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Abstract

We present a graph partitioning method to integrate prior knowl-
edge in data grouping. We consider priors represented by three
types of constraints: unitary constraints on labelling of groups,
partial a priori grouping information, external inuence on binary
constraints. They are modelled as biases in the grouping process.
We incorporate these biases into graph partitioning criteria. Com-
putationally this formulation leads to a constrained eigenproblem.
We demonstrate the e�ectiveness of this algorithm on image seg-
mentation with priors and object detection with spatial attention.

1 Introduction

The grouping problem emerges from several practical applications including image
segmentation, text analysis and data mining. The goal is to �nd the overall struc-
tural organization that can be used to summarize the data. The view of grouping
as a process of extracting global impression from local structures is characterized
by a number of computational approaches that evaluate the goodness of group-
ing based on local cue interactions. These approaches, such as Markov random
�elds (MRF) [7], variational formulations [2, 13], and graph partitioning approaches
[1, 6, 15, 14, 17, 18], often formulate grouping as a global optimization problem based
on local cost functions.

One of the major merits of MRF and variational formulations is that they can
be naturally cast in a Bayesian framework. In this framework, the task is to �nd
the maximum a posteriori estimate of some underlying quantity. The posterior
probability incorporates all local clique potentials evaluated on nearby data points,
which can encode a variety of con�guration constraints and probability distribu-
tions [20]. However, such models are usually solved by Markov Chain Monte Carlo
methods, which often �nd local optima with slow convergence. The lack of eÆcient
computational solutions severely limits the application of these approaches.

The same goal of grouping is achieved in the graph partitioning formulation, where
a global decision is made based on local pairwise relationships. These algorithms
often have eÆcient computational solutions and it has been demonstrated that they
work successfully on the segmentation of complex natural images [11]. Recently a
probabilistic interpretation [12] has provided an insight into how and why these
algorithms work.
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There have also been direct attempts in solving MRF by graph partitioning algo-
rithms [8, 4, 3, 16, 9]. This is typically done through the introduction of instantiating
multiple valuation of the data or label nodes. With an appropriate choice of graph
edge weights, a subclass of MRF problems can be translated into a graph partition-
ing framework. However, negative constraints in MRF can not be easily handled
in most graph algorithms, and have thus been mostly avoided. We note that this
barrier in computation is not crucial. Recent work on repulsion and asymmetri-
cal relationships [19] has expanded graph partitioning on nonnegative symmetrical
matrices to arbitrary Hermitian matrices, where both positive and negative corre-
lations, undirected and directed relationships can be dealt with in one framework.
This advance brings one step closer to the direct application of spectral graph par-
titioning to MRF formulations.

However, a gap does exist between MRF and graph partitioning approaches. The
former seek a meaningful interpretation of the data with a generative model, whereas
the latter �nd partitioning with a discriminative model. What lacks in graph algo-
rithms is the capability to incorporate prior knowledge on data to guide grouping.

In this paper, we model such prior as biases in the grouping process formulated in
a graph framework. We consider three types of biases: 1) unitary constraints on
labelling of groups; 2) partial grouping information available a priori ; 3) external
inuence on binary constraints. We incorporate such constraints into a graph par-
titioning criterion, which result in a constrained eigenproblem. Though we consider
normalized cuts criteria in particular [18], the same derivation can be applied to
other criteria as well. We demonstrate the use of the model on spatial attention
and image segmentation.

The rest of the paper is organized as follows. Section 2 expands our model in detail.
Section 3 shows our experimental results. Section 4 concludes the paper.

2 Model

The key principles of grouping can often be illustrated in the context of image seg-
mentation. In graph methods for image segmentation, all pairwise relationships
between two pixels can be captured in two graph representations G = fGA;GRg:
GA = (V;EA; A), GR = (V;ER; R), encoding pairwise attraction and repulsion re-
lationships respectively. Each pixel is a vertex in V. For the edge between pixel
i and j, weight Aij describes the likelihood of two pixels belonging to one group,
whereas Rij describes the likelihood of them belonging to di�erent groups. A weight
of 0 in both cases means neutral, i.e., no information biases the two pixels toward
attraction or repulsion relationships.

After an image is transcribed into a graph, image segmentation becomes a vertex
partitioning problem. A good segmentation is some optimal partitioning scheme
according to an energy function, evaluating how tightly each group is internally
connected (associations) and/or how loosely between-group connections (cuts) are.
Such segmentation algorithms are solely based on pairwise relationships contained
in the original data. Moreover, in the standard image segmentation, we are not
interested in the particular labelling of the groups, i.e. we have no discrimination
between groups. This is not the case for �gure-ground segregation [14], where the
information in image may suggest unequal likelihood for a pixel to belong in �gure
or ground [1].

