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Abstract—This paper examines the asymptotic ( )
performance of -ary frequency-shift keying (M-FSK) in multi-
channels, or multiple frequency-nonselective, slowly fading chan-
nels, with coding, side information, and diversity reception. In par-
ticular, Reed–Solomon (RS) coding is considered in conjunction
with the ratio-threshold test (RTT), which generates side infor-
mation regarding the reliability of received symbols. The asymp-
totic performance of orthogonal signaling in multichannels with
maximal ratio combining (MRC), postdetection equal gain com-
bining (EGC), hybrid selection combining (H-SC), and selection
combining (SC) is derived for an arbitrary statistical fading model
and diversity order. The derivations reveal that coherent and non-
coherent implementations of diversity combining schemes yield the
same performance asymptotically. In addition, the asymptotic re-
sults are evaluated assuming a Nakagami- fading model, and the
effect of fading severity, diversity order, code rate, and side infor-
mation upon the performance of the various diversity combiners
is investigated. The minimum signal-to-noise ratio (SNR) required
to achieve arbitrarily reliable or error-free communication, as well
as the associated optimal RS code rate, are determined for various
cases.

Index Terms—Asymptotic performance, diversity combining,
Nakagami- fading, orthogonal modulation, Reed–Solomon
coding.

I. INTRODUCTION

T HE ASYMPTOTIC performance of -ary orthogonal
modulation in an additive white Gaussian noise (AWGN)

channel and its information theoretic significance in achieving
the Shannon limit have been well documented. Since this
seminal finding [1], the asymptotic analysis of orthogonal
signaling has been extended to other channel models such as
frequency-nonselective, slowly fading channels [2]–[6] and
multichannels, or multiple frequency-nonselective, slowly
fading channels [2], [7], [8]. These works collectively reveal
that the limiting performance under such channel conditions
does not achieve the infinite bandwidth AWGN channel
capacity. The inclusion of channel coding and side informa-
tion, however, makes arbitrarily reliable communication with
orthogonal signaling feasible at finite signal-to-noise ratios
(SNRs) [5], [6], [9].
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It is noted that these channel models implicitly require that
for fixed rate transmissions, the orthogonal signal set be com-
prised of narrowband signals, as is the case for frequency-shift
keying (FSK). For -ary orthogonal modulation schemes such
as pulse-position modulation or block-coded modulation, a fre-
quency-selective channel is more appropriate because the signal
bandwidth increases with respect to.

In order to extend and generalize these previous results under
a unifying framework, we examine the asymptotic performance
of -FSK in multichannels with coding, side information, and
diversity reception. In particular, Reed–Solomon (RS) coding
is considered in conjunction with the ratio-threshold test (RTT)
[5], [9], [10], which generates side information regarding the re-
liability of received symbols. RTT enables the RS-bounded dis-
tance decoder to perform errors-and-erasures decoding (EED)
by identifying potentially corrupted symbols, and its operation
is sufficiently general such that hard-decision decoding (HDD)
corresponds to a special case.

Within this framework, and employing an alternative ap-
proach to that in [8], the asymptotic performance of-FSK in
multichannels with postdetection equal gain combining (EGC)
is derived and shown to be identical to that of maximal ratio
combining (MRC) [2] for any statistical fading model and
diversity order. These derivations are then applied to the cases
of hybrid selection combining (H-SC) [11]–[14] and selection
combining (SC) [12], [14]–[16], and it is shown that the
performance of noncoherent implementations of these schemes
asymptotically approaches that of their coherent counterparts
as well, for arbitrary fading and diversity order.

The asymptotic derivations are next evaluated, assuming that
each diversity channel undergoes independent Nakagami-
fading. The individual and coupled effects of fading severity,
diversity order, RS code rate, and side information on the
asymptotic performance of various diversity combining
schemes is examined. The minimum required SNR for arbi-
trarily reliable communication and the corresponding optimal
RS code rate is numerically computed for the different diversity
combiners operating under various conditions. In addition, we
investigate the asymptotic performance of MRC and EGC for
large diversity orders and verify that these schemes achieve the
Shannon limit as the number of processed and combined diver-
sity channels approaches infinity. The asymptotic performance
of the reduced-complexity schemes such as H-SC and SC,
however, degrades rapidly as the diversity order grows large.

