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Abstract

In this paper, turbo codes are investigated in fading
and burst channels. In particular, we consider the
design and performance of turbo codes for a Gilbert-
Elliot burst channel and in a realistic fading channel.
For both cases, our approach is to compute estimates
of unknown channel state parameters and use these
in the turbo decoder. For the burst channel model,
calculation of state estimates requires knowledge of
the hidden Markov model (HMM) transition proba-
bilities. When these probabilities are unknown, the
Baum-Welch reestimation procedure is used.

1 Introduction

Recently, turbo codes have received a lot of notoriety
as they have been shown to achieve data communi-
cation at signal-to-noise ratios close to the Shannon
limit. The excellent performance of turbo codes ex-
plains why much of the current research is focused on
applying turbo codes to different systems.

Channel coding schemes have generally been de-
signed to increase the reliability of information trans-
mission when the errors are statistically independent.
However, many channels such as multipath and fad-
ing which exhibit bursts of errors. A common method
for dealing with these bursts is to interleave the in-
formation in such a manner that the channel appears
memoryless. Thus if interleaving is applied to a burst
channel, a code devised for independent errors can
be applied. However, such a scheme does not make
use of the information inherent in the memory. Be-
cause multiple bits have been transmitted over similar
channel conditions, it might be useful to estimate the
channel state and use this information in the decoder.
This was the approach taken in [2] where turbo codes
in a frequency-hopped spread spectrum (FH-SS) sys-
tem were considered. In [2], the channel consisted
of an on-off jammer in a FH-SS system. The ap-
proach was to exploit the channel memory by esti-
mating whether the jammer was on or off.

In this paper, we will use the information inher-
ent in the memory by estimating the state of the
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Gilbert-Elliot burst channel and the instantaneous
amplitudes for the realistic fading channel. These
estimates will then be used in the turbo decoder.

2 System Model

In this section, we describe the system models of the
Gilbert-Elliot communications system and the FH-
SS system with realistic fading. The Gilbert-Elliot
system will be discussed first.

2.1 Gilbert-Elliot Burst Model

The encoder is formed using two constituent codes.
The constituent codes considered in this paper are
recursive systematic convolutional codes [4]. The
encoder is formed by concatenating the constituent
codes in parallel and then separating the codes by an
interleaver. The encoder takes as input the data se-
quence de{0, 1} of length N and then produces three
streams: the information bits d, the parity bits py 1
of the first component encoder with input dj, and
the parity bits ps ; of the second component encoder
with interleaved dp as input. BPSK modulation is
considered with coherent demodulation.

The Gilbert-Elliot burst noise channel is a two state
hidden Markov model where one state represents a
bad state which generally has high error probabilities
and the other state is a good state which generally has
low error probabilities. This model is shown below
in Figure 1, where at time k, z; = 1 represents the
bad state and zy = 0 represents the good state. The
probability of moving from state z = i to zp41 = J
is denoted by p;;.

Figure 1: Hidden Markov Model of Channel

If transmission occurs over the good state at
time k, the noise is additive white Gaussian noise
(AWGN) with power spectral density Ng/2 and typ-
ically has low magnitude. Similarly, for transmis-



sion over the bad state, the noise i1s white Gaussian
with power spectral density Ni/2 where N3 > No.
Let (y1,k,Y2,5,¥3,x) be the channel outputs and let
(c1,k, ok, C3 k) = ((=1)%, (=1)Prx (=1)P2:*). Thus,

%r=0 = yr=VEc+ i
Zr=1 = yr=VEci,+ i
where 77?,k ~ N(0, Ng/2) and 772'1,k ~ N(0,N1/2).

2.2 Realistic Fading

The second system we consider is a hybrid direct-
sequence frequency-hopped spread spectrum (DS-FH
SS) system with a realistic frequency selective fading
channel. Unlike the previous channel which used hid-
den Markov models to model the channel state, we
will use a more conventional FH-SS model described
below. Often times, idealistic channel assumptions
are made for analytical convenience. While these re-
sults are important, they do not necessarily mimic
realistic situations closely. In this section, we dis-
cuss two systems which do not make ideal channel
assumptions.

