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for Unwhitened ISI Channels with
Applications to Multiuser Detection
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Abstract—Decision feedback sequence estimation (DFSE),
which is a reduced-complexity alternative to maximum
likelihood sequence estimation (MLSE), can be used effectively
for equalization of intersymbol interference (ISI) as well as
for multiuser detection. The algorithm performs very well
for whitened (minimum-phase) channels. For nonminimum-
phase channels, however, the algorithm is not very effective.
Moreover, DFSE requires a noise-whitening filter, which may
not be feasible to compute for time-varying channels such
as a multiuser direct-sequence code division multiple access
(DS-CDMA) channel. Noise-whitening is also cumbersome for
applications that involve bidirectional equalization such as the
global system for mobile communication (GSM) system. In such
conditions, it is desirable to use the Ungerboeck formulation for
sequence estimation, which operates directly on the discrete-time
unwhitened statistic obtained from conventional matched
filtering. Unfortunately, DFSE based on matched filter statistics
is severely limited by untreated interference components. In
this paper, we identify the anticausal interference components,
using an error probability analysis. This leads us to a modified
unwhitened decision feedback sequence estimator (MUDFSE) in
which the components are canceled, using tentative decisions. We
obtain approximate error probability bounds for the proposed
algorithm. Performance results indicate that the modified
algorithm, used on unwhitened channels with relatively small
channel correlations, provides similar performance/complexity
tradeoffs as the DFSE used on the corresponding whitened
minimum-phasechannels. The algorithm is especially attractive
for multiuser detection for asynchronous DS-CDMA channels
with long spreading codes, where it can achieve near-MLSE
performance with exponentially lower complexity.

Index Terms—Code division multiple access (CDMA), decision
feedback equalizers, equalizers, intersymbol interference (ISI),
multiuser channels, multiuser detection, sequence estimation,
Viterbi detection.

I. INTRODUCTION

T HERE are two main approaches to maximum likelihood
sequence estimation (MLSE) for intersymbol interference

(ISI) channels with additive noise. Forney’s approach [1] con-
sists of using the Viterbi algorithm on the sampled output of
whitened matched filters, while Ungerboeck’s formulation [2]
operates directly on conventional matched filter output samples
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without the need for noise whitening. Due to the exponential
complexity of these methods, several low-complexity subop-
timal schemes have been developed. A promising reduced-
complexity alternative to MLSE using Forney’s approach is
decision feedback sequence estimation (DFSE) [3], [4]. This
scheme provides an excellent tradeoff between performance
and complexity by reducing the memory order of the Viterbi
algorithm and employing conditional decision feedback to
cancel the tail of the ISI.

A drawback to DFSE is that its performance is sensitive
to channel phase. While the best performance is obtained for
minimum-phase channels, the performance may not be ade-
quate for nonminimum phase channels. In the global system
for mobile communication (GSM) system, training sequences
are inserted in the middle of the burst to aid channel esti-
mation. Equalization over the data field is then performed
bidirectionally, starting from the training sequence [5]. If
the channel response is minimum-phase in one direction
then it is maximum-phase in the other.1 DFSE performs
poorly in maximum-phase conditions and is thus unsuitable
for equalization in this case.

Besides channels with ISI, DFSE can be employed for
multiuser detection. In direct-sequence code division multi-
ple access (DS-CDMA) systems the use of long spreading
codes and the arrival and departure of users gives rise to
a time-varying multiuser interference channel. The sequence
of statistics obtained at the output of a bank of matched
filters is affected by noncausal multiple access interference and
correlated noise [6]. In order to use DFSE, the statistic has to
be filtered to make the noise white and the interference causal.
Noise whitening filters have been proposed for a time-varying
environment [7]. The operation, however, is computationally
expensive.

Ungerboeck’s formulation for sequence estimation is bet-
ter suited in conditions such as those mentioned above. A
reduced-state Ungerboeck-type variant to DFSE, which we call
unwhitened decision feedback sequence estimation (UDFSE),
was derived in [8]2 and [5]. It operates on discrete-time
unwhitened statistics obtained from conventional matched
filtering. UDFSE is thus insensitive to channel phase and does
not require a noise-whitening filter. The scheme, however,

1Minimum-phase response can be obtained for both directions by means of
appropriate all-pass filters.

2The scheme is referred to as delayed DFSE witha standard matched filter
in [8].
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does not perform as well as DFSE on most channels. This
is because, unlike whitened statistics which depend on the
past input symbols only, unwhitened statistics depend on
both the past and future input symbols. The decision rule
of DFSE selects the survivor path with the best accumulated
(Euclidean distance) metric leading to a reduced state. The
same decision rule when used with an Ungerboeck metric (as
in UDFSE) fails to account for interference from the future
inputs not represented in the reduced state (but which would
have been represented in the full-blown state). As a result,
the decisions obtained in UDFSE are affected by untreated
interference, even in the absence of feedback errors. The-
algorithm [9] used on unwhitened statistics suffers from a
similar problem: survivor paths are chosen on the basis of an
accumulated metric which does not reflect the effects of some
anticausal interference components. Thus, the performance of
the unwhitened -algorithm is rather poor, as was noted by
Wei et al. for CDMA systems [10].