This paper is organized as follows. In Section II, the general
system model is described. The asymptotic analysis of MRC,
EGC, H-SC, and SC is detailed in Section III. In Section IV,
the asymptotic results are evaluated for the Nakagami-fading
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Fig. 1. Block diagram of system model.

model, and the limiting behavior of the diversity combining
schemes for large diversity orders is examined. In Section V, we
present the asymptotic performance of the various schemes with
RS coding and side information generated by RTT. In particular,
the minimum required SNR to achieve arbitrarily reliable com-
munication and the optimal RS code rate are numerically com-
puted. Finally, concluding remarks are made in Section VI.

II. SYSTEM MODEL

A single-user communication system employing RS coding,
multichannel signaling with -FSK, RTT, and diversity recep-
tion is considered. The multichannel framework can accommo-
date time, frequency, and spatial diversity systems [14], [16],
[17] so long as the underlying assumptions regarding the chan-
nels remain valid. In order to simplify the description of the
system model, we will assume that the receiver utilizes multiple
antennas to achieve diversity, although the results are equally
applicable to appropriately designed time and frequency diver-
sity systems for finite diversity orders.

As depicted in the block diagram (Fig. 1), the information
source is first encoded by a ( ) RS code where and
the code rate is . After ideal interleaving, a code symbol
comprised of bits is mapped to one of orthogonal
signals to be transmitted. Theth transmitted signal is given by

(1)

where denotes the carrier frequency,the symbol duration,
and the equivalent lowpass representation. The bandpass
signals { } are equally likely to be transmitted and possess
the same energy . The frequency sepa-
ration between adjacent signals is chosen to be, such that
orthogonality is maintained after both coherent and noncoherent
demodulation.

We consider a multichannel with diversity orderwhich
is comprised of frequency-nonselective, slowly fading chan-
nels. The receiver obtainscorrupted copies of the transmitted

signal, which we assume to be the ( ) signal, without any
loss of generality. The equivalent lowpass received signal cor-
responding to theth diversity channel is then given by

(2)

where and denote the channel-induced amplitude and
phase, respectively, and is the equivalent low-pass
additive noise process. It is assumed that {} and { } are
constant over a symbol duration, the amplitudes {} are
continuous random variables, the phases {} are mutually
independent, uniformly distributed over [0, 2), and { }
are mutually independent, complex-valued AWGN random
processes with zero mean and two-sided power spectral density
2 . In addition, the random processes { } and random
variables { , } are all mutually independent. For generality,
a full statistical description of the attenuations {} is provided
when evaluating the asymptotic results in Section IV.

In order to exploit the diversity inherent in the collective re-
ceived signal { }, the receiver initially determines the corre-
lator outputs { } corresponding to each of the signals for
all diversity channels

(3)

(4)

where and { } are mutually indepen-
dent, circularly symmetric, zero-mean Gaussian random vari-
ables with variance .

Because the diversity combining schemes of interest manipu-
late these correlator outputs { } differently, their specific op-
eration will be summarized in the next section. Nevertheless, all
diversity combiners yield decision statistics {} which are then
compared using RTT. This technique generates side information
about the reliability of the received symbol by comparing the
ratio of the largest to the second-largest decision statistic. When-
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ever this ratio does not exceed a fixed, finite threshold ( ),
RTT declares a symbol erasure in an attempt to improve the per-
formance of the bounded distance RS decoder.

More specifically, RTT identifies a symbol to be erased when

for any (5)

and yields an error if

for some (6)

It is also noted that errors-only decoding or HDD is just a special
case of RTT in which .

III. A SYMPTOTIC ANALYSIS OF DIVERSITY COMBINING

SCHEMESWITH RTT

In this section, we determine the asymptotic performance of
various diversity combiners operating with RTT for an arbitrary
fading model, diversity order, RS code rate, and RTT threshold.
The probabilities of a received symbol being correct, erroneous,
and erased for finite are first derived (denoted ,

, and , respectively) before obtaining the lim-
iting expressions. The asymptotic results are summarized in the
following theorem which encompasses all diversity combining
schemes considered, including MRC and EGC, as well as co-
herent and noncoherent implementations of H-SC and SC.

