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Abstract — In this paper we explore the error prob-
ability of different coding schemes in a frequency-
hopped spread-spectrum communication systems sub-
ject to partial-band interference and a system sub-
ject to Rayleigh fading. The interplay between block
length of the code and channel memory is quantified.
We show that there is an optimal memory length that
maximizes performance. At low signal-to-noise ratios
(or close to capacity) large memory is better while
at large signal-to-noise ratio smaller memory is opti-
mum.

I. INTRODUCTION

The performance of a coded frequency-hopped spread-
spectrum communication system in the presence of interfer-
ence with memory is considered in this paper. In particular we
consider a code that is amenable to iterative decoding such as
a turbo code or a low density parity check (LDPC) code. The
goal is to investigate the performance of these codes on a fre-
quency hopped channel that exhibits memory. If we consider a
code with block length n and a frequency hopped system with
m bits per hop then there are L = n/m hops per codeword. A
typical channel model for such a situation assumes the inter-
ference during each hop is constant. In the case of multipath
fading this means that the fade level is a constant for each
hop but independent from one hop to the next hop. For the
case of other user interference it means that the interference
is present for the whole hop so that the noise level is a con-
stant for the whole hop. In this paper we consider the effect
of channel memory on the performance of such a system for a
fixed overall block length code. For turbo and LDPC codes,
longer codes yield better the bit error probabilities (unlike
convolutional codes) when used on a memoryless channel. In
our scenario we have a fixed block length n code but the num-
ber of independent hops varies as the number of bits per hop
changes. Thus if the number of bits per hop m is decreased
then the number of independent hops increases and allows for
more averaging of the noise/interference statistics. However,
there are two other issues affecting performance. The first is-
sue is the channel estimation scheme. If the receiver is able to
accurately estimate the channel and use this information then
the decoder can do a better job decoding than if no or only
a poor channel estimate is available to the decoder. A better
estimate of the channel during a given hop is possible if the
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length of each hop is large. Thus a small number of bits per
hop decreases the capability of the receiver to make accurate
estimates of the channel. Secondly, in order to synchronize
to various signal parameters (e.g. phase, frequency, timing)
a certain number of pilot symbols are sent on each hop. If
the hop contains many bits per hop then the overhead for the
pilot bits is small. However, if the hop contains only a few
bits per hop then the overhead becomes a large percentage of
the transmission time and the throughput can be significantly
degraded.

In this paper we approach this problem in two ways. The
first is from a random coding point of view. In this case we
evaluate the error exponent as a function of the number of bits
per hop but for a fixed total block length. For this approach we
consider just the simple case of hard decision decoding. The
second approach is to evaluate the performance of soft decision
iterative decoding algorithms for LDPC codes incorporating
channel estimation into the decoding algorithm. The results
show that, without incorporating the overhead due to synchro-
nization bits, the optimal number of bits per hop is 1 bit/hop
at high SNR but at low SNR a larger number of bits per hop
is better. So for large SNR the benefits of improved channel
estimation do not overcome the improvement in performance
due to more independent hops. Furthermore, as expected the
difference between no side information available to the decoder
about the channel and perfect information available about the
channel disappears when the channel memory becomes large.
When the overhead due to pilot symbols is incorporated into
the performance evaluation the optimal number of bits per
hops is strictly greater than one. As an example, we consider
a block length 1024 code with 4 bits/hop for pilot bits. In
this case the optimal number of bits per hop is about 30 bits.
A smaller number of bits per hop causes excess overhead and
poor channel estimation while an increase in the number of
bits per hop decreases the effective block length of the code.

The remainder of the paper is organized as follows. In Sec-
tion Il we describe the channel models considered. In Section
I1T we evaluate the reliability function for these channels with
memory. In Section IV we present numerical results for the
reliability function for random codes and the bit error prob-
ability for LDPC codes with a decoder that incorporates the
channel estimation as part of the decoding. Finally, in Section
V we present numerical results and conclusions.

II. SYsTEM AND CHANNEL MODEL

A: Transmitter Model
In this section we describe the models for the systems and
channel we consider. At the transmitter a data packet consist-



ing of k bits of information with equal probability of taking
on the values 4+1 and -1 is encoded into a codeword of length
n coded bits. Each coded bit is used as the input to a BPSK
modulator. The modulated signal is then frequency hopped
over a set of nonoverlapping frequencies. The frequency hop-
ping rate is such that m coded bits are sent over each hop.
The transmitted signal is then given by

s(t) = \/ﬁz zipr(t —IT) cos(2m f (L)t + ¢)
1=0

where #; is the encoded bit sequence, pr(t) is a rectangular
pulse shape of duration T' starting at ¢t = 0 and T is the
encoded bit duration. The frequency pattern is given by

L—1
10 =3 fipr, ().

where L = n/m and T}, is the hop duration. The transmitter
sends the first m coded bits at frequency fi1 before hopping to
a frequency f> where another m bits are transmitted and so
on until the last m bits are transmitted at frequency f(n/m)—1-
In order to synchronize to the frequency, phase, and timing
of the bits at each frequency a number of pilot symbols are
typically transmitted during each hop. If the number of coded
bits per hop is small then these pilot bits cause the overhead to
be quite large. If p pilot bits and m coded bits are transmitted
on each hop the T, = (m + p)T.

