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Performance Limits of\/ -FSK With Reed—Solomon
Coding and Diversity Combining
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Abstract—This paper examines the asymptotic 4 — o) It is noted that these channel models implicitly require that
performance of M-ary frequency-shift keying (M-FSK) in multi-  for fixed rate transmissions, the orthogonal signal set be com-
channels, or multiple frequency-nonselective, slowly fading chan- 1, iseq of narrowband signals, as is the case for frequency-shift
nels, with coding, side mformatlon_, an_d dlvers_lty reception. In par- keying (FSK). ForM-ary orthogonal modulation schemes such
thular, Reed—SoIomon (RS) coding is .con3|dered in conjunction . )
with the ratio-threshold test (RTT), which generates side infor- @S pulse-position modulation or block-coded modulation, a fre-
mation regarding the reliability of received symbols. The asymp- quency-selective channel is more appropriate because the signal
totic_perlformance (E)f (_)rthczg,\y/loF?él) signacljing in_ multichalmne_ls with  pandwidth increases with respectib.
maximal ratio combining , postdetection equal gain com- ; ;
bining (_EGC), h_ybrid _selection com_bining (H_-S_C), an(_:i selection I?]iori(:]erft? ;Xtan?fw ge;er;?l:zi;hese zerlzus rer?urla‘:' u:der
combining (SC) is derived for an arbitrary statistical fading model & Unifying framework, we examine the asymptotic performance
and diversity order. The derivations reveal that coherent and non- 0f M/-FSK in multichannels with coding, side information, and
coherentimplementations of diversity combining schemes yield the diversity reception. In particular, Reed—Solomon (RS) coding
same performance asymptotically. In addition, the asymptotic re- js considered in conjunction with the ratio-threshold test (RTT)
sults are evaluated assuming a Nakagamin fading model, andthe - 151 191 1107, which generates side information regarding the re-
eﬁe_ct of fading severity, diversity order, c_ode ra_tte, a_nd side |_nfor- liability of ived bols. RTT bles the RS-b ded di
mation upon the performance of the various diversity combiners '1@bllity Of received symbools. enables the R>-bounded dis-
is investigated. The minimum signal-to-noise ratio (SNR) required tance decoder to perform errors-and-erasures decoding (EED)
to achieve arbitrarily reliable or error-free communication, aswell by identifying potentially corrupted symbols, and its operation
as the associated optimal RS code rate, are determined for various js sufficiently general such that hard-decision decoding (HDD)
cases. . o N corresponds to a special case.

Index Terms—Asymptotic performance, diversity combining,  jthin this framework, and employing an alternative ap-
lgloaéﬁgamlm fading, - orthogonal modulation, - Reed-Solomon proach to that in [8], the asymptotic performancel$fFSK in

' multichannels with postdetection equal gain combining (EGC)
is derived and shown to be identical to that of maximal ratio

I. INTRODUCTION combining (MRC) [2] for any statistical fading model and

HE ASYMPTOTIC performance of\/-ary orthogonal diversity order. These derivations are then applied to the cases
modulation in an additive white Gaussian noise (AWGNJf Nybrid selection combining (H-SC) [11]-{14] and selection

channel and its information theoretic significance in achievirff®MpPining (SC) [12], [14]-{16], and it is shown that the
the Shannon limit have been well documented. Since tfgrformance of noncoherentimplementations of these schemes

seminal finding [1], the asymptotic analysis of orthogoné}symptotically .approac_hes that c_>f thgir coherent counterparts
signaling has been extended to other channel models sucrg¥vell, for arbitrary fading and diversity order. _
frequency-nonselective, slowly fading channels [2]-[6] and The asymptotic derivations are next evaluated, assuming that
multichannels, or multiple frequency-nonselective, slowl§ach diversity channel undergoes independent Nakagami-
fading channels [2], [7], [8]. These works collectively reve |a.d|ngl. The individual and coupled effgcts.of fadmg severity,
that the limiting performance under such channel conditiofdversity order, RS code rate, and side information on the
does not achieve the infinite bandwidth AWGN channdiSymptotic performance of various diversity combining
capacity. The inclusion of channel coding and side inform&chemes is examined. The minimum required SNR for arbi-
tion, however, makes arbitrarily reliable communication witiarily reliable communication and the corresponding optimal

(SNRs) [5], [6], [9]. combiners operating under various conditions. In addition, we

investigate the asymptotic performance of MRC and EGC for
large diversity orders and verify that these schemes achieve the
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Fig. 1. Block diagram of system model.

model, and the limiting behavior of the diversity combiningignal, which we assume to be the=£ 1) signal, without any
schemes for large diversity orders is examined. In Section V, @ass of generality. The equivalent lowpass received signal cor-
present the asymptotic performance of the various schemes wiehponding to théh diversity channel is then given by

RS coding and side information generated by RTT. In particular, i
the minimum required SNR to achieve arbitrarily reliable com- ri(t) = cqe™ 1 (1) + (1), [=0,1,....L-1 (2
munication and the optimal RS code rate are numerically colpere a; and ¢; denote the channel-induced amplitude and
puted. Finally, concluding remarks are made in Section VI. phase, respectively, and;(¢) is the equivalent low-pass

additive noise process. It is assumed that}{and {¢;} are
Il. SysTeEM MODEL constant over a symbol duration, the amplitudes}{are