Theorem:

(7)

(8)

(9)

In the above expressions, denotes the cumulative distribu-
tion function (cdf) of a random variable, which is a function of
the channel attenuations and diversity order. Becauseis spec-
ified by the operation of each diversity combiner, its definition
will be provided in the subsections which follow. As might be
expected, the asymptotic probabilities in (7)–(9) depend upon
parameters such as the code rate, the RTT threshold , and the
ratio of the energy per information bit per diversity channel to
the noise density .

In the ensuing subsections, we will describe each of the com-
bining schemes and verify the theorem for each case.

A. MRC

The optimal linear combining technique is MRC, which
yields the maximum instantaneous SNR, and hence, minimizes
the probability of symbol error [17]. The performance and
optimality of MRC depend upon the receiver’s knowledge of
the complex channel gains. Assuming that the receiver can
perfectly estimate the channel attenuations {} and phase
shifts { }, MRC forms the decision statistics

(10)

where is the correlator output corresponding to theth
symbol on the th channel (3), (4). In effect, the optimal
combiner removes the channel-induced phase shifts and
appropriately weights the contributions from all channels
(according to the received signal strength) prior to summing
[17].

The substitution of (4) into (10) then leads to

(11)

(12)

By conditioning upon { } and { }, and employing the defini-
tion of { }, it can be shown that these decision statistics are in-
dependent, Gaussian random variables with
and { , }, where and

.
From (6) and the fact that the {} are conditionally indepen-

dent, the probability of a correct symbol is

(13)

(14)

where the inner integral in (14) denotes the conditional prob-
ability given the event . We
assume throughout this section that the probability density func-
tion (pdf) is bounded above for all.

Prior to deriving the asymptotic expression for , the
energy per symbol per diversity channel,, is expressed in
terms of the energy per information bit, , as follows:

(15)

The first step of the asymptotic analysis involves interchanging
the limit and integration by applying Lebesgue’s dominated
convergence theorem [18]

(16)

(17)

Substituting the related distributions of the decision statistics
into (14) and employing (15), we obtain (18) as shown at the
bottom of the next page, where and

.
As noted in [2], the derivation of (18) mirrors that of the

asymptotic probability of a correct symbol for coherent-ary
orthogonal modulation in AWGN [19], [20]. It follows from [2]
and [20] that

(19)

where the case in which ( ) is omitted because
. Thus, the asymptotic probability of a
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correct symbol (17) simplifies to the expression provided
earlier in (7)

(20)

(21)

where in (20) represents the indicator function.1

We next seek the asymptotic probability of a symbol error.
As before, the expression for the symbol error probability for fi-
nite immediately follows from (6) and the decision statistics
{ } being conditionally independent, as shown in (22) at the
bottom of the page, where the inner integral is simply the con-
ditional probability . In order to obtain the desired
asymptotic result, we first observe the relation

from the specifications accompanying
(12). The conditional probability of symbol error (22) can thus
be rewritten as shown in (23)–(25) at the bottom of the page,
where the last step involves integration by parts.

1I(x) = 1, if x; I(x) = 0, otherwise.

For the case of , we obtain from (25) the following
simplification:

(26)

(27)

Substituting (27) into (22) and taking the limit, we obtain the
expected result

(28)

(29)

If , the first term in (25) equals zero and the conditional
symbol error probability becomes (30), as shown at the bottom
of the page. By invoking the dominated convergence theorem,
the derivation of the asymptotic symbol error probability de-
volves, in effect, into a derivation of the asymptotic conditional
symbol error probability as in (17). Hence, only the limit of (30)
is required to complete the derivation.

(18)

(22)

(23)

(24)

(25)

(30)
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It can be shown that as , (see
Appendix A), and consequently, the asymptotic probability of
symbol error for is

(31)

(32)

Finally, the probability of symbol erasure for finite is given
by

(33)

Taking the limit of the above expression and applying previous
results from (21), (29), and (32), we obtain the asymptotic prob-
ability of symbol erasure

(34)

thereby completing the proof of the theorem for the case of
MRC. As in [5], RTT converts all symbol errors into erasures
for and large , and the threshold which minimizes
the symbol erasure probability is .

B. EGC

The analog of MRC for noncoherent reception is square-law
combining or postdetection EGC, which is optimal when the
complex channel gains remain unknown and the channel at-
tenuations { } are independent, Rayleigh-distributed random
variables [16]. The decision statistics for EGC are generated by
summing the squared envelopes of the correlator outputs {}
(4)

(35)

(36)

where { } is as previously defined in (4). Unlike the deriva-
tion for MRC, the asymptotic analysis of orthogonal signaling
with noncoherent reception in AWGN cannot be easily general-
ized to cases of diversity reception with EGC.