The encoder is the same as the one described in
Section 2.1 where a data sequence of length N is put
into the encoder and for each information bit, three
coded bits are produced. These coded bits are then
each spread using an L chip sequence. BPSK mod-
ulation is considered with coherent detection. The
resultant signal is frequency hopped. It is assumed
that the frequency hopper will choose each of the @
frequencies or subchannels with uniform probability.
If R. is the chip rate and Rj is the data rate, then
R, = 3% Ry * L. The transmission bandwidth of the
system is W = @ * R..

Two measured channels are considered. Pine Street
(PS) is taken from an urban area and has 12 inde-
pedent paths [5]. American Legion Drive (ALD) is
taken from a suburban area and has 5 independent
paths [6]. The delay spreads of ALD and PS are
1.87 us and 2.53 ps, respectively.

The channel model shown below takes a stan-
dard form, but the fade amplitudes, are taken
from the measured channel. Similar to before,
(cl,k’ €2,k C3,k) = ((_1)dk ) (_1)191,1:’ (_1)p2’k) and
{yixa}E, are the L chips corresponding to each
coded bit ¢; 1.

Ykl = \/Eai,k,lci,k + Mk (1)
where a; 1,7 1s the fading amplitude and #; 1 ; is i.i.d.
with density N (0, No/2).
2.3 Original Turbo Decoder

Because the optimal decoder is too complex, the
turbo decoder provides a suboptimal alternative

which iteratively passes log-likelihood information be-
tween a pair of MAP decoders matched to each of the
component encoders. The turbo decoding algorithm
has been well documented in previous papers [2][3][4],
thus it will not be repeated here. Of particular in-
terest, however, are the branch transition probabili-
ties which are needed for turbo decoder calculations.
The computation of branch transition probabilities
depend on the channel, so they play a key role in the
design of the turbo decoder for fading and burst chan-
nel models. Let Si be the state of the first encoder
at time k. The branch transition probabilities used
by the MAP algorithm are calculated as

Yi(y1,k, Yo,6,m',m) =
p(y1 xlde = 14, Sk
p(ya kldr =%, Sk
P(Sg41 = m/|dy = 1,5, = m) -

P(dy = il Sk = m) )

=m,Spy1 =m') -

=m,Spy1 =m') -

where P(Sk41 = m/|dy, = ¢, Sy = m) = 1 if bit ¢ is
associated with the given state transition and equals
0 if it is not. P(dy = i|Sy = m) = p(dy = i) depends
on the a priori probabilities of the information bits.

3 Turbo Decoder for Gilbert-
Elliot Channel

We will first consider the modifications to the turbo
decoder necessary for the Gilbert-Elliot burst channel
model. The turbo decoding algorithm is dependent
on what information is available to the turbo decoder.
This paper considers three cases: known channel
state; unknown channel state but known HMM tran-
sition probabilities p;;; and finally, unknown channel
state and unknown p;;.

If the state, z; ;, is known, then the modification
to the turbo decoder is straightforward. The decoder
can simply use the relevant noise variance to calculate
the branch transition probabilities. Thus, (2) can be
calculated using

p(yik|dy =4, Sy =m, Spp1 =m', 2z = 2)
= e (3)
TN,

If the channel state is unknown, but the transition
probabilities are known, then (2) can be calculated by
invoking total probability with respect to the channel
state.

p(Yi kldr = 1, Sy = m, Sp41 = m')
1 — L (yix—cir)?
— e N1 Yi,k—Cik )" | Zig = 1 4
N, Plai =1)

TR (= 0) (4)

)| —
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Note that p(z; x = z) is not known. One possibility
is to use the steady state probability limg_.oo p(zi x =
z). This can be solved using v = vP, Z]' v; = 1,
and setting p(z;r = j) = v; for j = 0,1. Another
possibility is to estimate the probability of being in
each state given the received sequence and the HMM
transition probabilities. For & =1,

p(Yi1lzii = 0)p(zi1 =0)
p(zin = Olyi1) = — ’ 5
(zi1 = 0]y 1) o) (5)

where p(z; 1 = 0) is set to the steady state probability
vg. For k > 2,

p(zik = Olyi1, - ¥ik)
P(¥iklzie = 0,81, - Yik—1)