B: Channel Model

In this paper we consider two different channel models. The
first model is that of a interference channel where with prob-
ability p the noise level for a whole hop is No/2 + N;/(2p)
and with probability 1 — p the noise level is No/2. Further-
more the random variables characterizing the noise level at a
given hop zo, ..., zr,—1 form a sequence of independent random
variables. The second channel model is that of a slowly faded
channel where the coherence time is much longer that the hop
duration, and the coherence bandwidth is larger than the hop
bandwidth but smaller than the separation between two hop
frequencies. In this case the channel exhibits frequency nonse-
lective fading over a hop but independent fading between one
hop and the next. The fading within a single hop is constant.

C: Receiver

The receiver processes the received signal by first frequency
dehopping the received signal and then demodulating the re-
sulting signal. The demodulated outputs are denoted by
Yo,...,Yn—1. We assume perfect synchronization and timing
is possible with the p pilot bits transmitted on each hop. The
outputs of the demodulator corresponding to the encoded bits
are as follows. For the case of an interference channel

yl:\/Ea:l—l—m, l=0,1,...N—-1
where F is the received energy per coded bit. The noise n; is
a sequence of Gaussian random variables conditioned on the
interference level. For the j-th hop the noise is Gaussian with
mean zero and variance No/2 + z;N;/(2p) where z; is one
with probability p and is zero with probability 1 — p.

For the case of a fading channel the input-output relation
of the channel is given by
yl:\/ET[l/mjxl‘i‘nh l=0,1,...,N — 1.
In this case the noise is a sequence of independent identically
distributed Gaussian random variables with mean zero and
variance Ng/2. The variables r; are Rayleigh distributed with
second moment 20° = 1 which makes E the average received
energy per coded bit. The variable r; corresponds to the fade
level during the j-th hop. The fading on different hops is
assumed independent and identically distributed.

Both of these models are special cases of a block interfer-
ence model [1]. The analysis for block interference channels is
straightforward after realizing that the channel can be viewed
as a memoryless channel on a hop by hop basis. This real-
ization makes calculation of the channel capacity straightfor-
ward.

I1I. PERFORMANCE ANALYSIS

The fundamental limits for channels of the type described
above have been determined previously [1].
these results and then discuss the reliability function for these
channels. Because of the difficulty in computing the reliabil-
ity function for these channels we only consider the case where
the receiver makes a hard decision regarding each coded bit
at the receiver. That is we form the vector (Jo, g1, ..., Yn—1)
where g; = +1if y > 0 and is equal to —1 otherwise. In addi-
tion, we consider the two possibilities of channel information
available to the receiver. If the receiver knows (by some genie)
the channel state (interference level or fade level) for each hop
then we say channel side information is available. Normally
this must be estimated from the received signal. The larger
the number of bits per hop the more accurate the estimate of
the fade. The capacity without side information depends on
the number of bits per hop (or memory). As the memory
(number of bits/hop) increases, the capacity increases and
approaches the capacity with perfect side information. In-
terestingly, the cutoff rate has the opposite behavior. That
is, the cutoff rate decreases as the channel memory increases.
This result has been used to claim that interleaving is a good
idea [2]. So given these two opposite conclusions about per-
formance how are these conflicting results properly explained
and interpreted? To explain these results we consider the reli-
ability function of block interference channels. The reliability
function, as will be shown below, incorporates both the capac-
ity and the cutoff rate. At low rates the reliability function
is equal to the difference of the cutoff rate and the code rate
while at high rates the reliability function remains positive
below the capacity. From this it is clear that for two different
memory lengths the reliability function is larger at small rates
for smaller memory while at high rates the reliability is higher
for larger memory.

To determine the reliability of a channel we define z, =
(zo, ., Tm—1) and yn = (Yo, ..., Yym—1) to be vector of length
m. The channel hop transition probability pn(ys|znr) for the
interference channel is given by

Here we review

pr(ynlzn) = pa(ynlzn,z =1)P{z =1}
+ pu(yn|zn, z = 0)P{z = 0}
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where 0% = (No + Ns/p)/2 and o2 = N /2. The channel
hop transition probability for the case of the Rayleigh faded
channel is given by

plmlen) = [ pndon s
0
= / ph(yh|xh,r)%exp{—r2/202}dr
r=0
where
pulunlon,r) = —expl— 3 "y~ VEra)?
’ V7T No No -
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These determine the input output of the channel. Note that
the transition probability does not factor (except if p = 1)
into the product of transition probabilities for each element of
the vector.

