problem in a graph partitioning framework using two directed graphs to
encode attraction and repulsion measures. In this framework, directed graphs
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Fig. 5. Calculate pairwise affinity using Mexican hat functions based on difference of
Gaussians. When two features are identical, it has maximum attraction; when feature
difference is r0, it is neutral; when feature difference is r−, it has maximum repulsion.
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Fig. 6. The distinct roles of repulsion in grouping. a) 31×31 image. The background and
three objects are marked from 0 to 3. They have average intensity values of 0.6, 0.9, 0.2
and 0.9. Gaussian noise with standard deviation of 0.03 is added to the image. Object
2 has slightly higher contrast against background than objects 1 and 3. Attraction and
nondirectional repulsion are measured by Mexican hat functions of pixel distance and
intensity difference with σ’s of 10 and 0.1 respectively. The neighborhood radius is 3 and
γ = 3. b) Segmentation result with attraction alone. c) Segmentation result with both
attraction and repulsion. d), e) and f) show the result when directional repulsion based
on relative depth cues at T-junctions are incorporated. With nondirectional repulsion,
objects that repel a common ground are bound together in one group. With directional
repulsion, objects can be further segregated in depth.
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Fig. 7. Depth segregation with multiple objects. Each row shows an image and the
phase plots of the first three eigenvectors obtained on cues of proximity, intensity
similarity and relative depths. All four objects have the same degree of contrast against
the background. The average intensity value of background is 0.5, while that of objects
is either 0.2 or 0.8. The same parameters for noise and weight matrices as in Fig. 6 are
used. The first row shows four objects ordered in depth layers. The second row shows
four objects in a looped depth configuration. Repulsion has no transitivity, so object
pair 1 and 3, 2 and 4 tend to be grouped together in the phase plane. The magnitudes
indicate the reliability of phase angle estimation. The comparison of the two rows also
shows the influence of local depth cues on global depth configuration.

capture the asymmetry of relationships and repulsion complements attraction in
measuring dissociation.

We generalize normalized cuts and associations criteria to such a pair of
directed graphs. Our formulation leads to Rayleigh quotients of Hermitian ma-
trices, where the imaginary part encodes directed relationships, and the real
part encodes undirected relationships with positive numbers for attraction and
negative numbers for repulsion. The optimal solutions in the continuous domain
can thus be computed by eigendecomposition, with the ordered partitioning
embedded in the phases of eigenvectors: the angle separation determines the
partitioning, while the relative phase advance indicates the ordering.

We illustrate our method in image segmentation. We show that surface cues
and depth cues can be treated equally in one framework and thus segmentation
and figure-ground segregation can be obtained in one computational step.
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