(Y1, Yik)
P(zik = 0,¥i1, - Yik-1) (6)
~ pWirlzix =0)p(zie = 0,¥i1, .., Yi k1) (7)
P(Yi1s - Yik)

where (7) is approximate since the sequence {y; ; }}“:1
is lightly correlated. Furthermore, (7) is computed
using

p(zie =0,4i1, ., Yi k1)

1
EP(ZM =0,2i5-1=2,¥i1, - Yik—1) (8)
z=0

1
E P(Yik—1lzie = 0,221 = 2,%i 1, Yik-2)
z=0

P(zir =0,2i k-1 =2, i1, Yi k—2) (9)
1
= > p(yir-rlzip-1=12)-
z2=0
P(zir=0,2i5-1=2,¥i1,. Yik-2) (10)

and (10) is computed using

p(zigr =a,zi k-1 =b,Yi1,...,Yi k-2)
= p(Yi1,. Yik—22ir = a,zig—1=b) -
p(zig = a,zig—1=1"5) (11)
= p(Yi1,- Yikh—2|2i k-1 = b) -
p(zig = alzip—1 =0)p(zip—1 =b) (12)
P(zik—1=b,Yi1,., Yik—2)
p(zik—1=0) .
p(zix = alzip—1 =b)plzir—1=0) (13)
= p(zik-1="5b,¥i1,, Yik—2) Pba- (14)
Combining (10) and (14),

P(zik = 0,41, Ui k—1)
1
= Zp(yi,k—1|zi,k—1 =z)-
z=0

P(Zi k-1 =2, i1, Yik—2) P20 (15)

Note that due to the recursive nature of (15), (7) can
be computed efficiently.

If the HMM transition probabilities are unknown,
it 1s necessary to estimate the transition probabili-
ties of the chain. Once the transition probabilities
have been adaptively estimated, the states can be es-
timated and then used by the turbo decoder, as seen
above. Thus the problem is to find the HMM model
which maximizes the probabilities of the observation
sequence. The Baum-Welch reestimation procedure
yields an ML estimate of the HMM which is a locally
optimal solution. However, because there is no glob-
ally optimal solution to this problem, this is the best
we can do.

4 Turbo Decoder for Realistic
Fading

Because the turbo decoding algorithm is dependent
on what information is available to the decoder, we
will again consider multiple cases. In the first case,
we will assume that the fading amplitudes are per-
fectly known to the decoder. In the second case, such
side information is unavailable and thus needs to be
estimated.

The first case is the one where fading side informa-
tion (ST) is available to the decoder. For the case of
diversity, maximum ratio combining is optimal. If we
let

L

ik = Zai,k,lyi,k,l (16)

=1

then p(ri,k|{aiyk71}f:1) has density N(pxl)k,azl)k)
where

Thus, (2) can be computed using

p(mi,kl{ai,kyl}lllzlvdk =1, S5 =m, Sk+1 = m/)
_ (“%,k—#r,)k)z

1 202

=—c¢ Tk (19)
\/2moi, |

For the second case, there is no fading side informa-
tion (NSI) available to the decoder. As before in the
Gilbert-Elliot channel, our approach 1is to use the in-
formation inherent in the memory to compute chan-
nel state estimates. In this case, the instantaneous
fade amplitudes will be estimated. For the realistic



slow fading channel, instantaneous fade amplitudes
will change slowly over a given hop. If we assume
that the rate of change is slow enough to be consid-
ered constant, we can calculate fading estimates in
a manner analogous to the way jamming state esti-
mates were computed in [2].

Before, we denoted the fade amplitudes as a; ;.
For notational simplicity, let us denote the fade am-
plitudes as aj, for k = 1,...,3x Lx N/h where 3x Lx N
denotes the total number of chips per packet and h is
the number of chips per hop. It is assumed that the
fade level remains constant over a hop, so that the
total number of fade levels i1s equivalent to the total
number of hops. Let R be the vector of received chan-
nel outputs that is available to the MAP decoder, R,
be the subset of R that has been received with the
same fading amplitude aj, and Ek be the subset of
R that has not been received with the same fading
amplitude ay. Consider the quantization of the fad-
ing amplitudes into M regions, By, ..., By, and the
corresponding M output levels or centroids, [y, ..., lys
where ;¢ B;. Then, the calculation of a posterior: fad-
ing probabilities is as follows for 1 =1, ..., M.

p(RlareB;) - plareB;)
p(R)

p(Ry|areB;) - plageB;) -

plaxeBi| R) (20)

P(Ek)
p(R

)
(21)
(22)

p(RylareB;) - plageB;) - K

where K 1s a normalizing factor chosen to make the
probability density function sum to 1.