These issues can be addressed by the introduction of bias into grouping. We con-
sider three types of biases in this paper. They all reect some aspect of our prior
knowledge in grouping data points and can come from sources unavailable in the
given data. The �rst type characterizes the preference of vertices belonging to a
particular group. They are essentially unitary constraints, which for example can
arise from sensor models in MRF [7]. The second type imposes grouping assignment
of some vertices a prior, which for example can arise from human computer interac-



tion [10]. The third type regulates the binary constraints obtained from given data,
which for example arises from top-down gating control in spatial attention. Among
these three types of biases, only the last one can be modelled by modulating the
information obtained from data without any change on the grouping engine. The
�rst two impose new constraints to the grouping process and are the focus of our
discussion below.

2.1 Representation

A vertex bipartitioning (V1;V2) on undirected graph G has V = V1 [ V2 and
V1 \ V2 = ?. We assume that both A and R are nonnegative symmetric weight
matrices. We denote by N = jVj the number of vertices in the graph. Let Ba (Br)
denote the N � 2 unitary bias weight matrix of attraction (repulsion) nature, the
two columns of which describes the likeness (dislikeness) of vertices belong to V1

and V2 respectively.

First, we introduce dummy nodes to turn unitary constraints into binary con-
straints. The two dummy nodes represent anchors of group V1 and V2 and are
labelled as vertex N + 1 and N + 2 respectively. We expand the vertex set to in-
clude dummy nodes and expand the weight matrix accordingly. With slight abuse
of notation, we de�ne:

n := N + 2;

V := f1 : ng;
A :=

2
4 (1� )A Ba

B
T
a

�
0 0
0 0

� 35
; R :=

2
4 (1� )R Br

B
T
r 

�
0 r

r 0

� 35
;

where r is a parameter we can choose to enforce the separation of the two dummy
nodes and 0 �  � 1 is a parameter determining the relative importance of bias
and original data: no bias when  = 0, full bias when  = 1.

Second, we handle two kinds of explicit vertex pre-assignment: some vertices are
known a priori to belong together, and still others are known to belong in Vl,
l = 1; 2. The rest vertices are so called free nodes. Let Pl, l = 1; 2 denote the set
of nodes that have been assigned to Vl. By de�nition, N +1 2 P1 and N +2 2 P2.
Let Pl, l = 3; � � � ; np denote a set of nodes we only know that they belong together,
but we are not sure about their relationships to Vl, l = 1; 2. Let pl = jPlj be the
number of nodes in Pl, l = 1; � � � ; np. An example is illustrated in Fig. 1. With
this representation of unitary constraints and pre-set grouping, we turn the problem
into an ordinary grouping problem with additional linear constraints.

2.2 Criteria

Given weight matrix W and two vertex sets P and Q, let CW (P;Q) =P
j2P;k2QW (j; k) denote the total W connections from P to Q, In particular,

CW (V1;V2) is the total weights cut by the bipartitioning, whereas CW (Vl;Vl) is
the total connections among vertices in Vl, l = 1; 2. Let DW (P ) = CW (P;V) denote
the total outdegree of P , which is the total weights connected to all vertices in a set

P . Let SW (P;Q) =
CW (P;Q)

DW (P )
denote the connection ratio from P to Q, In particular,

SW (Vl;Vl) is called the normalized association of vertex set Vl; SW (V1;V2) is called
the normalized cuts between V1 and V2. Summing up normalized association by
attraction with normalized cuts by repulsion, or normalized cuts by attraction with
normalized association by repulsion, weighted by their total degrees of connections,
we generalize the normalized cuts criteria [18] as follows:

�a =

2X
l=1

SA(Vl;Vl)DA(Vl) + SR(Vl;V n Vl)DR(Vl)

DA(Vl) +DR(Vl)
;

�c =

2X
l=1

SA(Vl;V n Vl)DA(Vl) + SR(Vl;Vl)DR(Vl)

DA(Vl) +DR(Vl)
:
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Figure 1: Represent unitary constraints and a priori grouping information. Here we have
a N = 5 node graph. We introduce dummy nodes 10 and 11 as anchor nodes for V1 and
V2 respectively. The dashed lines are connections from original nodes to dummy nodes,
the weights of which indicate the preference of each node belonging to the two groups.
The a priori grouping includes P1 = f2; 10g, P2 = f8; 11g, P3 = f4; 5; 6g, which says
2 2 V1, 8 2 V2, and 4; 5; 6 must be together. For all connections, we have both attraction
and repulsion weights for positive and negative pairwise correlations respectively. For
a bisection indicated by the thick line, our criteria minimize the attraction weights but
maximize the repulsion weights cut by the partitioning.

