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Abstract—This paper investigates the effect of chip waveform
shaping on the error performance, bandwidth confinement, phase
continuity, and envelope uniformity in direct-sequence code-
division multiple-access communication systems employing offset
quadrature modulation formats. An optimal design methodol-
ogy is developed for the problem of minimizing the multiple-
access interference power under various desirable signal con-
straints, including limited 99% and 99.9% power bandwidth
occupancies, continuous signal phase, and near-constant enve-
lope. The methodology is based on the use of prolate sphe-
roidal wave functions to obtain a reduced-dimension discrete
constrained optimization problem formulation. Numerous design
examples are discussed to compare the performance achieved by
the optimally-designed chip waveforms with other conventional
schemes, such as offset quadrature phase-shift keying, minimum-
shift keying (MSK), sinusoidal frequency-shift keying (SFSK),
and time-domain raised-cosine pulses. In general, it is found that
while the optimized chip pulses achieved substantial gains when
no envelope constraints were imposed, these gains vanish when a
low envelope fluctuation constraint was introduced. In particular,
it is also shown that MSK is quasi-optimal with regard to the
99% bandwidth measure, while the raised-cosine pulse is equally
good with both the 99% and 99.9% measures, but at the expense
of some envelope variation. On the other hand, SFSK is quasi-
optimal with regard to the 99.9% bandwidth occupancy, among
the class of constant-to-low envelope variation pulses.

Index Terms—Chip waveform optimization, direct-sequence
CDMA, envelope uniformity, multiple-access interference, phase
continuity.

I. INTRODUCTION

I N THIS paper, we consider the performance of direct-
sequence code-division multiple-access (DS-CDMA) com-

munication systems with signaling schemes that use offset
linear quadrature modulation with arbitrary chip waveform
shapes, random signature sequences, and single-user cor-
relation receivers. Common examples of this category of
signaling schemes are offset quadrature phase-shift keying
(OQPSK) with the conventional rectangular chip waveform
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and minimum-shift keying (MSK) with the half-sine chip
waveform [1], [2].

It is well known that appropriate data pulse shaping in linear
quadrature modulation improves the spectral performance
of the modulation scheme because smooth signal transitions
yield a fast rolloff of the power spectrum of the signal and
improve its spectral confinement. Such improved bandwidth
efficiency is highly desirable in DS-CDMA applications
because it allows for the use of longer spreading codes at
a given allocated bandwidth, thereby improving the error
performance of the system for a given number of users or
making it possible to accommodate a larger number of users
for a given bit-error rate. In addition, for DS-CDMA systems
with a correlation receiver, pulse shaping by itself directly
impacts error performance. This is because the variance of
the multiple-access interference depends on the actual shape
of the chip waveform and not only on its energy [1]. This
is unlike communication over channels corrupted by additive
white Gaussian noise only, where pulses with different shapes
but with equal energy still have the same error performance.

There is comparatively little work done on the optimization
of chip waveforms for DS-CDMA systems. Instead, more
effort was devoted to the design of good spreading sequences
in order to better reduce interference and mitigate multipath
effects. This was also combined with the use of coding and
diversity schemes to further improve performance. Previous
results related to chip waveform design were presented in
[3] where suboptimum solutions to the problem of design-
ing pulses that achieve minimum squared correlation for a
given inband power were constructed based on the use of
prolate spheroidal wave functions [16]. For strictly band-
limited pulses (which therefore have infinite time duration),
this problem was discussed in [18] and the optimal pulses
are found to have a constant spectrum, i.e., with a
shape in time-domain, as was also shown earlier in [3]. Chip
waveform optimization was similarly considered with binary
phase-shift keying (BPSK) modulation in [10], where direct
calculus of variation techniques were used to minimize the
multiple-access interference variance, but without considering
the additional figures of merit that we incorporate in this work
(namely, the bandwidth, phase, and envelope constraints, as
will be discussed shortly). Another problem involving pulse
shape design was considered in [11], where minimum rms
bandwidth is considered for a set of direct-sequence signals
with a specified correlation matrix. Also, optimal pulse shaping
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was considered in [12] for a different system model based on
orthogonal multicarrier quasi-synchronous CDMA. Additional
results that highlight the differences in performance (mainly
bit-error probability) between several known pulses can be
found in [8] and [13], and the importance of chip waveform
shaping in the mitigation of multipath effects in DS-CDMA
was also addressed in [14].