Note that as h, the number of chips per hop,
increases, the complexity of directly computing
p(RylareB;) rises exponentially. To overcome this
problem, the following recursion was developed.

plareBi|Ry 1, Ri,2, ..., Rii—1, Rii)
_ p(RyslageBs, Ry 1, ..., Ry i—1)
p(Rei| R 1,y Riio1) .
p(akeBi|Rk’1, ceey Rk,i—l) (23)
_ p(Rk,i|ak€Bi)p(akGBi|Rk71, ceny Rk,i—l)
B P(Rii|Ri 1, - Riiz1)

(24)

Once the fading estimates have been computed,
maximum ratio combining can be performed using
the estimated fading value, a; 1 ;.

M
Qi fom = Z li p(a; x meB;|R) (25)

i=1

5 Simulation Results

In this section, we present the simulation results for
the Gilbert-Elliot channel and the realistic fading

channel. For all simulations, the two component en-
coders were rate % convolutional encoders with mem-
ory 4 and octal generators (37,21). Each block had
1920 information bits and a total of 8 turbo decoding
iterations were used.

For simulations of the Gilbert-Elliot burst channel,
the SNR of the good state was set to 4 dB for all
realizations.

Figure 2 shows the BER performance of the system
when the channel state is known for different values
of p;;. This set of performance curves serve as a ref-
erence from which the following cases can be based.
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Figure 2: Plot for Known Channel State

Note that the average received SNR is not the same
for each of the systems in Figure 2. The average re-
ceived SNR is 1010gUDJYD.Eﬁ V\.fherg v; represents
the steady state probability of being in state 7. For
the first system (poo = 0, p11 = 1.), vo = 0 and
vy = 1. For the last system (pgo = .8, p11 = .2),
vg = .8 and vy = .2. For the middle three systems,
vg = v1 = .5. If we assume that N; > Ng, then for
a given Ny and Njp, the first system has the lowest
average SNR and the second system has the highest
average SNR. The average SNR of the middle three
systems is the same and their average SNR is between
those of the first and last systems. This explains the
difference in performance between the three clusters
of curves (grouped by vg and v1). Among the curves
with vg = v1 = .5, as expected, performance degrades
if the sequence of states is more bursty (i.e. higher
values of pgg and p11).

The simulation results for the case of known HMM
transition probabilities but unknown state is shown
in Figures 3 and 4. At low SNRs, the a poster:-
ori state estimation method performs better than the
steady state method as the decoder successfully uses
the information inherent in the memory of the chan-
nel. There is, however, still a large gap between these
two cases and the known channel state case. With
just one bit transmitted over each state, channel state
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Figure 3: Plot for Known p;;, Steady State

estimates are far from reliable and this degrades de-
coding performance. As the SNR increases, the per-
formance difference between the graphs of Figures 3
and 4 decreases as the channel estimation method
has a more difficult time distinguishing between the
two states. Note, however, that for high SNRS, the
performance of both systems is comparable to that of
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Figure 4: Plot for Known p;;, Channel Estimation

the known channel state case. At high SNRs, the two
state system essentially reduces to a one state, high
SNR system. Thus, even though channel estimation
methods might lose accuracy at high SNRs, the per-
formance is still good since precise state estimation is
not necessary in high SNR regions.

Figure 5 contains the simulation results for the case
where neither channel state nor transition probabil-
ity information is available to the decoder. Note that
the performance is close to that of the known tran-
sition probability, a posteriori state estimation case.
Comparing the plots of Figures 4 and 5, there is little
difference in performance particularly at low SNRs,
because the Baum Welch algorithm is doing a good
job at estimating channel states. Knowing the state
does not give a major advantage at low SNRs since
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Figure 5: Plots for Unknown State, p;;

large magnitude noise makes tracking the information
bits difficult. At high SNRs, the Baum-Welch algo-
rithm performs with less success, but the more dom-
inating factor is that state estimation at high SNRs
is less important.