Note that the duality between �a and �c is maintained as �a + �c = 2. The maxi-
mization of �a automatically leads to the minimization of �c and vice versa.

It turns out that these criteria can be written as Rayleigh quotients of some equiv-
alent matrices. Let Xl be a membership indicator vector for Vl, l = 1; 2, where
Xl(j) assumes 1 if vertex j belongs to Vl and 0 otherwise. Let DW be the diagonal
degree matrix: DW (j; j) =

P
kWjk ; 8j. Let 1 be the all-one vector. Let k denote

degree ratio of V1: k =
XT
1
DeqX1

1TDeq1
. With y = (1� k)X1 � k X2, we have:

�a =
yTWeqy

yTDeqy
+ 1

TDA1
1TDeq1

; �c =
yT (Deq�Weq)y

yTDeqy
+ 1

TDR1
1TDeq1

;

Deq = DA +DR; Weq = A�R +DR:

2.3 Constraints for Bias

Some of the biases in grouping has been taken care of in the connection weights to
dummy nodes. Others are reected in constraints on the vector y we seek. The �rst
is the zero-sum constraint: yTDeq1 = 0. The rest are to enforce prior assignment:
X1(j) = 1, X2(j) = 0, 8j 2 P1; X1(j) = 0, X2(j) = 1, 8j 2 P2; and X1(i) = X1(j),
8i; j 2 Pl, l = 3; � � � ; np. This is done by making yi � yj = 0, for any i; j 2 Pl,

l = 1; � � � ; np. We create an n �
Pnp

l=1(pl � 1) full rank matrix C, such that each
column of C has only two none-zero weights, 1 and �1 respectively, for a (e.g.

subsequent) pair of vertices i; j 2 Pl. C
T
y = 0 guarantees that all pre-set vertices

in Pl get the same labelling in a feasible solution. To make sure that vertices in P1
have di�erent valuation from those in P2, we need one more constraint: cT y = 1,
which says that yi � yj = 1 for some i 2 P1 and j 2 P2. Note c and C columns are
linearly independent.

We summarize these constraints in one matrix equation:

M

T
y = 0; M = [ Deq1 C ] ; c

T
y = 1:

Since Deq is full rank, M is also full rank. We denote by m =
Pnp

l=1(pl � 1) + 1 the
rank of M . The ideal solution we seek for the biased grouping is then

yopt = argmax
y
T
Weqy

y
T
Deqy

; s. t. MT
y = 0; cT y = 1; yj 2 f1� k;�kg; 8j:



2.4 Computational Solutions

The above graph bisectioning problem is NP-complete. We �nd an approximate so-
lution by relaxing the discreteness constraints. Such constrained Rayleigh quotient
optimization arises in many applications and has been studied extensively [5]. How-

ever, we further drop c
T
y = 1 for two reasons. The �rst reason is computational.

When we relax the problem into the continuous domain, we do not necessarily know
how far apart these two groups are in our normalized criteria, so it is impossible
to set a margin in advance. The second reason is that we can actually enforce it
through other parameters, such as the r in the augmented R, which describes the
repulsion strength between two dummy nodes. For homogeneous linear constraints,
the trick is to cast the original problem into an unconstrained optimization problem
using the null space kernel of the constraint matrix.

We �rst turn the Rayleigh quotient of (Weq ; Deq) into a standard form. Let x =

D

1

2

eqy, �
M = D

�
1

2

eq M and �
W = D

�
1

2

eq WeqD
�

1

2

eq . We have:

xopt = argmax
x

x
T �
Wx

x
T
x

; s.t. �
M

T
x = 0; with yopt = D

�
1

2

eq xopt

We �nd the null vectors of n�m matrix �
M by its QR decomposition, where Q is

an orthogonal matrix and Z is an upper triangular matrix of rank m:

�
M = Q

�
Zm�m

0(n�m)�m

�
= [ Q1 (n�m) Q2 (n�(n�m)) ]

�
Zm�m

0(n�m)�m

�
:

Q2 contains the set of basis vectors for feasible solutions for �
M

T
x = 0. De�ne

(n �m) � 1 vector z = Q
T
2 x and (n �m) � (n �m) matrix W = Q

T
2
�
WQ2. Now

the problem can be formulated as an unconstrained one:

zopt = argmax
z

z
T
Wz

z
T
z

; with xopt = Q2 zopt:

The optimal solution to this problem is given by the eigenvector corresponding to
the largest eigenvalue � of W . It can be shown that j�(W )j � 2.