In this paper, following the work in [4] and [5], we consider
the case of full-response chip pulses, i.e., those limited to
a single chip interval and extend the design requirements
to solve for the optimal chip waveforms that achieve min-
imal multiple-access interference variance while preserving
several important signal features, including fixed total signal
power, limited inband power bandwidth, phase continuity,
and envelope uniformity, which are necessary to preserve
the spectral performance of the signaling schemes, especially
when power-efficient nonlinear amplifiers are used. The re-
sults obtained provide extensive performance comparisons and
benchmarking for several families of optimal chip waveforms
designed with various constraints and at different bandwidth
occupancy levels. In addition, the potential achievable gains
in performance of these optimal waveforms over some of
the conventional modulation schemes (e.g., OQPSK and other
MSK-type modulations) are also quantified. We also point out
that although our focus in this paper is limited to the family of
full-response pulse shapes, the optimization methodology used
is still applicable to the general case of partial-response pulses
with only a few modifications to account for the different
signal format.

The rest of the paper is organized as follows. In Section II,
the system and signal models used are discussed. In
Section III, we formulate the optimization problem and
define the various constraints. In Section IV, the solution
methodology is discussed based on the use of prolate
spheroidal wave functions. Several design examples and
numerical results are given in Section V, and final conclusions
are presented in Section VI.

II. SYSTEM MODEL

We use the classical framework and notation of [1] and
[2], which focuses on the many-to-one system topology that
models the reverse (mobile-to-base) link of a single-cell DS-
CDMA system. We briefly review this model here. Assuming

active users with transmitted signals of the generalized
OQPSK format, the information bits of user
are split into inphase and quadrature streams

(1)

(2)

where is the unit pulse on the bit interval , and the
data bits and are binary random variables
with equal probability. The data streams are multiplied by the
spectrum-spreading signals

(3)

(4)

where and are two distinct signature sequences
modeled as random, aperiodic, with independent, equally
likely chip symbols . We assume
that each bit is coded with chips (i.e., ). The
chip waveform is time-limited to the interval and
normalized to have energy , so that

(5)

The two spread signals are modulated onto two carriers in
quadrature, with a time offset of half a chip period
introduced in the cosine branch. The resulting inphase and
quadrature signals are

(6)

(7)

where is the carrier phase angle and its angular fre-
quency. The resulting transmitted signal from theth user is
obtained by the sum

(8)

At the front end of the receiver, the signal present is
the sum of delayed versions of the transmitted signals of all
active users, with additive thermal noise

(9)

where is a white Gaussian process with power spectral
density (PSD) modeling the thermal noise, is the
received signal power in each inphase and quadrature com-
ponent, assumed to be the same for all users. This “perfect
power control” assumption is only used for simplicity and
has no real impact on the validity of the subsequent results
and conclusions. is the th signal time delay, and its
cumulated phase equal to . The system is assumed
to be asynchronous, so different users have independent time
delays and phases, where delays are interpreted modulo-and
modeled as uniform random variables on the interval ,
and phases are interpreted modulo-and modeled as uniform
random variables on . We consider single-user coherent
correlation receivers in this paper. Because of the symmetry
of the model, we only focus on the quadrature signal of user
one, and since perfect synchronization is assumed, we also set

. All other delays and phases are then interpreted
relative to user one. The desired receiver decision statistic is
then given by

(10)

The decision statistic is sampled at multiples of the bit duration
, followed by a zero-threshold decision device that outputs a

symbol if and a symbol
otherwise.
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III. CHOICE OF CHIP WAVEFORM

The model presented in the previous section is valid for
arbitrary chip waveforms . We now discuss different
criteria for the selection of a good waveform shape for

. We focus on the criteria that pertain to the spectral
occupancy of the transmitted signal and their phase continuity
and envelope uniformity. The effect of the chip waveform
on the error performance, which is very important, is also
discussed. For simplicity, we will limit attention to chip
waveforms that are continuous on , with even symmetry
about .