A single-user communication system employing RS codingontinuous random variables, the phases}are mutually
multichannel signaling witd/-FSK, RTT, and diversity recep- Independent, uniformly distributed over [0xR and {n;(t)}
tion is considered. The multichannel framework can accomm@te mutually independent, complex-valued AWGN random
date time, frequency, and spatial diversity systems [14], [16]rocesses with zero mean and two-sided power spectral density
[17] so long as the underlying assumptions regarding the ch&d¥o- In addition, the random processes )} and random
nels remain valid. In order to simplify the description of th&ariables {, ¢;} are all mutually independent. For generality,
system model, we will assume that the receiver utilizes multipfefull statistical description of the attenuations ) is provided
antennas to achieve diversity, although the results are equiyiyen evaluating the asymptotic results in Section IV.
app"cable to appropriate|y designed Ume and frequency diver-ln Ol’del’ to eXp|Oit the diVersity inherent in the CO”ectiVe re-
sity systems for finite diversity orders. ceived signal {;(¢)}, the receiver initially determines the corre-

As depicted in the block diagram (Fig. 1), the informatioftor outputs £; ;} corresponding to each of th&/ signals for
source is first encoded by a (k) RS code where = M —1and all L diversity channels
the code rate is = k/n. After ideal interleaving, a code symbol T
comprised oflog, M bits is mapped to one o/ orthogonal Zi =/ ri(t)si(t)dt, i=1,2,...., MVl (3)

0

signals to be transmitted. Thith transmitted signal is given by . _
2FEae~ % 4 N, t=1

Si(t) = Re [si(t)e?>™ '], i=1,2,... M,0<t<T (1) {77,;,,, i#£1 )

wheref. denotes the carrier frequendy,the symbol duration, wheren, ; = fOT ny(t)s; (t)dt and {n; ;} are mutually indepen-
ands;(t) the equivalent lowpass representation. The bandpakst, circularly symmetric, zero-mean Gaussian random vari-
signals {5;(t)} are equally likely to be transmitted and possesables with varianc&[n; ;n},] = 4E Np.
the same energy = 1/2 fOT |s;(t)|?dt. The frequency sepa- Because the diversity cémbining schemes of interest manipu-
ration between adjacent signals is chosen ta BB, such that late these correlator output&{,} differently, their specific op-
orthogonality is maintained after both coherent and noncoherenation will be summarized in the next section. Nevertheless, all
demodulation. diversity combiners yield decision statisticg 4 which are then

We consider a multichannel with diversity ordérwhich compared using RTT. This technique generates side information
is comprised of. frequency-nonselective, slowly fading chanabout the reliability of the received symbol by comparing the
nels. The receiver obtairscorrupted copies of the transmittedratio of the largest to the second-largest decision statistic. When-
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ever this ratio does not exceed a fixed, finite threshgld-(1), where Z;; is the correlator output corresponding to tith

RTT declares a symbol erasure in an attempt to improve the pgymbol on thelth channel (3), (4). In effect, the optimal

formance of the bounded distance RS decoder. combiner removes the channel-induced phase shifts and
More specifically, RTT identifies a symbol to be erased wheappropriately weights the contributions from dll channels

according to the received signal strength) prior to summin
max Z; < Z; <vmaxZ foranyi € {1,2,...,M} (5) EJ-?] g g gth) p g

JFi
The substitution of (4) into (10) then leads to
and yields an error if
L—-1 L-1
Zi Z ragx Zj, for somei # 1. (6) 71 =2F Z of + Z aRe [ ] 11
1=0 1=0
Itis also noted that errors-only decoding or HDD is just a special -1
case of RTT in whichy = 1. Zi=Y aRele/n,], i=23...,M (12
1=0
Il. A SYMPTOTIC ANALYSIS OF DIVERSITY COMBINING By conditioning upon &;} and {«;}, and employing the defini-
SCHEMESWITH RTT tion of {n; ;}, it can be shown that these decision statistics are in-

In this section, we determine the asymptotic performance @¢pendent, Gaussian random variables With~ N(2Ea a?)
various diversity combiners operating with RTT for an arbitrargnd {Z; ~ N(0,0?%), Vi # 1}, wherea = Z, , af and
fading model, diversity order, RS code rate, and RTT thresholt? = 2ENya.

The probabilities of a received symbol being correct, erroneous,From (6) and the fact that the{} are conditionally indepen-
and erased for finite\/ are first derived (denoted{"’(y), ~dent, the probability of a correct symbol is
P(M)( ), andPM )( ), respectively) before obtaining the lim-
iting expressions. The asymptotic results are summarized inthe " (v) =P {Zl 2 1] (13)
following theorem which encompasses all diversity combining 0o [ poo

L1 (Blo) sz elorie] sataran

schemes considered, including MRC and EGC, as well as co- =
herent and noncoherent implementations of H-SC and SC.