The reliability of a memoryless channel with input z; and
output ys is given by [3]
En(R) =

max max [sR
0<s<1pp(zh)
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Unfortunately, the reliability function is difficult to calculate
since it involves integration over an m dimensional space.
However we can efficiently calculate the reliability when the
demodulator makes hard decisions about each code bit.
this case the channel transition probabilities are determined
by (for the fading case)

[ l@a/ B -aq/ 5| soar

where dp(gn,zr) = [ is the Hamming distance between the
(binary) input and the output. For the case of partial-band
interference

In

pr(gnlzn) =
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We also consider the reliability function with side information
about the channel state (fade level or noise level). In this
case we treat the output as not only yn (or gs) but as the
combination of y, with r; or z; where r; represents the fade
level for a hop and z; represents the presence of a jammer
during a hop. Thus we replace pn(yn|zn) with pr(yn, r|zs) for
the case of fading and we replace pp(yn|zn) with pn(yn, z|z5)
for the case of interference. These can be easily determined
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Figure 1: Reliability function for rate 1/2 codes and mem-
ory m=1,16,32,64 and p = 0.7.

from the above equations. The reliability function is related
to the error probability for random codes via

P, < 2~ NEm(F) (1)
For many channels (both of the ones described above) the
best input distribution is the uniform, iid distribution which
is what we assume subsequently. At low rates (below Rc”'t)
it is known that the reliability function is

E(R)=Ro— R
where
2
R NP

Ry, = 10g2Z th(xh)[Ph(yh|$h)]2

Yh Th
Ro = logy ¥ \/pulynlza)pn(ynle))

Yh

where x; and mﬁl are two distinct input vectors. It is also
known that the reliability function is nonzero at rates up to
the channel capacity.

IV. REsuLTS

We first consider the case of partial-band interference and
examine the reliability function for this channel. The reliabil-
ity function is related via (1) to a bound on the error prob-
ability for random codes. It is known that there exist codes
and a decoding algorithm with error probability less than the
right hand side of (1). In all the results that follow the signal-
to-background noise Ey/Nj is fixed at 10dB. Note also that
the energy per information bit Fy is related to the energy per
code bit F via Fy = E/R. For the results with partial-band
interference we assume there are no pilot bits.

In Figure 1 we plot the reliability function for a partial-
band interference channel for different memory lengths as a
function of the signal-to-noise ratio. As can be seen from the
figure for small signal-to-noise ratios (closer to capacity) the
reliability function is largest for the larger memory channels
while for small signal-to-noise ratios the reliability is largest
for small memory channels. The interpretation is that for large
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Figure 2: Error probability for for LDPC codes with rate
1/2 codes and memory m = 1,8,64 and p = 0.7 (O =
side information avaiable, o= no side information).

signal-to-noise ratio the information about the channel state
is not important while at low signal-to-noise ratios (close to
capacity) the channel state is much more important and thus
larger memory yields better channel estimation.

Now consider a low density parity check code for these
channels. For the case of no state information available to
the decoder we can design a decoder that attempts to approx-
imate a maximum likelihood decoder. This decoder uses the
information from the channel to do joint data and channel
state estimation. The algorithm is based on representing the
channel and the encoder with a factor graph and applying an
iterative algorithm to approximated the maximum likelihood
decoder. More details on this can be found in [4]. In Figure-
fig:ldpcsnr we plot the block error probability for an LDPC
code of length 1024 on a partial-band interference channel
with 1,8 and 64 bits per hop. For the case where the receiver
knows the channel state (jammed or unjammed) the best per-
formance is obtained with memory 1 while for the case where
the receiver does not know the channel state the best perfor-
mance in the range of interest is obtained with memory 8 bits
per hop. As the memory increases, the gap between the no
side information case and the side information case decreases.
The gap is about 1.2dB for memory 1 while for memory 64
the performance is virtually identical.

In Figure 3 we plot the signal-to-jamming noise required
for a block error probability of 10™% as a function of the num-
ber of bits per hop for a fixed block length of 1024. The top
curve represents the situation where there is no side informa-
tion available while the bottom curve represents the case of
perfect side information. As can be seen from this figure for
the case of no side information available there is an optimum
number of bits/hop (m). If the memory is too small the per-
formance degrades due to inaccurate state estimation while if
the memory is too large the performance degrades due to the
small number of independent hops per codeword.