A. Bandwidth Performance

The bandwidth performance of the signaling schemes we
are considering is the same as any linear modulation format
(binary or quaternary, spread or unspread) with the same
data (or chip) pulse shape and duration. This performance is
characterized by the PSD of the baseband signals. Since in our
model the data and chip symbols are independently, identically
distributed binary random variables from , it follows
that the PSD is continuous (i.e., has no line components) and is
proportional to the squared magnitude of the Fourier transform
of the chip waveform. This PSD is given by

(11)

A common figure of merit for the evaluation of bandwidth
performance is the compactness of the main lobe of the PSD,
expressed as the null-to-null bandwidth. This depends on the
duration and shape of the chip waveform and can be reduced
if longer chip pulses with duration exceedingare used. This
is a case of partial-response signaling, and we only consider
full-response signals with pulses limited to in this paper.

Another criterion that characterizes bandwidth performance
is the rate of decay, or rolloff, of the power spectrum. Faster
decay is obtained by using smoother pulses, where smoothness
is translated by having time derivatives of the waveform
vanishing to zero at the endpoints of the interval . For
linear modulation schemes, it is known (see, for example, [20])
that if the data pulse has all its derivatives up to theth order
equal to zero at the endpoints of the data interval, then its PSD
decays as . It should be mentioned, however, that
this decay rate is only asymptotic and typically occurs far away
from the main lobe. Hence, it may be irrelevant for practical
purposes. We note here that imposing the above condition on

only (i.e., with ) guarantees the phase continuity
of modulated signals, in which case, the PSD decays at least
as . This is further illustrated in the next section.

Another commonly used bandwidth measure is theinband
power bandwidth[20]. This is defined as the frequency band
that contains a given fraction of the signal power, where

represents the fraction of out-of-band power and is such
that . If we let denote the one-sided bandwidth
occupancy, then we have

(12)

Commonly used values for are 0.01 and 0.001, corre-

sponding to the 99% and 99.9% bandwidth occupancies,
respectively. In the rest of the paper, we mainly use these two
figures as a measure for comparing the bandwidth performance
of different chip waveforms.

B. Envelope Uniformity

From the signal expressions in (6) and (7), it is seen that
the signal envelope is given by

(13)

Identical expressions hold for with
because of the periodicity of . Notice also that the two
expressions in (13) are identical because of the even symmetry
of about . Ideally, should be constant for all.
If this is not the case, the amount of envelope variation, which
is quantified by the amplitude modulation (AM) index

(14)

should be kept at a low level. Such a requirement on en-
velope uniformity is especially important in the presence of
nonlinear processing circuits such as power-efficient nonlinear
amplifiers. More precisely, it is known that if the carrier signal
envelope is not constant, spectral regrowth (i.e., regeneration
of sidelobes in the power spectrum) will occur at the final
nonlinear amplifier stage of the transmitter [15]. Hence, it is
important to design modulation formats with a constant (or
near-constant) envelope.

For binary modulation schemes, unless the chip pulse is
itself constant over (such as in standard BPSK), the
carrier envelope will be rapidly changing following the time
fluctuations of the chip pulse. For offset quadrature modu-
lation, however, it is possible to use nonconstant smoothly
varying chip pulses (for bandwidth reduction purposes) and
still obtain a constant envelope or at least maintain a low AM
index. This will be further illustrated with the subsequent chip
waveform examples.