In order to facilitate the asymptotic analysis of EGC,
we modify the decision statistics by taking the square root
of { } and define the new statistics to be ,

. The resulting performance is unchanged
because the square-root function monotonically increases
with respect to its positive argument. The motivation for

this modification is to transform and { , } from
noncentral chi-square and central chi-square random variables
with 2 degrees of freedom (DOF) into generalized Ricean
and Rayleigh random variables, respectively, when conditioned
upon { } and { }. The asymptotic analysis of EGC will
consequently resemble the problem formulation encountered
in single channel ( ) noncoherent systems employing
envelope detection [6], [9].

Thus, the set of decision statistics {} are conditionally in-
dependent random variables with the following distributions:

(37)

(38)

where is a th-order modified Bessel function
of the first kind, is the conditional variance of
the Gaussian components, and is the noncentrality
parameter.

The general approach taken in deriving the asymptotic prob-
ability of a correct symbol for MRC (15)–(17) can be applied
here as well. From (14), (37), and (38), the conditional proba-
bility of a correct symbol for EGC is shown in (39) and (40) at
the bottom of the page, where (40) results from the substitution

.
Taking the limit and applying the dominated convergence

theorem, we obtain the following simplifications, the details of
which are specified in Appendix B.

(41)

(42)

As can be seen, the generalized Ricean pdf in (39) reduces to
the Gaussian pdf in the limit (41), which then becomes unity
upon integration (42). The resulting expression for the asymp-
totic conditional probability is identical to that de-
rived for MRC (19), (20), thereby proving that the probability
of a correct symbol for EGC converges to that of MRC asymp-
totically. Because the previously outlined steps for deriving the
remaining asymptotic probabilities can be applied to EGC as
well, we can easily confirm that the asymptotic probabilities of
symbol error and erasure are also identical for EGC and MRC.

(39)

(40)
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C. SC and H-SC

The least complex diversity combining technique is SC,
which can be implemented with either coherent (C-SC) or non-
coherent (NC-SC) reception and selects the correlator output
with the largest SNR [15], [16]. Because the complexity of
MRC increases proportionately with the number of combined
diversity channels, emphasis has been recently placed on
H-SC schemes which process of the available channels,
where [11]–[14]. In particular, these
techniques combine the correlator outputs with the largest
instantaneous SNR employing either MRC (SC/MRC-) or
EGC (SC/EGC- ).

Because the MRC and EGC asymptotic derivations can
accommodate any statistical characterization of the channel
attenuations { }, the asymptotic analysis of the H-SC
schemes follow the same framework. The only necessary
modification is defining the attenuations to be ordered such
that and replacing with in the
equations. Hence, the resulting expressions for the asymptotic
probabilities of SC/MRC- and SC/EGC- will be identical
to those of MRC and EGC (21), (29), (32), (34), with the no-
table exception being the definition of the random variable,
which now represents the sum of squared ordered statistics.

As illustrated in [12] and [14], the main impediment to ana-
lyzing hybrid schemes is averaging the conditional probability
with respect to the pdf of , which, while straightfor-
ward, becomes cumbersome for .

Although SC has been ignored in previous asymptotic work,
we note that the asymptotic performance of C-SC is identical to
that of NC-SC by invoking the classical results in [2] and [20]
and applying the previous derivations for MRC and EGC.

IV. A SYMPTOTICRESULTSWITH NAKAGAMI - FADING

The asymptotic analysis presented thus far does not depend
upon a particular statistical characterization of the channel at-
tenuations. In order to make a performance comparison among
the various diversity combining schemes, we consider the case
in which { } are independent, identically distributed (i.i.d.)
Nakagami- random variables [4], [6], [17], [21].

The pdf corresponding to the sum of squared, i.i.d.
Nakagami- random variables is given by

(43)

where , , and is the Nakagami parameter which
is defined as , [22]. The
Nakagami parameter inversely reflects the severity of the fading
with corresponding to Rayleigh fading, and ,
which is the nonfading case.