Theorem: (14)
2 here the inner integral in (14) denotes the condmonal prob-
(M) 1 Y LNO In2 W g
i P () =1 = Fa ( rE, vzl (D) ity P (v,a) given the eventd = o = Y1 a2 We
LN In2 assume throughout this section that the probability density func-
lim PM)(y) = { Fa ( 7B, ) =1 (8) tion (pdf) f4(a) is bounded above for adl.
M=eo 0, v>1 Prior to deriving the asymptotic expression ™" (+), the
(M) 0, » v=1 energy per symbol per diversity channél, is expressed in
Jim PR () =4 g, (%}31‘12) Loy L (9  terms of the energy per information bif;, as follows:
E
In the above expressionB, (-) denotes the cumulative distribu- E= fbr logy, M. (15)

tion function (cdf) of a random variablé, which is a function of i . L . .
the channel attenuations and diversity order. Becatisespec- The first step of the asymptotic analysis involves interchanging

ified by the operation of each diversity combiner, its definitiof1® limit and integration by applying Lebesgue’s dominated
will be provided in the subsections which follow. As might b&onvergence theorem [18]

ted, th toti babilities in (7)—(9) d d . ) . < M
expecte e asymptotic probabilities in (7)—(9) depend upon lim P<M)(7) ~ lim Pfﬁ)(v,a)fA(a)da (16)

parameters such as the code ratine RTT threshold, and the M=o © M—o0 J,
ratio of the energy per information bit per diversity channel to oo o
the noise densityZ, /L N. :/0 [A}l_rfloo Pc|A (7, )} fa(a)da.(17)

In the ensuing subsections, we will describe each of the com-
bining schemes and verify the theorem for each case. Substituting the related distributions of the decision statistics

into (14) and employing (15), we obtain (18) as shown at the
A. MRC bottom of the next page, whef&, = arF;/(LNyln2) and

2\ — / 00 t2/2
The optimal linear combining technique is MRC, which? (%) = yd 2”12-10 fh g dt. fon of (18) mi that of th
yields the maximum instantaneous SNR, and hence, minimize s noted in [2], the derivation of (18) mirrors that of the

totic probability of a correct symbol for coherditary
the probability of symbol error [17]. The performance angsympP
optimality of MRC depend upon the receiver's knowledge & qrthogonal modulation in AWGN [19], [20]. It follows from [2]

the complex channel gains. Assuming that the receiver c%ﬂd [20] that

perfectly estimate the channel attenuationg}{and phase () 0, i_z <1
shifts {¢;}, MRC forms the decision statistics Jim Py (v a) = oG (19)
L-1
Z; = Re Z i 7, i=1,2,...,M (10) Where the case in whichs(/y* = 1) is omitted because
’ =0 ’ P[B./y* = 1] = 0. Thus, the asymptot|c probability of a
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correct symbol (17) simplifies to the expression provided For the case ofy = 1, we obtain from (25) the following

earlier in (7) simplification:
. M > ¥2LNo1n?2 “00
]\}I—I>noo Pc( )('}’) :/0 I <(1 > —TEb > fA(a)dG Pe(lf\:‘[)(l a) =1 - / Féf—l(}ﬂ@)le (z|a)dz (26)
(20) or
2 =1-P"(1,0). 27
i F (7 Lléoan) 1) ca (La) (27)
[t Substituting (27) into (22) and taking the limit, we obtain the
wherel(-) in (20) represents the indicator functién. expected result
We next seek the asymptotic probability of a symbol error.
As before, the expression for the symbol error probability for fi- lim PAD(1) =1 — lim PYO(1) (28)
nite M immediately follows from (6) and the decision statistics M—o0 M—o0
{Z;} being conditionally independent, as shown in (22) at the —F, <LN0 1n2> . (29)
bottom of the page, where the inner integral is simply the con- rEp

ditional probability P** (v, a). In order to obtain the desired _ _ -
" P MY Ll (v,a) I I If v > 1, the first term in (25) equals zero and the conditional

asymptotic result, we first observe the relati zla) = .
ny( z|F;) e—(=1)2*/20% from the specificationsﬁ fé E:Z)Jmp)anyingsymbd error pro_bab|l!ty becomes_ (30), as shown at the bottom
(12). The conditional probability of symbol error (22) can thuOf the page. By invoking the dominated convergence theorem,

be rewritten as shown in (23)—(25) at the bottom of the pa %e derivation of the asymptotic symbol error probability de-
) . . P g\/dlves, in effect, into a derivation of the asymptotic conditional
where the last step involves integration by parts.

symbol error probability as in (17). Hence, only the limit of (30)
M(z) = 1, if =; I(2) = 0, otherwise. is required to complete the derivation.

oo M—1
lim Pc(ﬁ)('y,a) = lim (1 -Q <%)> 1 - exp (—% (z — /20, lnM)Q) dz (18)

M —oo M—oo [_ V2T

M
P (y) =P L:JQ {Zi > vr?ggi{zj}} M
[T o= (Cie) #2077 (Zle) - frelai] g1yt @2
P60 = [z Gl - DY)z (o) @)
= / A Cla)e TR L o)) (24)

:7le(2|a)e_(72_1)22/2”2F§/2[_1(z|a)‘io
= Mot —(y*=1)2/20” (v* = 1)z
- [ et frrel) - S Gl 25)

J —o0

y * I (21122 /202 2 1)z
Pefﬁ)(%a):/ vFg Y(zla)e= O —D="/2 -[%le(ﬂa)—le(zm)} dz. (30)
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It can be shown that a8/ — oo, Psﬁ)(y,a) — 0 (see this modification is to transforn¥; and {Z;, Vi # 1} from
Appendix A), and consequently, the asymptotic probability afoncentral chi-square and central chi-square random variables
symbol error fory > 1is with 2L degrees of freedom (DOF) into generalized Ricean
oo and Rayleigh random variables, respectively, when conditioned
Jim PO () :/ [A}im Péﬁ)(%a)] fa(a)da (31) upon {oq} and {¢;}. The asymptotic analysis of EGC will
> 70 S consequently resemble the problem formulation encountered