C. Phase Continuity

It is also desirable to use continuous-phase signals because
their smooth phase transitions yield a more compact power
spectrum with rapidly decaying sidelobes and are less sus-
ceptible to transient and high-order harmonic generation by
hardware circuitry [20]. In addition, phase continuity is also
important in relation to envelope uniformity and nonlinear
amplification. Indeed, it is known [6] that if a signal with phase
discontinuities is run through a channel band-limiting filter,
its envelope undergoes time fluctuations with a magnitude
increasing with the amount of phase jump incurred. Since
channel filtering is always present1 and is usually followed by
nonlinear power-efficient amplification, it is highly desirable
to impose phase continuity on the transmitted signals, so as to
preserve their spectral confinement.

1Although not included in this paper, the effects of filtering are important
and are being deferred to later work, for space considerations.
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As was mentioned previously, phase continuity is obtained
by having the pulse go to zero at the chip interval
endpoints, i.e., . To see this, we rewrite,
as in [9], the th transmitted signal in the following form

(15)

where additional phase term is given by

(16)

Recall that the products and can only change
value at time instants equal to a multiple of or plus
a multiple of , respectively. Therefore, assuming the pulse

to be time-continuous inside the chip interval, it is clear
that the phase will have no jumps if we constrain
to be zero at the instants when the terms and may
change. Hence, the condition for phase continuity is obtained
by forcing the chip waveform to zero at the limits of the chip
interval

(17)

Because of the time symmetry of about , only one
equality is sufficient. If this condition is not met, it is seen
that a phase jump of absolute magnitude

(18)

can occur in the middle of the interval considered, at
. The and superscripts indicate

limits as approaches 0 and from the right and the left,
respectively. Again, by symmetry of simplifies to

(19)

Notice that because is interpreted modulo-, the above
expression is also equivalent to

(20)

which follows from the identity
.

D. Bit-Error Performance

It is well known from previous pioneering work on DS-
CDMA [1] that the shape of the chip waveform also affects
bit-error performance. The exact evaluation of the bit-error
probability is complex and requires the full characterization

of the statistics of the multiple-access interference terms. In our
case, for the purpose of comparing different chip waveforms,
it is sufficient to consider the average bit-energy-to-noise-
plus-interference density ratio, which, for simplicity, will be
referred to as the signal-to-noise ratio (SNR) defined by the
ratio of the squared expected value of the decision statistic to
its variance. The bit-error probability is then approximated by

, where denotes the error function
. The SNR expression is mathemati-

cally more tractable and yields a good approximation to the
average bit-error probability in the case of a large number
of users, which is of practical interest. For the case of offset
quadrature schemes with random spreading sequences that we
are considering here, it was readily shown [1]–[4] that the
SNR expression can be obtained as

var
(21)

where denotes the energy per bit , and is the
normalizedmean-squared partial chip correlation

(22)

which is obtained from the continuous-time partial autocorrela-
tion functions [1] given by

and
The SNR clearly depends on the number chips per bit (or

processing gain) , but also for our purpose, on the actual
chip waveform shape itself through the correlation parameter

. The smaller the ratio , the higher the SNR and
the better the error performance. However, in order to fairly
compare modulations using different chip waveforms, we must
impose equal bit rate and equal bandwidth constraints. This
requires that and be modified with each chip waveform.
For example, if we consider two systems using two different
modulations and let and denote their respective
normalized bandwidth occupancies,2 then we have to maintain

(23)

and clearly, if is larger than , System 2 will have a
larger processing gain. To determine which system will have
a better error performance, we must also look at the ratio of
the normalized chip squared correlation factors. Consider for
simplicity the SNR expression without the thermal noise term
(i.e., ), then the gain (or loss) in SNR of System 2
over System 1 is given by

dB (24)

which clearly demonstrates the importance of the normalized-
bandwidth mean-squared correlation product as a single