Prior to evaluating the asymptotic probabilities with respect
to the specified distribution, we note that (43) must be modified
appropriately for the SC and H-SC schemes (Section III-C). The
derivation of the cdf of the sum of the two largest squared atten-
uations for SC/EGC-2 and SC/MRC-2 parallels the treatment in
[14] and is, consequently, omitted.

Because the asymptotic probabilities of symbol error and era-
sure are either zero or functions of the asymptotic probability of

a correct symbol, we present only the asymptotic probabilities
of a correct symbol for the various diversity combining schemes.

MRC, EGC:

(44)

C-SC, NC-SC:

(45)

SC/MRC-2, SC/EGC-2:

(46)

In the above expressions, represents the average,
total received energy per information bit for all diversity com-
biners, and is the normalized incomplete gamma function
[4]

(47)

Furthermore, the integrand in (46) is given by the following:

(48)

The asymptotic probability of a correct symbol for MRC and
EGC (44) provides the most insight among the given expres-
sions (44)–(46) because of its analytical simplicity. This par-
ticular asymptotic probability depends only on the product
as opposed to and individually. As a result, we can easily
compare the asymptotic performance of systems with different
diversity orders and channel fading characteristics. The asymp-
totic behavior of a Nakagami- fading channel with diversity
order , for instance, is equivalent to that of a Rayleigh fading
channel with diversity order .

In addition, previous results regarding the performance of or-
thogonal signaling with a large alphabet size and large SNR
[3], [4] can be generalized to the case of diversity reception
with MRC or EGC in Nakagami- fading. It can be shown that
the asymptotic probability of symbol error varies as the inverse

th power of whenever is large.

A. Asymptotic Performance for Large Diversity Order

The asymptotic probabilities in (44)–(46) indicate that
-FSK with finite diversity order in a Nakagami- fading

environment does not achieve the infinite bandwidth AWGN
channel capacity. We next examine the asymptotic performance
of the diversity combining schemes as the diversity order
approaches infinity.

For the particular case of MRC and EGC, the asymptotic
probability of a correct symbol as for fixed be-
haves in the same manner as if for fixed . As a result,
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the derivation below complements previous asymptotic work in-
volving Nakagami- fading with no diversity [6].

By rewriting (44), the asymptotic probability of a correct
symbol can be expressed as

(49)

(50)

where in (50) we have made the substitution and the
assumption that is large, thereby permitting Stirling’s approx-
imation [23].

In order to obtain the limiting behavior of (50) as ,
we employ informal arguments as in [6] and [24] to obtain the
following simplifications:

(51)

(52)

Thus, MRC and EGC asymptotically approach the AWGN
channel capacity (when and hence, ) in
Nakagami- fading as the diversity order goes to infinity.
This result corroborates the conclusions drawn in [24] which
examined the performance of MRC in Rayleigh fading from an
alternative framework, as well as those in [8].

Next, we determine whether the SC schemes, C-SC and
NC-SC, exhibit the same behavior as MRC and EGC when the
number of processed diversity channels grows large. Taking the
limit of the asymptotic probability of a correct symbol in (45),
we obtain the following result:

(53)

(54)

which contrasts sharply with the asymptotic performance of
MRC and EGC for large diversity orders (see Appendix C for
derivation). In order to determine which minimizes the re-
quired SNR at a target BER, the asymptotic expressions for SC
must be evaluated numerically.

V. ASYMPTOTICPERFORMANCEWITH RS CODING

As discussed in the previous section, the various diversity
combining schemes do not achieve capacity in the absence of

or . These schemes do achieve arbitrarily reli-
able communication, however, when RS coding is incorporated
and additional performance gains are possible by employing
EED (EED, RTT: ).

Fig. 2. Minimum requiredE =N for arbitrarily reliable communication
for MRC and EGC with HDD in Nakagami-m fading (mL =

1; 2; 3; 10; 50;100;1).

Fig. 3. Minimum required E =N for arbitrarily reliable
communication for MRC and EGC with EED in Nakagami-m fading
(mL = 1; 2; 3; 10;50;100;1).