In the case of UDFSE, the decision rule can be modified to
take into account the effect of the interfering anticausal com-
ponents. The decision rule in the modified UDFSE (MUDFSE)
algorithm selects survivor paths based on the accumulated
Ungerboeck metric plus abias term that precancels the effect
of the interfering anticausal inputs on the choice of survivor
paths, using tentative decisions. Thebias term is determined
by examining the pairwise error probability of the UDFSE
algorithm. It can be computed by using conventional decisions
based on matched filter outputs or by using decisions obtained
at the output of the preceding stage in a multistage scheme.
A reduced computation form of the modified detector was
proposed in [11].

The rest of the paper is organized as follows. We present
the system model in Section II. The two classic approaches to
MLSE are reviewed in Section III. In Section IV we describe
various methods for DFSE in detail. We show that UDFSE
performance is limited by untreated ISI, which leads us to
the MUDFSE algorithm. In Section V, we obtain approximate
bounds on the symbol error probability of UDFSE and the
modified algorithm. In Section VI, we illustrate how the
bounds can be evaluated using error-state diagrams. Perfor-
mance results are presented in Section VII, where the BER
performance of the various schemes is compared for single
user ISI and multiuser DS-CDMA channels using analysis
and simulation.

II. SYSTEM MODEL

Consider the transmission of linearly modulated digital data
over a (time-varying) time-dispersive additive white Gaussian
noise (AWGN) channel. Assume that the receiver has perfect
knowledge of the carrier phase, the symbol timing and the
impulse response of the channel. After coherent down con-
version, the receiver employs a filter matched to the cascade
of the transmit pulse-shaping filter and the channel impulse
response (assumed to be fixed for the duration of the transmit
filter) and samples the output at symbol spaced intervals. The
sequence of sampled matched filter outputs is known to be
a sufficient statistic for estimating the transmitted sequence.

Thus, an equivalent discrete-time channel model is obtained.
The matched filter output at time is given by

(1)

where is the transmitted data sequence assumed to be
independent and identically distributed (i.i.d.) an

-ary alphabet), is a complex Gaussian noise process
with mean 0 and covariance and is
the sampled channel autocorrelation function, given by

(2)

where is the overall channel impulse response with
(finite) span in symbol intervals, where represents delay
and represents time variation. We will refer to the above
model as the unwhitened model.

Let then an equivalent discrete-time
white Gaussian noise model is obtained by noting that

where has all its roots outside the
unit circle (minimum-phase channel). The statistic obtained
by filtering with the anticausal noise-whitening filter

(assuming that it exists) is given by

(3)

where is a proper3 complex white Gaussian noise process
with mean zero and variance

III. MLSE

An MLSE based on the unwhitened model determines, as
the most likely sequence transmitted, the sequence that
maximizes the metric [2], [12]

(4)

where Due to the symmetry in the
sampled channel correlations: the above metric
can be computed recursively as

(5)

where is known as the branch metric and is given by

(6)

and represents the state at time

3
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The above is a generalized form of the Ungerboeck formula-
tion (where , i.e., the channel is fixed) independently
obtained in [12]. An optimum multiuser detector proposed
by Verdu [6] for asynchronous DS-CDMA systems can be
obtained from this formulation.

The maximum likelihood sequence can be determined
equivalently by applying the Viterbi algorithm to the whitened
statistic , as shown in [1], using the metric

(7)

which can be computed recursively as

(8)

where

(9)

The two algorithms require the same order of computational
complexity and storage proportional to

IV. DFSE

A reduced-complexity suboptimal alternative to MLSE us-
ing the Viterbi algorithm is DFSE [3], [4]. A parameter called
memory order is chosen arbitrarily smaller than channel
memory , and the trellis is collapsed into states corre-
sponding to the most recent hypothesized symbols. Since the
reduced state falls short in providing all the information needed
to compute branch metrics, the algorithm uses the path with
the best accumulated metric leading to each state to extract
the rest of the information. Note that this algorithm operates
on whitened statistics which depend on past and present
inputs only [cf. (3)].