=0. (32) in single channel L = 1) noncoherent systems employing
Finally, the probability of symbol erasure for finilé is given envelope detection [6], [9]. 3
by Thus, the set of decision statisticg{ are conditionally in-

dependent random variables with the following distributions:

PO (y) = 1= PPD(y) = PMD(y). (33) . 2,
> (2]a) :Z—exp Aty I 1(25) z2>0
Taking the limit of the above expression and applying previous.](Z1 g2sl—1 252 T \g2/)7 7T T
results from (21), (29), and (32), we obtain the asymptotic prob- (37)
ability of symbol erasure L2L-1 22 0 .
. = - -2 ), 2>0,4
y 0, y=1 I2.F10) = gr=raar g~y o ( 2&2) 220 if
Jim POD() = ¢ 5 (ZLye) | 551 (34) (38)

thereby completing the proof of the theorem for the case I3 erelr_() is a(L — 1)th-order modified Bessel function

: s g . " .
MRC. As in [5], RTT converts all symbol errors into erasureic%1 . f|rst. kind, o = 2EN, is the c2on-d|t|ona| variance of
f ; . e Gaussian components, astd= 4E?2q is the noncentrality
or v > 1 and largeM, and the thresholg which minimizes

the symbol erasure probability s~ 1. parameter. . - .
The general approach taken in deriving the asymptotic prob-
B. EGC ability of a correct symbol for MRC (15)—(17) can be applied

Th | f MRC f h L | here as well. From (14), (37), and (38), the conditional proba-
€ analog 0 or noncoherent reception Is square- a(Wiity of a correct symbol for EGC is shown in (39) and (40) at

combining or postde_tecnon E.G C, which is optimal when thfﬁe bottom of the page, where (40) results from the substitution
complex channel gains remain unknown and the channel at-_ (z — 8)/5

tenuations §{;} are independent, Rayleigh-distributed randorrlf
variables [16]. The decision statistics for EGC are generated
summing the squared envelopes of the correlator outpgttg{

Taking the limit and applying the dominated convergence
orem, we obtain the following simplifications, the details of
which are specified in Appendix B.

(4) in PO

1 A}IHI Py (v,a)

Zy =Y |2Eae 2 35 -

1= are % 4y | (35) 00 V2LNgln2\ 1 u?

1=0 = Ila> —exp | —— | du (41)
L—1 vToe rEy 2 2

Zi=S Il i=23,...M (36) :1 <a> M) (42)
1=0 TEI)

where {; ;} is as previously defined in (4). Unlike the deriva-As can be seen, the generalized Ricean pdf in (39) reduces to
tion for MRC, the asymptotic analysis of orthogonal signalinthe Gaussian pdf in the limit (41), which then becomes unity
with noncoherent reception in AWGN cannot be easily generalpon integration (42). The resulting expression for the asymp-
ized to cases of diversity reception with EGC. totic conditional probabilityP, 4 (v, a) is identical to that de-

In order to facilitate the asymptotic analysis of EGCrived for MRC (19), (20), thereby proving that the probability
we modify the decision statistics by taking the square roof a correct symbol for EGC converges to that of MRC asymp-
of {Z;} and define the new statistics to b&; = /Z;, totically. Because the previously outlined steps for deriving the
1 = 1,2,..., M. The resulting performance is unchangedemaining asymptotic probabilities can be applied to EGC as
because the square-root function monotonically increasasll, we can easily confirm that the asymptotic probabilities of
with respect to its positive argument. The motivation fosymbol error and erasure are also identical for EGC and MRC.

M-1

[z, (2]a) dz (39)

l

(M) o 2 22 Ll 1 22
PM (y g)= 1= e % /276 —
A I ST ==
I—1

-1 . M . .
oo . . 1 2 L ~\7 ~\2
:/ [1 e § ! <(u+s/o) ) ] R RS <(u+8/0)>du
1=0

—s/ 22 osk—1 als
(40)
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C. SC and H-SC a correct symbol, we present only the asymptotic probabilities
The least complex diversity combining technique is s®f a correct symbol for the various diversity combining schemes.

which can be implemented with either coherent (C-SC) or non-MRC, EGC:

coherent (NC-SC) reception and selects the correlator output / 2 LN 1n 2

with the largest SNR [15], [16]. Because the complexity of ~Hm_ PMy)=1-P <mL7 7Tbo) . (44)
MRC increases proportionately with the number of combined

diversity channels, emphasis has been recently placed of-SC, NC-SC:

H-SC schemes which process of the L. available channels, 2 I Naln 2\ 15
whereL. € {2,3,...,L — 1} [11]-[14]. In particular, these lim PO (y)=1-— [p (m7 uﬂ . (45)
techniques combine thB. correlator outputs with the largest M~ rEy

instantaneous SNR employing either MRC (SC/MRQ-or SC/MRC-2, SC/EGC-2:

EGC (SC/EGCL,).