The asymptotic performance of -FSK in multichannels
with diversity reception, RS coding, and HDD or EED can be
derived from the asymptotic probabilities specified earlier. It is
well known that an ( ) RS code can correct any collection of

errors and erasures as long as the relation is
satisfied [17]. Furthermore, the assumption of ideal interleaving
ensures that the probabilities of error and erasure are inde-
pendent from received symbol to symbol. Because the block
length tends toward infinity as , the probability of a
codeword error approaches zero when the following condition
holds [5], [9]:

(55)

This constraint imposes the maximum possible code rate or
equivalently, the minimum , necessary to achieve arbi-
trarily reliable communication. By substituting in the asymp-
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TABLE I
MINIMUM REQUIREDSNR (IN DECIBELS) FORARBITRARILY RELIABLE COMMUNICATION AT OPTIMAL RS CODE RATE WITH HDD IN NAKAGAMI -m FADING

TABLE II
MINIMUM REQUIREDSNR (IN DECIBELS) FORARBITRARILY RELIABLE COMMUNICATION AT OPTIMAL RS CODE RATE WITH EED IN NAKAGAMI -m FADING

Fig. 4. Minimum requiredE =N for arbitrarily reliable communication for
C-SC and NC-SC as well as SC-MRC-2 and SC-EGC-2 with HDD in Rayleigh
fading (m = 1).

totic symbol error and erasure probabilities (29), (32) corre-
sponding to (44)–(46) into the above condition, the minimum
required SNR for error-free communication at a fixed code rate
can be evaluated numerically.

Figs. 2 and 3 depict the performance of both MRC and EGC in
Nakagami- fading with HDD and EED, respectively. As the
effective diversity order increases, we note that the min-
imum required SNR decreases, the optimal code rate tends to

, and the performance of HDD approaches that of EED.
The performance degradation at low code rates for EED with
improving diversity indicates that the system suffers from over-
coding. If we fix the Nakagami parameter and examine the per-
formance for various , it is clear that increasing the number of
processed diversity channels is more effective for severely faded
channels (small ).

A performance comparison of MRC and EGC with H-SC
( ) and SC is presented in Tables I and II, which cor-
respond to the cases of HDD and EED, respectively. These ta-
bles contain the minimum required SNR for error-free commu-

Fig. 5. Minimum requiredE =N for arbitrarily reliable communication for
C-SC and NC-SC as well as SC-MRC-2 and SC-EGC-2 with EED in Rayleigh
fading (m = 1).

nication at the optimal code rate for a fixed and . Upon
inspection, the gain of MRC and EGC over H-SC, and in turn,
the gain of H-SC over SC, increases as the fading becomes less
severe ( ). This trend can be attributed to the fact that
combining additional diversity channels characterized by a large
Nakagami parameter significantly enhances the relative perfor-
mance, whereas combining severely faded channels provides
only minimal benefits. We note that the performance differential
between the reduced complexity schemes and MRC or EGC is
the smallest for , among the three values of consid-
ered. Also, even with only , H-SC is highly effective in
bridging the performance gap between SC and MRC or EGC.

When comparing the performance of HDD to that of EED
for each of the various schemes, the tables indicate that the gain
provided by EED in reducing the minimum required SNR at a
specific and is approximately the same for all the diversity
combiners. The use of side information, however, particularly
benefits the reduced complexity schemes when comparing the
optimal performance of H-SC and SC over a range of diversity
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orders with that of MRC or EGC at a fixed . EED also re-
duces the optimal diversity order for these schemes, with H-SC
achieving the overall minimum required SNR at and SC
at . For large diversity orders, these numerical results
for both H-SC and SC confirm the conclusions reached in the
previous section regarding the declining performance of SC for
large .

In order to study the asymptotic behavior of these re-
duced-complexity schemes in greater detail, their performance
in Rayleigh fading ( ) with HDD and EED is shown in
Figs. 4 and 5, respectively. (Because the asymptotic probabil-
ities become greatly simplified for this particular distribution,
they are provided in Appendix D.) From these plots as well as
the tables, it is evident that the optimal diversity order for H-SC
and SC increases with the degree of fading severity when HDD
is employed. In addition, SC with EED performs worse than a
system with no diversity ( ), while H-SC with EED yields
a performance loss when compared to MRC or EGC operating
with only .

The plots also reveal that the performance of H-SC and SC
improves with increasing diversity order only at code rates near
unity. Coupling this with the interpretation of diversity order as
the inverse of a repetition code rate, the general behavior of these
schemes for large diversity orders suggests that the performance
degradation occurs because of overcoding.