Now consider the fading channel described in Section II.
We begin by plotting the error probability from the random
coding bound in (1). To keep comparisons fair we assume that
(p—l— m)L is the total number of bits available for transmission.
There are pL pilot bits and n = m L code bits. In Figure 4 the
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Figure 3: Signal-to-noise ratio require for block error
probability 1073 for rate 1/2 LDPC codes as a function
of memory for p = 0.7.

random coding error probability is plotted as a function of the
average received signal-to-noise ratio for (p+m)L = 1024. We
plot the performance with perfect side information assumed
available at the receiver about the state of the channel (fade
level) and without side information available. We assume that
there are p = 4 pilot bits in a hop along with m coded bits
where m is either 12 or 124. Several observations can be drawn
from the plot. First, it is clear that for m = 124 the differ-
ence between doing optimal demodulation without the side
information does not degrade the performance compared to
knowing the side information exactly (about 0.2dB) whereas
for m = 12 the degradation is much more significant (about
2dB). This confirms the intuition that longer hop length leads
to better estimation of the channel. Another observation is
that at high signal-to-noise ratios the error probability for the
This is
because we are not operating the channel close to capacity.
We know that if the rate is sufficiently smaller than capac-
ity that the reliability function is larger for smaller memory.

m = 12 case is smaller than for the m = 124 case.

However as small signal-to-noise ratios (below 10dB in this
example) the larger memory performs better than the smaller
memory. We note that for m = 128 bits/hop there are only
8 hops with each having 4 pilots bits. In this case the actual
code is a n = 992, k = 512 code while for m = 16 there are
64 hops and the code is a n = 768, k = 512 code. The total
number of symbols used (pilot and coded bits) are the same in
both cases. If fewer pilot symbols were present (or none) the
m = 12 curve would shift more to the left (lower SNR) than
the m = 124 curve and thus the crossover between smaller
memory and larger memory would occur at a lower SNR. If
the block length were larger then the curves would shift down
by an equal amount which would shift the crossover point to
a much lower block error probability.

Now consider some specific codes for these slow fading block
interference channels. One obvious choice is interleaved Reed-
Solomon codes. For example a block length 32 Reed-Solomon
code with 32 interleaved codewords. In this case since the al-
phabet size is 2° a single hop consists of 32 code symbols each
of consisting of 5 bits. The Reed-Solomon code has rate 1/2
so there are 16 information symbols per codeword. Overall,
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Figure 4: Random coding bound on error probability for
memory 16 and 128

there are n = 5120 coded bits. In Figure 5 the performance
of various coding schemes are plotted. The top curve in this
figure is the performance of Reed-Solomon codes with hard
decision decoding. The next curves (with *’s and x’s) rep-
resent the performance of random codes (from the random
coding bound) with and without side information about the
channel state. The curve with triangles represent the perfor-
mance of Reed Solomon codes with a decoder that has perfect
information about whether each symbol was in error or not.
Any other decoder which tries to estimate the performance
will clearly do worse than a decoder that has perfect infor-
mation about which symbols were in error and erases those
symbols. Finally we plot the performance of a low density
parity check code with the same overall block length and no
interleaving (circles and boxes). For the decoder we plot (in
boxes) the cases of the receiver having perfect side informa-
tion about the fade level (and thus the error probability in the
case of hard decision decoding) as well as a decoder that tries
to jointly estimate the channel state as well as the data sim-
ilar in nature to that in [4]. The decoder assumes a six state
model for the fade level and assigns an a priori distribution
to the states similar to that of a Rayleigh distributed random
variable.

Reed-Solomon codes with hard decision decoding and no
side information available require an average received signal-
to-noise ratio of about 12.5dB which is about 5.5dB worse than
the Reed-Solomon decoder with perfect information about the
occurrence of errors. From this figure it is clear that low
density parity check codes without any channel information
performs comparably to the Reed-Solomon code with perfect
information yet does not require any interleaving. In addi-
tion we plot the performance of the low density parity check
code with soft decision decoding with and without side infor-
mation. As can be seen the case where no side information
is present has essentially the same performance as the case
with side information. Further more the soft decision decod-
ing algorithms is the usual 2dB better than the hard decision
decoding algorithm.

V. CONCLUSIONS

In this paper we have examined the performance of a
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Figure 5: Error probability for random, Reed-Solomon
and LDPC codes on frequency hopped channel with 160
bits/hop

frequency-hopped spread-spectrum system in two different in-
terference environments: self interference from multipath fad-
ing and partial-band interference. We quantified the perfor-
mance for random codes via the reliability function in the case
of hard decision decoding. We saw the existence of an opti-
mal amount of memory (hop length) for the objective function
of block error probability. (Similar results would hold for bit
error probability). We also demonstrated this interesting be-
havior for low density parity check codes. These results apply
equally well to TDMA systems where the hop length is rein-
terpreted to be the burst length. We hope these results finally
put to rest all myths regarding how to deal with memory in
communication system design.
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