2The normalization is by the respective chip durationsT (1)
c and T (2)

c ,
i.e., B(1) and B(2) are dimensionless numbers given byW (1)T

(1)
C

and

W (2)T
(2)
C

, respectively.
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TABLE I
COMPARISON OF MODULATIONS EMPLOYING DIFFERENT CHIP WAVEFORMS

parameter for comparing the error performance of different
chip pulses in DS-CDMA. Note also that the SNR differences
can be traded for a corresponding variation in capacity (as
measured by the number of simultaneous users) if the SNR
is fixed for both systems. At equal SNR, the capacity gain (or
loss) of System 2 over System 1 given by the percentage3

% (25)

To illustrate the above figures of merit, we use four exam-
ples of known modulations schemes, namely OQPSK, MSK,
SFSK (as proposed in [7]), and time-domain raised-cosine
shaped OQPSK [8], referred to as TDRC.4 The first three
modulations are examples of constant-envelope modulations
whereas the last one is a varying envelope scheme as can be
seen from Table I.

IV. OPTIMIZATION PROBLEM FORMULATION

A. Objective Function

It is clear from the discussion and results of Section III
that when all other parameters are held constant, minimizing
the mean-squared correlation functional (which depends
on the chip waveform shape) maximizes the SNR and con-
sequently minimizes the bit-error probability. Recall also that
for a fixed chip duration and inband power bandwidth ,
the waveform that achieves minimum yields a minimum
normalized-bandwidth mean-squared correlation product and,
hence, the best relative performance among all chip waveforms
having normalized bandwidth . Our objective is
then to design chip waveforms that minimize the functional

under a number constraints that will be specified in the
following section.

As was mentioned previously, we limit the minimization
space to the set of chip waveforms with even symmetry about
the midpoint . The case of arbitrary nonsymmetric chip
waveforms remains to be further explored. Also, for reasons
that will be clear shortly, it is easier to work in frequency-
domain as in [3] and [5]. Letting denote the Fourier
transform of and using Parseval’s theorem, we have
from (22)

(26)

3This follows from the approximationK � 1 � K for K large and the
fact thatMc=N is proportional toBMc.

4As opposed to the well-known frequency-domain raised-cosine pulse
shaping, which is a case of partial-response signaling and is not considered
in this paper.

Since the chip pulse is zero outside , it follows
from the expression of that it is equal to the convolu-
tion of with the time-reversed pulse ,
so that

(27)

where denotes the Fourier transform operator and
is the Fourier transform of the chip pulse . Equation
(26) then becomes

(28)

For further simplification, we introduce the shifted version
of defined by , which

is even over , and so its Fourier transform
is also real and even. Then, using the fact that

, we rewrite (28) as

(29)

which is the final form of the objective functional to be
minimized.

B. Constraints

The minimization of is to be carried under a number of
constraints that incorporate desirable properties into the trans-
mitted signals as discussed in Section III. These constraints
are listed below as the following.

1) First, the normalized energy constraint expressed in (5)
by must be satisfied. In frequency-
domain, this is equivalent to

(30)

2) Second, since has finite duration, it cannot be
strictly band-limited. Instead, a limit on the amount of
power outside a given frequency band can be
imposed. This is expressed as

(31)

where is the fraction of out-of-band power, typically
set to 0.01 or 0.001.

3) As a third constraint, continuous-phase transitions
are imposed on the transmitted signals. As shown in
Section III, this is expressed by

(32)

or equivalently

(33)
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4) A final constraint is related to the amount of envelope
fluctuations of the transmitted signals. The strict constant
envelope constraint of Section III and expressed by

(34)

is difficult to handle in frequency-domain. Instead, we
use a relaxed condition proposed in [9], which is found
to yield a near-constant envelope by simply maintaining
equal envelope values at and . Given
the even symmetry and the continuous-phase condition,
this amounts to imposing ,
or equivalently, . In frequency-
domain, this is written as

(35)

V. APPROACH TOSOLUTION

The optimization problem discussed above is summarized as

Minimize

Subject to (36)

Given the complexity of the objective and constraint func-
tionals, it is difficult to solve directly for using calculus
of variation techniques. Instead, our approach is to replace
the problem by an equivalent discrete formulation obtained
from the projection of onto a suitable family of ba-
sis functions which form a complete set over the space of
functions of interest. The choice of a proper set of basis
functions is of paramount importance in the reduction of
the dimensionality of the equivalent discrete optimization
problem. In this regard,prolate spheroidal wave functions[16],
[17], [19] are particularly well suited to the problem at hand.
We discuss these functions and their properties next.