VI. CONCLUSION

This paper extends and unifies previous asymptotic analysis
of -ary orthogonal modulation in frequency-nonselective,
slowly fading channels by incorporating RS coding, RTT, and
diversity reception. The asymptotic probabilities of a symbol
being correct, erroneous, and erased are derived for various
diversity combiners and arbitrary diversity order as well as
a statistical fading model. Employing these derivations, the
minimum required SNR for arbitrarily reliable communica-
tion with RS coding and either HDD or EED is determined
assuming Nakagami- fading for a broad range of parameters
specifying the code rate, fading severity, and diversity order.

It is shown that generating side information through RTT and
employing EED significantly reduces the minimum required
SNR for arbitrarily reliable communication for small diversity
orders and severe fading conditions. The gain provided by EED
over HDD diminishes as the diversity order increases for all di-
versity combining schemes considered. Although increasing the
number of processed diversity channels is an effective technique
for MRC or EGC in conjunction with HDD, the performance
of the reduced-complexity schemes generally declines, except
when severe fading exists. For low diversity orders, H-SC also
provides an adequate compromise between performance and
complexity relative to the extreme approaches of diversity com-
bining, namely, SC and MRC or EGC.

For a restricted set of assumptions, this work can be
applied to a direct-sequence code-division multiple-access
(DS-CDMA) system with -ary orthogonal modulation and
random spreading codes operating in a frequency-selective,
slowly fading channel. In particular, it must be assumed that the
multipath channel contains only a fixed number of paths, inde-

pendent of , and that the signal-dependent self-interference
present at the correlator outputs can be neglected.

The asymptotic analysis of a frequency-hopped spread spec-
trum (FH-SS) system with -FSK and diversity reception in
multichannels with partial-band jamming [9], [25] represents a
possible area of future work.

APPENDIX A
MRC: ASYMPTOTIC CONDITIONAL PROBABILITY

OF A SYMBOL ERROR

We recall from (30) that the conditional symbol error proba-
bility for is

(56)

For all , for all , and for all , there exists a real
number such that

(57)

and hence

(58)

We then obtain the desired result by taking the limit, applying
the dominated convergence theorem, and observing that

for all as follows:

(59)

(60)

APPENDIX B
EGC: ASYMPTOTIC CONDITIONAL PROBABILITY OF

CORRECTSYMBOL

For notational simplicity, we further specify the integrand in
(40) as follows:

(61)

where

Taking the limit of the conditional probability of a correct
symbol (61), the following expression results from ap-
plying the dominated convergence theorem and noting that

:

(62)
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Prior to evaluating the individual limits, the following simplifi-
cations are first made for :

(63)

(64)

where is as previously defined (18), and we have substituted
in (64).

We note that if , then
, where is an extended

real number. Applying this result and observing the relation
, the limit of the logarithm of

is obtained for any given

(65)

This result corresponds to the first term of the integrand pro-
vided in (41)

(66)

To complete the derivation for the asymptotic conditional
probability of a correct symbol, the limit of in (62)
must be evaluated. To this end, we employ the asymptotic prop-
erty of the th-order modified Bessel function of the first kind
[26]

(67)

Because the argument as , we
obtain the following for any given :

(68)

Hence, the derivation of the asymptotic conditional probability
of a correct symbol is complete.

APPENDIX C
SC: LARGE DIVERSITY ORDER CASE

For notational simplicity, we redefine (53) to be

(69)

where

(70)

(71)

and . Taking the limit of the logarithm of
and applying the previous result of

, we obtain

(72)

(73)

(74)

(75)

In (74), the substitution of is made, and the
last step (75) results from applying the dominated convergence
theorem. Employing (75) in (69), we verify the validity of (54).

APPENDIX D
ASYMPTOTIC PROBABILITIES FOR VARIOUS DIVERSITY

COMBINERS IN RAYLEIGH FADING

Although Rayleigh fading ( ) represents a special case
of the Nakagami- fading model given in Section IV, the re-
sulting expressions for the asymptotic probabilities of interest
are greatly simplified. The asymptotic probability of a correct
symbol for the different combining schemes are

MRC, EGC:

C-SC, NC-SC:

SC/MRC-2, SC/EGC-2:



CHOI et al.: PERFORMANCE LIMITS OF -FSK WITH REED–SOLOMON CODING AND DIVERSITY COMBINING 1797

where
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