2.5 Complete Algorithm

We summarize the algorithm as follows. Given N �N pairwise attraction matrix
A and repulsion matrix R for vertex set f1 : Ng, N � 2 unitary weight matrices
Ba and Br, parameter r and , pre-assigned vertex set Pl for group l = 1 : np, we
compute a graph bisection as follows.

Step 1: A :=

2
4 (1� )A Ba

B
T
a

�
0 0
0 0

� 35
; R :=

2
4 (1� )R Br

B
T
r 

�
0 r

r 0

� 35.
Step 2: Weq = A�R+DR, Deq = DA +DR.
Step 3: Cit = 1, Cjt = �1, i < j, i; j 2 Pl, l = 1; � � � ; np, t = 1 : m� 1.

Step 4: �
M = D

�
1

2

eq [ Deq1 C ].

Step 5: QR decomposition: �
M = [Q1; Q2]

�
Zm�m

0

�
.

Step 6: Let Q = D

�
1

2

eq Q2 and W = Q
T
WeqQ.

Step 7: Find the �rst largest eigenvector zopt of W .
Step 8: yopt = Qzopt.

3 Results

We demonstrate the use of bias in grouping of point sets (Fig. 2), synthetic images
(Fig. 3) and �gure detection in real images (Fig. 4). We also model spatial attention



in (Fig. 5). The details are given in the captions.
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Figure 2: Point clustering with bias. 1)Data consist of three spatially separated sets of 100
uniformly distributed points. Points are numbered continuously from left to right. 2)Points
in �lled (empty) circles are pre-labelled to V1(V2). Points in �lled (empty) triangles are
biased in B connections to V1(V2). These constraints bias leftmost and rightmost point
sets to be one group. We compute the aÆnity using Gaussian function of pairwise distance

with � =
p
2. 3)Segmentation without bias gives three separate groups for the three sets.

4)Segmentation with bias groups leftmost and rightmost into one class.

15 x 15 image P
1
 and P

2 B No bias γ = 0.2 γ = 0.9

Figure 3: Image segmentation with bias. 1)An image has three intensity levels: 0, 0:5,
1, added with Gaussian noise of � = 0:1. 2)Pixels in the leftmost(rightmost) column are
pre-labelled as V1 (V2) . 3)Pixels in gray(white) are biased in B connections to V1 (V2).
Notice that the bias is incorrect for two columns near the boundary. 4)Segmentation result
without bias. 5)Segmentation with bias binds two dissimilar patches on the left into one
group. The wrong bias is corrected based on structures in the data. 6)Large weight on
bias emphasizes the mis-information in 3).

1) 2) 3) 4) 5) 6)

Figure 4: Figure detection with bias. 1)Background image. 2)Foreground image. 3)Image
di�erence of 2) and 1). 4)Thresholded map of 3), which is used for B connections. The
bright(dark) pixels are biased in B connections to V1(V2). 5)Segmentation result without
bias on foreground image using intervening contours [11]. 6)Segmentation result with bias.
Compared to 5), holes in �gure are �lled in while extra blobs in ground are removed.

4 Conclusions

We propose a model in a graph framework to handle prior knowledge for data
grouping. These priors can be encoded in unitary constraints, partial grouping
information and weight modulation on binary constraints. Computationally, our
model leads to a constrained eigenproblem. We give examples on the three types of
constraints in representing various priors. This work provides a platform to explore
the incorporation of generative models into graph-based grouping algorithms.
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N00014-00-1-0915 and NSF IRI-9817496. We thank Tai Sing Lee for valuable com-
ments.
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Figure 5: Modelling spatial attention in a graph framework. 1)This image has three
objects of average intensity 0:8, 0:9, 0:8 against background of 0:5. Gaussian noise with
� = 0:03 is added. A and R are computed using di�erence of Gaussians [19] on distance
and intensity di�erence, with �'s of 0:1, 10 respectively and two Gaussian parameter ratio
of 3. To model spatial attention centered at the cross in (1), we introduce two Gaussian
modulation �elds of � = 30. 2)This is an inverted Gaussian. When this bias is added to the
original A, pixels far from the attention hotspot have more aÆnity with the background.
3)This is a normal Gaussian. When this bias is multiplied with the original R, pixels away
from the hotspot get attenuated repulsion. 4)With attraction, the high contrast object
stands out in segmentation. 5)With repulsion, all objects stand out against the common
background. 6)With bias, only the object at the center of spatial attention pops out.
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