Because the MRC and EGC asymptotic derivations can (M) _
accommodate any statistical characterization of the channel A}ILHOO P =1~
attenuations 4y}, the asymptotic analysis of the H-SC .
schemes follow the same framework. The only necessdRythe above expressions; = E; (2 represents the average,
modification is defining the attenuations to be ordered suéptal received energy per information bit for all diversity com-
thatag > a1 > --- > az_1 and replacingl with L. in the biners, andP(-, -) is the normalized incomplete gamma function
equations. Hence, the resulting expressions for the asymptdfik
probabilities of SC/MRCE,. and SC/EGCE.. will be identical 1 e
to those of MRC and EGC (21), (29), (32), (34), with the no- P(v,¢) =T / e dt. (47)
table exception being the definition of the random varialje v Jo
which now represents the sum bf squared ordered statistics. Furthermore, the integrand in (46) is given by the following:

As illustrated in [12] and [14], the main impediment to ana-

"/QmLNO In 2/27‘Eb
/ g)dy.  (46)

0

lyzing hybrid schemes is averaging the conditional probability m—1,-y
with respect to the pdf OEZL:“O_l o2, which, while straightfor- g(y) =L(L — 1)P(m, y)L_2yF—
ward, becomes cumbersome for > 3. ) (m)
Although SC has been ignored in previous asymptotic work, ) [p <m_ y"mLNoIn2 y> — P(m y)} .
we note that the asymptotic performance of C-SC is identical to ’ TEy ’
that of NC-SC by invoking the classical results in [2] and [20] (48)

and applying the previous derivations for MRC and EGC.
ppIng P The asymptotic probability of a correct symbol for MRC and

EGC (44) provides the most insight among the given expres-
sions (44)—(46) because of its analytical simplicity. This par-

The asymptotic analysis presented thus far does not depegdiar asymptotic probability depends only on the produdt
upon a particular statistical characterization of the channel aks opposed te: and L individually. As a result, we can easily
tenuations. In order to make a performance comparison amaegnpare the asymptotic performance of systems with different
the various diversity combining schemes, we consider the cafi¢ersity orders and channel fading characteristics. The asymp-
in which {«;} are independent, identically distributed (i.i.d.)totic behavior of a Nakagamis fading channel with diversity

IV. ASYMPTOTIC RESULTSWITH NAKAGAMI -m FADING

Nakagamim random variables [4], [6], [17], [21]. orderL, for instance, is equivalent to that of a Rayleigh fading
The pdf corresponding to the sum df squared, i.i.d. channel with diversity ordemL.
Nakagamim random variables is given by In addition, previous results regarding the performance of or-
i mL gmL-1 ma thogonal signaling with a large alphabet size and large SNR
, =(= - - > 3], [4] can be generalized to the case of diversity reception
f@=(g) teper(-g) 20 @3 BL@ g y recep

with MRC or EGC in Nakagamir, fading. It can be shown that

whereQ = E[a?], VI, andm is the Nakagami parameter whichthe asymptotic probability of symbol error varies as the inverse

is defined asn = 02/E[(a? — Q)2 > 1/2, Vi [22]. The mLth power of £, /Ny wheneverE, /Ny is large.

Nakagami parameter inversely reflects the severity of the fading _ ) )

with m = 1 corresponding to Rayleigh fading, and — oo, A. Asymptotic Performance for Large Diversity Order

which is the nonfading case. The asymptotic probabilities in (44)—(46) indicate that
Prior to evaluating the asymptotic probabilities with respedt/-FSK with finite diversity order in a Nakagami- fading

to the specified distribution, we note that (43) must be modifieghvironment does not achieve the infinite bandwidth AWGN

appropriately for the SC and H-SC schemes (Section 111-C). Tlebannel capacity. We next examine the asymptotic performance

derivation of the cdf of the sum of the two largest squared attesf the diversity combining schemes as the diversity order

uations for SC/EGC-2 and SC/MRC-2 parallels the treatmentapproaches infinity.

[14] and is, consequently, omitted. For the particular case of MRC and EGC, the asymptotic
Because the asymptotic probabilities of symbol error and eqarobability of a correct symbol a5 — oo for fixed m be-

sure are either zero or functions of the asymptotic probability bhves in the same manner asif— oo for fixed L. As a result,
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the derivation below complements previous asymptotic work it *°

volving Nakagamim fading with no diversity [6]. web N
By rewriting (44), the asymptotic probability of a correct
symbol can be expressed as 20\
i (M) g"
i )
> 2mLNoIn2\ tmi—let u
:1—/ 1<t<7m_°n ) ° _at (49) ¥
0 rEy I'(mL) g°
oo 2
21_/ I<u < Y N£1n2> Im_LemL(1+lnu7u).671nudu E 4
0 ’I”Eb 27[' =

(50)
0
where in (50) we have made the substitutios ¢t/m L and the

assumption thak is large, thereby permitting Stirling’s approx- 2
imation [23].

4 | ] i 1 i 1 1 L 1

In order to obtain the limiting behavior of (50) ds — oo, L A SN I A S
we employ informal arguments as in [6] and [24] to obtain the _
following simplificationS' Fig. 2. Minimum requiredE, /N, for arbitrarily reliable communication
) for MRC and EGC with HDD in Nakagamir fading (mL =
lim { lim P(M)( )} 1,2,3,10, 50,100, c0).
L—oo LM—oo
> 2No1ln2 N
:1—/ I<u< 7%) o(u—1)du  (51) by
0 rEy
E 2In2
1<b>7n>. (52)
N() T
10
Thus, MRC and EGC asymptotically approach the AWGH LN
channel capacity (whem = 1 and hencey = 1) in