A. Prolate Spheroidal Wave Functions

In [16] and [17], the authors used prolate spheroidal wave
functions in a number of interesting applications pertaining
to time- and band-limited pulses of finite energy. In partic-
ular, general problems using arbitrary limited functions in
one domain (time or frequency) that achieve highest energy
concentration in the other domain are solved. We draw on the
results and properties demonstrated in [16] and [17] for these
basis functions, which make them particularly well suited to
solve the optimization problem we are interested in.5

Consider the space of all functions with finite-
energy, i.e., satisfying . Similarly,

5We actually use the formulation of [16] and [17] with an interchange of
the variablest and�f to obtain the dual results applicable to our situation,
also pointed out in [3].

TABLE II
EIGENVALUES OFPROLATE SPHEROIDAL WAVE FUNCTIONS FORSOME VALUES OFc

denotes the space of functions satisfying
. We also denote by the subspace of of all functions

with an inverse Fourier transform that vanishes for
. Then, for a given frequency and a

time duration , there exists a countably infinite set of real
functions calledprolate spheroidal wave functions
and a set of associated real positive eigenvalues with
the following properties [16].

1) are complete and orthonormal in

(37)

2) are also complete and orthogonal in

(38)

It is also shown that is even for even and odd
for odd. Both the wave functions and the
associated eigenvalues are functions of the normalized
bandwidth parameter . The eigenvalue represents
the fraction of energy of that is contained in the band

. The ’s are strictly decreasing and fall off rapidly
to zero with increasing. For , the ’s are essentially
zero. This is illustrated in Table II, which lists eigenvalues for
selected values of the parameter[19].

B. Problem Reduction and Solution

Based on the above properties of prolate spheroidal wave
functions, the optimization problem formulated in (36) can be
greatly simplified. First, since the form a complete
set in which is the space of functions of interest, we
have the following expansion

(39)

where is given by the inner product
. Since we are only interested in functions

that achieve very high energy concentration in the
band , and given the fact that the eigenvalues’s
are rapidly decaying to zero, we can truncate the expansion
of to a relatively short linear combination of prolate
spheroidal wave functions with no major loss in accuracy. In
addition, the function has even symmetry and therefore
will only have even-indexed prolate spheroidal wave functions
in its expansion. Hence, truncating to terms, we have

(40)

where the ’s are the coefficients of the expansion to be
solved for. From Table II, it is clear that a value of or

yields sufficient accuracy for bandwidth values up to ,
which is the range of interest to us.
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Using the truncated expansion in (40) and going back to the
formulation in (36), we obtain a new form for the optimization
problem

Minimize

Subject to (41)

where the sums in the objective function expression are over
all combinations of the ’s such that , and
the cost coefficients are given by

(42)

with denoting the multinomial coefficient
defined as . The con-
straint coefficients are given by

(43)

(44)

We numerically solve this finite-dimensional nonlinear
constrained optimization problem by means of sequential
quadratic programming routines. For the generation of the
prolate spheroidal wave functions, we use the results of [19].