5.1 Realistic Fading

The simulations for the realistic fading channels of
ALD and PS used a transmission bandwidth of ap-
proximately 10 MHz with 62 subchannels, data rate
of 9600 bits per second, hopping rate of 9600 hops per
second, and prespreading factor of 5. Thus, the chip
rate was 144 Kchips per second, the chip duration was
about 6.9 microseconds, and there were 15 chips per
hop. Two velocities are considered: 30 meters/second
(m/s) and 0 m/s. The coherent time of the channels
at 30 m/s is about 50 ms while at 0 m/s, the coherent
time is infinity. The carrier frequency was set to 38
MHz. For cases with no fading side information, the
estimation technique used 8 levels of quantization (i.e.
M = 8). The simulation results are shown in Figure
6 for various levels of side information and different
velocities (shown in meters per second).

First, let us consider the results for AWGN. To
achieve a bit error rate (BER) of 1077, approximately
2 dB is needed. The original results reported by [4]
required just 0.7 dB to achieve a BER of 1075 for rate
1/2 codes, but used a block size of 65,536. The differ-
ence between the two systems is in rate and block size.
Lower rate should result in better performance (for
coherent reception), so the dominating factor must be
the difference in block size. Thus, the results shown
in Figure 8 could probably be considerably improved
if larger block sizes are used.

Next, consider the “ideal” fading cases. For these
cases, the assumption is that the fade amplitudes take
on a Rayleigh distribution and are constant over each
hop, but independent between hops. With a diver-
sity factor of 5, the case with fading side information
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Figure 6: Plot for Realistic Fading

performs comparably with the AWGN case. The dif-
ference between cases with and without fading side
information is about 1 dB. Presumably, this gap can
be reduced if the number of chips per hop increases
since the estimation procedure will have more obser-
vations.

Finally, let us consider the realistic fading channels.
Notice the large gap, first between the ideal fading
and cluster of PS curves, then between the cluster of
PS and ALD curves. The realistic fading models not
only perform considerably worse than “ideal” mod-
els, but depending on the parameters of the realistic
channel itself, performance can drastically differ. For
the realistic fading curves, the greatest impact on per-
formance was whether the channel was ALD or PS;
the next greatest impact on performance was whether
the velocity was 30 m/s or 0 m/s; the least impact on
performance was whether SI was or was not available
to the decoder.

It is interesting to note that in particular for the
ALD channel, the bit errors were extremely bursty.
Generally speaking, each packet of data was either
corrected within one iteration or a large proportion
of the bits were decoded in error. Thus, at bit er-
ror rates on the order of 10™* or 107°, packet er-
rors rates were very low (i.e. on the order of 1073
or 107*). One way to take advantage of this infor-
mation would be to use a CRC to detect at the end
of each iteration whether or not any errors remain.
Thus, rather than fixing the number of iterations,
the decoder could stop when zero errors remained.
For the most part, the decoder could end after one
iteration and thus would drastically save on decoder
complexity. In addition, if at the end of the allocated
number of decoder iterations, there still existed bit
errors, one could throw out the packet. The result
is that throughput would be affected only minutely
since the incidence of packet error is low and yet the
BER would be drastically improved since the average
number of bit errors per packet error is large.

6 Conclusion

The performance of turbo codes in fading and burst
channels has been investigated. First, we considered
a Gilbert-Elliot model with varying levels of side
information. It was shown that if the Baum-Welch
procedure is used, performance is not seriously
degraded if the transition probabilities of the HMM
are unknown. While there exist some improvements
of using a posterior: state estimates versus steady
state probabilities, there still exists a large gap
between these cases and the known channel state
case. Essentially, the state estimates are not very
accurate. The lack of precision arises from the fact
that only one bit is transmitted over each state. It
would be interesting to generalize these results to the
case where H bits are transmitted over each state
before a state transition can be made. Next, we
considered turbo codes in a hybrid direct-sequence
frequency-hop spread spectrum system with realistic
fading. It was shown that ideal fading models
while analytically convenient, do not necessarily
portray a fading channel accurately. In addition, a
low complexity method for reducing the bit error
rate while only slightly reducing throughput was
discussed for the ALD fading channel.
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