Nakagamim fading as the diversity order goes to infinity.S ef--\

This result corroborates the conclusions drawn in [24] whicZ
examined the performance of MRC in Rayleigh fading from a& : :
alternative framework, as well as those in [8]. P I
Next, we determine whether the SC schemes, C-SC a 5 :
NC-SC, exhibit the same behavior as MRC and EGC whentl °[
number of processed diversity channels grows large. Takingt _,
limit of the asymptotic probability of a correct symbol in (45),

um Required Eb/No (d8)

Minii

we obtain the following result: o o1 0z o3 o4 05 06 07 08 09 1
RS Code Rate (r)
. (M) —
Lh_I,I;O{A}l_r,nOO P () Fig. 3. Minimum required E,/N, for arbitrarily reliable
communication for MRC and EGC with EED in Nakagami-fading
. ~v2mLNgn 2 (mL =1,2,3,10,50,100, c0).
=1-— lim (P(m, ——————
L—oco TEb

(53) The asymptotic performance dff-FSK in multichannels
-0 (54) with diversity reception, RS coding, and HDD or EED can be
derived from the asymptotic probabilities specified earlier. It is
which contrasts sharply with the asymptotic performance afell known that an«, k) RS code can correct any collection of
MRC and EGC for large diversity orders (see Appendix C farerrors andt erasures as long as the relatitint- ¢ < n — k is
derivation). In order to determine which minimizes the re- satisfied [17]. Furthermore, the assumption of ideal interleaving
quired SNR at a target BER, the asymptotic expressions for 8@sures that the probabilities of error and erasure are inde-
must be evaluated numerically. pendent from received symbol to symbol. Because the block
length tends toward infinity a8/ — oo, the probability of a
V. ASYMPTOTIC PERFORMANCEWITH RS QODING codeword error approaches zero when the following condition

As discussed in the previous section, the various diversﬂ)‘?lds [51, 19):
combining schemes do not achieve capacity in the absence pf- 1 _ 1im PO (y)=2. lim PM) (), v > 1. (55)
m — oo or L — oco. These schemes do achieve arbitrarily reli- M—o0 Moo
able communication, however, when RS coding is incorporat&tiis constraint imposes the maximum possible code rate or
and additional performance gains are possible by employiaguivalently, the minimun®, /N,, necessary to achieve arbi-
EED (EED, RTT:y > 1). trarily reliable communication. By substituting in the asymp-
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TABLE |
MiNIMUM REQUIRED SNR (N DECIBELS) FOR ARBITRARILY RELIABLE COMMUNICATION AT OPTIMAL RS GoDE RATE WITH HDD IN NAKAGAMI -m FADING

Diversity Nakagami parameter (m), Diversity order (L)
Combining 0.5 1.0 2.0
Scheme 2 [ 3 ] 4]10] 2 [ 3 4]i0] 2 [3 4]0
C-SC, NC-SC 7.82 | 713|690 726 591 | 592 | 6.10 | 7.39 | 4.71 | 5.19 | 5.66 | 7.63
SC/MRC-2, SC/EGC-2 || N/A | 5.64 | 5.16 | 4.98 | N/A | 4.04 | 4.00 | 4.80 | N/A | 2.99 | 3.29 | 4.98
MRC, EGC 6.88 | 5.33 | 448 | 247 | 448 | 348 ([ 289 | 1.43 | 2.89 | 2.17 | 1.73 | 0.65
TABLE I

MINIMUM REQUIRED SNR (N DECIBELS) FORARBITRARILY RELIABLE COMMUNICATION AT OPTIMAL RS GoDE RATE WITH EED IN NAKAGAMI -1 FADING

Diversity Nakagami parameter (m), Diversity order (L)
Combining 0.5 1.0 2.0
Scheme 2 3 4 10 2 3 4 10 2 3 4 10
C-SC, NC-SC 3.71 | 411 | 447 [ 595 | 3.54 [ 4.15| 464 | 6.56 | 3.31 | 4.12 | 4.76 | 7.09
SC/MRC-2,SC/EGC-2 || N/A | 2.73 | 2.84 | 3.76 | N/A | 2.36 | 2.63 | 413 | N/A | 1.99 [ 2.46 | 4.49
MRC, EGC 2,76 [ 2431218 [ 1.35] 2.18 [ 1.81 | 1.55 [ 0.76 | 1.55 | 1.19 [ 0.94 | 0.24

—+ No Diversity: L =1
— C-SC,NC-SC

-%- MRCEGC:L=2

—+— No Diversity: L=1 T
— C-SC,NC-sC :

%*- MRC,EGC:L=2
— - SC/MRC-2,SC/EGC-2 . 4

|- scMRc-2,scEGC-2].......i. [

-
o
T

Minimum Required Eb/No (dB)
Minimum Required E /N, (dB)

0.4 0.5 0.6

. 0.4 0.5
RS Code Rate (r)

RS Code Rate (I

0.6

Fig. 4. Minimum required®, /N, for arbitrarily reliable communication for Fig. 5. Minimum requiredg,, /N, for arbitrarily reliable communication for
C-SC and NC-SC as well as SC-MRC-2 and SC-EGC-2 with HDD in Rayleigh-SC and NC-SC as well as SC-MRC-2 and SC-EGC-2 with EED in Rayleigh
fading (m = 1). fading (n = 1).