VI. DESIGN EXAMPLES

In this section, we give numerous design examples to
illustrate the methodology to solve the optimization problem
formulated above. Solutions are obtained with constraints
included gradually. We first solve for (then by
inverse Fourier transform and subsequently by time-
shifting) while taking into account constraints 1 and 2 only
(energy and bandwidth). Next, we add in the continuous-phase
constraint and, finally, the quasi-uniform envelope constraint.
In this way, the first solutions would achieve the best (i.e.,
lowest normalized mean-squared correlation) performance
since we are optimizing over a wider space of allowable
functions. Then, as we add in more constraints, the lowest
achievable should be increasing. However, it was found
in the numerical results (to be discussed shortly) that the
addition of the continuous-phase constraint did not alter results
significantly. In fact, the optimization carried out with only
energy and bandwidth constraints yielded near-continuous
phase pulses [5] with very small phase jumps as computed
from (20). Therefore, for the sake of brevity in the subsequent
results, we always impose phase continuity in the optimal
design, and we do not provide separate results without it.

TABLE III
PERFORMANCE MEASURES FOROPTIMAL CHIP WAVEFORMS

DESIGNED WITH CONTINUOUS-PHASE AND NONUNIFORM ENVELOPE

The solutions are constructed for bandwidth occupancies
starting from the minimum possible 99% and 99.9% bandwidth
up to a value of . We reemphasize here that the zeroth-
order prolate spheroidal wave function achieves the
highest fractional energy concentration in , and this
fraction of energy is given by the corresponding eigenvalue

[16]. Therefore, the minimum possible 99% bandwidth
value is the one for which first reaches 0.99. A similar
statement holds for the 99.9% bandwidth as well. These values
turn out to be and for the 99% and 99.9%
bandwidth definitions, respectively.

For all subsequent results, we use MSK as a common
benchmark for comparison. This is because of its relatively
good performance and characteristics as discussed previously.
Therefore, the SNR gains6 and capacity improvements of
the optimally designed chip waveforms are all given with
respect to MSK. Table III summarizes the results obtained
while taking into account finite-energy limited bandwidth
and continuous-phase constraints. Fig. 1 illustrates selected
examples of the optimal chip waveforms obtained under these
constraints. For the case of the 99% bandwidth occupancy, it is
seen that modest gains in SNR of approximately 1 dB starting
at a bandwidth and up, corresponding to about 25%
increase in capacity over MSK, but the penalty in envelope
fluctuation is large (over 50%). With the 99.9% bandwidth
occupancy, results are better, and a gain of 3 dB is already
achieved at about with only about 15% envelope
variation.

It is also of interest to compare the performance of the
optimally designed chip waveforms among themselves by con-
sidering the minimum achievable product as a function
of the bandwidth. This is illustrated in Fig. 2 from which it
is seen that performance slightly improves with increasing
bandwidth and saturates at about and for
the 99% and 99.9% bandwidth measures, respectively. Another

6We only consider the case when no thermal noise is present, i.e.,N0 = 0.
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Fig. 1. Examples of optimal chip waveforms with continuous-phase nonuni-
form envelope for selected bandwidth values.

Fig. 2. Performance comparison for optimal chip waveforms with continu-
ous-phase and nonconstant envelope.

observation to notice from Table III is the amount of envelope
variation that starts to increase as more and more gain in SNR
and capacity is achieved.

Table IV gives results when the optimization incorporates
all constraints discussed in this paper, i.e., fixed-energy
continuous-phase and quasi-constant envelope. In this case,
we clearly observe a noticeable reduction in the gains
achieved over MSK, especially if we use the 99% bandwidth
measure. At a bandwidth , we essentially have MSK
performance (the optimal pulse also resembles a half-sine).
For all higher bandwidth values, performance keeps degrading.
With the more stringent 99.9% bandwidth measure, the optimal
pulses corresponding to low bandwidth still show some gain
in SNR and capacity at the expense of modest envelope
fluctuations. For example, at , there is about 2-dB gain
that correspond to 56% capacity increase and the envelope
fluctuation is only 1.8%. At , the envelope is virtually
constant and there still is a 1-dB SNR gain corresponding to
25% capacity improvement. For illustration, some designed
chip waveforms are shown in Fig. 3 for selected values

TABLE IV
PERFORMANCE MEASURES FOROPTIMAL CHIP WAVEFORMS DESIGNED

WITH CONTINUOUS-PHASE AND QUASI-UNIFORM ENVELOPE

Fig. 3. Examples of optimal chip waveforms with continuous-phase and
quasi-uniform envelope for selected bandwidth values.

of bandwidth occupancies. The observation that optimal
waveforms for this case perform well only at lower bandwidth
values is further illustrated in Fig. 4, which is clearly different
than in the case of 2.

