-
Hierarchical Scene Annotation
-
Michael Maire and Stella X. Yu and Pietro Perona
-
British Machine Vision Conference, Bristol, UK, 9-13 September 2013
-
Paper
|
Slides
|
Code
-
Abstract
-
We present a computer-assisted annotation system, together with a labeled dataset and benchmark suite, for evaluating an algorithm's ability to recover hierarchical scene structure. We evolve segmentation groundtruth from the two-dimensional image partition into a tree model that captures both occlusion and object-part relationships among possibly overlapping regions. Our tree model extends the segmentation problem to encompass object detection, object-part containment, and figure-ground ordering.
We mitigate the cost of providing richer groundtruth labeling through a new web-based annotation tool with an intuitive graphical interface for rearranging the region hierarchy. Using precomputed superpixels, our tool also guides creation of user-specified regions with pixel-perfect boundaries. Widespread adoption of this human-machine combination should make the inaccuracies of bounding box labeling a relic of the past. Evaluating the state-of-the-art in fully automatic image segmentation reveals that it produces accurate two-dimension partitions, but does not respect groundtruth object-part structure. Our dataset and benchmark is the first to quantify these inadequacies. We illuminate recovery of rich scene structure as an important new goal for segmentation.
-
Keywords
-
image annotation, scene dataset, object segmentation, occlusion
|