totic symbol error and erasure probabilities (29), (32) correication at the optimal code rate for a fixed and L. Upon
sponding to (44)—(46) into the above condition, the minimutnspection, the gain of MRC and EGC over H-SC, and in turn,
required SNR for error-free communication at a fixed code ratiee gain of H-SC over SC, increases as the fading becomes less
can be evaluated numerically. severe fn — oo). This trend can be attributed to the fact that
Figs. 2 and 3 depict the performance of both MRC and EGC @ammbining additional diversity channels characterized by a large
Nakagamim fading with HDD and EED, respectively. As theNakagami parameter significantly enhances the relative perfor-
effective diversity ordein L increases, we note that the minimance, whereas combining severely faded channels provides
imum required SNR decreases, the optimal code rate tendtdy minimal benefits. We note that the performance differential
r = 1, and the performance of HDD approaches that of EEDetween the reduced complexity schemes and MRC or EGC is
The performance degradation at low code rates for EED withe smallest forn = 0.5, among the three values of consid-
improving diversity indicates that the system suffers from oveered. Also, even with only.. = 2, H-SC is highly effective in
coding. If we fix the Nakagami parameter and examine the pdrridging the performance gap between SC and MRC or EGC.
formance for varioug,, it is clear that increasing the number of When comparing the performance of HDD to that of EED
processed diversity channels is more effective for severely faded each of the various schemes, the tables indicate that the gain
channels (smali). provided by EED in reducing the minimum required SNR at a
A performance comparison of MRC and EGC with H-SGpecificm and L is approximately the same for all the diversity
(L. = 2) and SC is presented in Tables | and Il, which corrombiners. The use of side information, however, particularly
respond to the cases of HDD and EED, respectively. These benefits the reduced complexity schemes when comparing the
bles contain the minimum required SNR for error-free commuptimal performance of H-SC and SC over a range of diversity
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orders with that of MRC or EGC at a fixee. EED also re- pendent ofM, and that the signal-dependent self-interference
duces the optimal diversity order for these schemes, with H-@@esent at the correlator outputs can be neglected.

achieving the overall minimum required SNRIat= 3 and SC  The asymptotic analysis of a frequency-hopped spread spec-
at L = 2. For large diversity orders, these numerical resultsum (FH-SS) system witd/-FSK and diversity reception in

for both H-SC and SC confirm the conclusions reached in theultichannels with partial-band jamming [9], [25] represents a
previous section regarding the declining performance of SC fpossible area of future work.

large L.

In order to study the asymptotic behavior of these re- APPENDIX A
duced-complexity schemes in greater detail, their performance  MRC: ASYMPTOTIC CONDITIONAL PROBABILITY
in Rayleigh fading f» = 1) with HDD and EED is shown in OF A SYMBOL ERROR

Figs. 4 and 5, respectively. (Because the asymptotic prObab"'\Ne recall from (30) that the conditional symbol error proba-
ities become greatly simplified for this particular distributionbility for v > 1is

they are provided in Appendix D.) From these plots as well as -

the tables, it is evident that the optimal diversity order for H-SC pM) _ FM-1 —(v?—1)z% /20>
. | . | MD(v.a)= [ AFM(zla)e

and SC increases with the degree of fading severity when HDD o

is employed. In addition, SC with EED performs worse than a (v = 1)z

system with no diversitylf = 1), while H-SC with EED yields ’ [ 2

a performance loss when compared to MRC or EGC operating )

with only L = 2. For alla > 0, for all M > 2, and for allz, there exists a real

The plots also reveal that the performance of H-SC and $gmberB such that

(56)
Fz (2]a) — le<z|a>} 2.

improves with increasing diversity order only at code rates near _.2_1y,2 2,2 | (72 — 1)z

unity. Coupling this with the interpretation of diversity order as emtr e a? Fz,(sla) = fz.(2la) < B (57)
the inverse of a repetition code rate, the general behavior of th%%% hence

schemes for large diversity orders suggests that the performance -

degradation occurs because of overcoding. Pfﬁ)(% a) <+B / F' = (z|a) dz. (58)

We then obtain the desired result by taking the limit, applying

the dominated convergence theorem, and observing that
This paper extends and unifies previous asymptotic analysig, (z|a) < 1 for all z as follows:

of M-ary orthogonal modulation in frequency-nonselective,

slowly fading channels by incorporating RS coding, RTT, and lim Pfﬁ)(y,a) <+vB / lim F2 "' (z|a)dz (59)

VI. CONCLUSION

diversity reception. The asymptotic probabilities of a symbol M=oo —oo M=o

being correct, erroneous, and erased are derived for various =0. (60)
diversity combiners and arbitrary diversity order as well as

a statistical fading model. Employing these derivations, the APPENDIX B

minimum required SNR for arbitrarily reliable communica- EGC: ASYMPTOTIC CONDITIONAL PROBABILITY OF

tion with RS coding and either HDD or EED is determined CORRECT SYMBOL

assuming Nakagami: fading for a broad range of parameters ) - ) ) _

specifying the code rate, fading severity, and diversity order. For notational simplicity, we further specify the integrand in
Itis shown that generating side information through RTT arf¢0) as follows:

employing EED significantly reduces the minimum required M ' M M

SNR for arbitrarily reliable communication for small diversity PC(IA)(% @) = /—s/& C§ )(u) ' Cé )(u)du (61)

orders and severe fading conditions. The gain provided by EED

over HDD diminishes as the diversity order increases for all dithere

versity combining schemes considered. Although increasing the -1 2y Mt
number of processed diversity channels is an effective techniqgé) ;) = |1 — e~ (v+5/9)°/27 Z 1 (u+ g)
for MRC or EGC in conjunction with HDD, the performance =0 I 2y

of the reduced-complexity schemes generally declines, except - I s
when severe fading exists. For low diversity orders, H-SC algg{" ,,) _Me—1/2{(u+s/fr)2+(s/fr)2}]L71 <” + 3) _

provides an adequate compromise between performance and gstt
complexity relative to the extreme approaches of diversity COR; ing the limit of the conditional probability of a correct

bining, namely, SC and MRC or EGC. symbol (61), the following expression results from ap-

For a restricted set of assumptions, this work can bfing the dominated convergence theorem and noting that
applied to a direct-sequence code-division multiple-acceg; Moo —8/F = —00:
[—00 = .