Finally, we present plots for benchmarking the conventional
modulations that we introduced in Section III (MSK, SFSK,
and TDRC) with the optimally designed chip waveforms. In
Figs. 5 and 6, we show results for the first optimization case
(i.e., with phase continuity but without envelope uniformity).
It is again seen from these plots that MSK and TDRC are
quasi-optimal with regard to the 99% bandwidth measure,
while with the 99.9% one, only TDRC retains its quasi-
optimality. However, in the case of envelope near-uniformity
(see Figs. 7 and 8), SFSK performs consistently better with
both the 99% and 99.9% bandwidth measures. We finally note,
in this last case, that the observation that TDRC seems to
“beat” the optimal limiting curves is in fact overlooking the
17% envelope variation of this modulation format.
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Fig. 4. Performance comparison of optimal chip waveforms with continu-
ous-phase and quasi-uniform envelope.

Fig. 5. Optimal performance limit (99% bandwidth measure) with continu-
ous-phase and nonuniform envelope.

VII. CONCLUSION

This paper outlined a comprehensive methodology to de-
sign DS-CDMA chip waveform shapes that achieve mini-
mal multiple-access interference power (or equivalently, nor-
malized chip mean-squared correlation), while at the same
time satisfying various desirable constraints on the transmit-
ted signals, including limited-power bandwidth occupancy,
continuous-phase and low envelope fluctuation. The tech-
niques presented were based on a formulation using special
basis functions known as prolate spheroidal wave functions,
which reduced the problem to an equivalent discrete finite-
dimensional nonlinear optimization that was easy to solve by
standard numerical techniques.

Several design examples were given based on this methodol-
ogy. In particular, sets of optimal waveforms were constructed
for increasing values of the 99% and 99.9% bandwidth mea-
sures. It was found that the minimum-achievable chip mean-
squared correlation decreased as the allocated inband power

Fig. 6. Optimal performance limit (99.9% bandwidth measure) with contin-
uous-phase and nonuniform envelope.

Fig. 7. Optimal performance limit (99% bandwidth measure) with continu-
ous-phase and quasi-uniform envelope.

Fig. 8. Optimal performance limit (99.9% bandwidth measure) with contin-
uous-phase and quasi-uniform envelope.
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bandwidth increased. In addition, the impact of added phase
continuity was found to be minimal. However, the requirement
on low envelope fluctuation caused considerable increase in
the lowest achievable chip mean squared correlation. Inter-
esting design tradeoffs arise from these conflicting trends of
SNR (or capacity) improvement versus envelope fluctuation.
For example, if highly linear power amplifiers are available,
then one need not worry about envelope uniformity since these
amplifiers will not cause spectral sidelobe regeneration. In
practice, such amplifiers can be used at the base station where
power efficiency is not a major issue, and substantial gains in
performance are then achieved by using the optimally designed
chip waveforms. However, for the battery-powered mobile
handset, power efficiency is crucial and nonlinear amplifiers
are usually preferred, in which case envelope uniformity
becomes an issue. It may not be advantageous to use a pulse
which achieves high capacity and at the same time suffers
great envelope nonuniformity. It should be noted, however,
that in this case, definite conclusions cannot be made before
studying the additional effects of band-limiting filters, which
we are considering in a future study.

Finally, we can say that for all practical purposes, MSK
is quasi-optimal with regard to the 99% bandwidth measure,
while the raised-cosine pulse is equally good with both the
99% and 99.9% measures, but at the expense of some envelope
variation. On the other hand, SFSK is quasi-optimal, with
regard to the 99.9% bandwidth occupancy, among the class
of constant-to-low envelope variation pulses.
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