(DS-CDMA) system withM -ary orthogonal modulation and -

random s_preading codes operatin_g in a frequency-selectivg, | Pﬂﬁ”(% a) = / lim Cf’\[) (w)- lim C;]M)(u)du'
slowly fading channel. In particular, it must be assumed that the—c  © J—oo M—0 M—o0

multipath channel contains only a fixed number of paths, inde- (62)

w [
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Prior to evaluating the individual limits, the following simplifi- Hence, the derivation of the asymptotic conditional probability

cations are first made fo’E:EM )(u): of a correct symbol is complete.
) / 2
() = [1 — exp <— (u+t 3[3‘; In M) ) APPENDIX C
Y

SC: LARGE DIVERSITY ORDER CASE

_ M—1
Z < u+ /20, In M)? > ] 63) For notational simplicity, we redefine (53) to be

2

2y
1=0 . (M) _1_ 1N (L)
1 exb (72 /B (xar —u/V/272)?) -1 Jim { fim PED()} =1~ tim D (69)
[ — X Z ] where
=0
2 L
(64) D& — [P <m, LW)} (70)
whereg, is as previously defined (18), and we have substituted rEy 7
xv = (u+ 2B, In M)/+/2~2 in (64). _(1_ o0 gm—le—t it (71)
We note that if lim,_,g(z)/h(z) = 1, then e L(m)

lim,_;, f(x) g(z) = lim,— f(z)h(z), whereb is an extended
real number. Applying this result and observing the relatigfde = 7mNo In 2/rEy. Taking the limit of the logarithm of

lim,_oln(1 + z)/z = 1, the limit of the logarithm of D'*) and applying the previous resultidfin, o In(1+x)/x =
¢ (y) is obtained for any given 1, we obtain
. M ; (L)
A}gnoo In Cf )(u) Lh_l};o InD
L—1 21 . "0 tm_le_t
. 2 _u 2 42 = lim Lln(1- —dt 72
g (e (i Sy () ) e
=0 o0 ym—1,-t
L-1 o = lim L (—/ —dt) (73)
= lim (672/(3‘1(’(‘”_“/\/ 29%)* _ 1) . <—6_X?\{ XM) L—oo e L'(m)
00 | oo m—1_m
Y = ! =— lim Lm+1e—L€<“+1>—(“ + ) du (74)
—c0, & <1 L=oo Jo L(m)
=30 hoy (65) 0. (75)
) ,YQ .-
This result corresponds to the first term of the integrand prlf? (74), the substitution of. = #/(Le) — 1 is made, and the
vided in (41) last step (75) results from applying the dominated convergence
2 N theorem. Employing (75) in (69), we verify the validity of (54).
2
lim ¢ (u) =1 (a > w) : (66)
M—oo rEp APPENDIX D
To complete the derivation for the asymptotic conditional ASYMPTOTIC PROBABILITIES FOR VARIOUS DIVERSITY
probability of a correct symbol, the limit of* (u) in (62) COMBINERS IN RAYLEIGH FADING

must be evaluated. To this end, we employ the asymptotlc PropAlthough Rayleigh fadingrf = 1) represents a special case
erty of thenth-order modified Bessel function of the first klndof the Nakagamin fading model given in Section 1V, the re-

[26] sulting expressions for the asymptotic probabilities of interest
I.(z) are greatly simplified. The asymptotic probability of a correct
Jim —5— =1 (67) symbol for the different combining schemes are
V2mz MRC, EGC:
Because the argumeft + s/5)s/d — oo asM — oo, we -1 ) !
obtain the following for any givem: lim PM)(y) = 9=7°LNo/(rEs) Z l' (&_ﬂlﬂ) )
/ M—oo 'rEb
A}im C’éM)(u)

C-SC, NC-SC:

M—oo gsl—1

(us 4 s)" o 1/2{(uts/5)*+(s/3) } u—l—
= lim Ip lim P(A[)( ) 1— (1 _ 2_72LN0/(TEI;))L

M — o0

SC/MRC-2, SC/IEGC-2:

S

. (uo + S)Le_l/Z{(“+s/&)2+(5/&)2}e(u+s/&)s/&
= 11m
M—oo osL—1 27r(u—|— §)§

! o p( u_) ( U +1>L_1/2 A}lm P(M)( )= 1—L(L—1)[
\/1_ u2 25(1111 il( 2LN01H2> N
:\/_ exp < ?> (68) P ll TE}, l

(1 _ 9=7’LNo/("Ey)

j(L;Q) <—1>lw<1>]

™)
NN =
|
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where
1 9-7’LNo/(rEy)  9l—+’LNo(2+1)/(2rEs)
w(l) = — +
2+1 ! I(2+1)
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