A. UDFSE

The UDFSE algorithm [8] follows the Ungerboeck formu-
lation for sequence estimation. The algorithm is given by the
recursion

(10)

where represents the reduced
state at time is the accumulated metric of the path
associated with the state and is the branch
metric given by

(11)

In (11), are tentative conditional decisions on
inputs more than samples in the past, obtained from the path
with the best accumulated metric, leading to the stateas

(12)

Although both full-state formulations in Section III yield
the MLSE, it has been noted that the reduced-state derivation
UDFSE does not perform nearly as well as its whitened
channel counterpart (DFSE) on most channels [10], [11]. The
problem arises from the nature of unwhitened statistics
which depend on both the past and future input symbols. Note
that the UDFSE algorithm, when deciding (condition-
ally) in the th step (12), ignores interference from inputs

which directly affect output sample
(corresponding to Thus, the decision rule of (12),

which is based on the knowledge of onlyinputs in the future,
is inherently near sighted. Unlike DFSE, the decisions obtained
in UDFSE are affected by untreated interference components,
even in the absence of feedback errors. This observation is
quantified by the following analysis.

Let be the transmitted sequence of symbols and
be the sequence of states in the path of in the reduced
trellis. Let be a hypothetical sequence of symbols and

be the corresponding sequence of states in the reduced
trellis that diverges from the correct sequence of states at time

and remerges with it at a later time i.e.,

for and

for (13)

An error event occurs at time if the algorithm picks
as the correct sequence over

Proposition 4.1: The occurrence of the error event depends
on the value of inputs in the
absence of error propagation (from any previous error events).

Proof: The error event occurs if the accumulated metric
on the incorrect path is greater than that on the correct path at
the point where the two paths merge, i.e.,

(14)

Assume

for (15)

i.e., there are no errors steps prior to the error
event. Substituting branch metrics from (11) and noting that

and are decisions taken from the paths
corresponding to the sequences of states and
respectively, (14) can be written as

(16)

where and is a banded
Hermitian matrix given by (17) at the bottom of the following
page.
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Let be the error sequence. Using (1) and (15)
and noting that for as
it can be shown that the above inequality holds if

(18)

where
and is a lower triangular

matrix given by (19) at the bottom of this page.
Conditioned on the error sequencethe left-hand side

of (18) is a Gaussian random variable with mean zero and
variance that depends on the error sequence. While the first
term on the right-hand side of (18) depends on the error
sequence only, the second term in addition depends on the
inputs

The above analysis suggests that if the term which depends
on the future inputs is absorbed in the decision rule of
UDFSE, the occurrence of the error event in the modified
detector will depend on the error sequence only. This, of
course, requires knowledge of some future inputs. In practice,
tentative decisions can be used instead as described in the
following section.

B. The MUDFSE Algorithm

The MUDFSE algorithm can be outlined as follows. Path
metrics are computed as in UDFSE using (10). Conditional
decisions are made (and the corresponding survivor paths are
chosen) using the modified rule

(20)
where

(21)

(22)

The algorithm is delayed samples as is needed
in the th step. Note that the bias in (22) depends on (the
bit falling out of the state) and for which
conditional decisions taken from the path history of state
are used. Note that the bias is used only for survivor path
selection and does not constitute the accumulated path metric.
The bias can be simplified to include only the leading term
which depends on as follows:

(23)

The approximate bias is independent of the state. It does
not contribute significantly to the computational load and
storage requirement of the algorithm which is on the order
of (the same as DFSE) where is the decision
lag. This reduced computation form of MUDFSE was first
proposed in [11].

C. Multistage MUDFSE

The MUDFSE algorithm can be run in a multistage con-
figuration where decisions obtained at the output of the first
stage are fed back to compute the bias in the second stage
and so on, i.e.,

and

where are decisions obtained from theth stage at
lag Note that the decisions are likely
to be much more reliable than The complexity and
delay of a -stage scheme is given by
and respectively.

V. ERROR PERFORMANCE

Assuming stationarity (i.e., and the absence of
decision errors prior to the start of an error event, the beginning

...
...

...
...

. . .
. . .

...
...

. . .
. . .

. . .
...

. . .
. . .

...

(17)

...
...

...
. . .

(19)
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of the error event can be aligned with time without loss
of generality. In the following sections, we find the pairwise
error probability and an upper bound on the symbol error
probability for UDFSE and MUDFSE.

A. Genie-Aided MUDFSE (GA-MUDFSE)

An error event of length symbols occurs in MUDFSE if

(24)

Assume that perfect information is provided by a genie on the
future inputs needed to compute the bias in MUDFSE. Then,
using (21) with replaced by in the above inequality, it
follows that the error event occurs in the GA-MUDFSE if

(25)

where is called the distance4 of the error sequence
and is given by

(26)

The left-hand side of (25) is a Gaussian random variable with
mean zero and variance Thus, the probability that
the error event occurs is given by

(27)

Note that this expression for the pairwise event error proba-
bility of GA-MUDFSE is identical to the expression derived
in [2] for MLSE. There is, however, an important distinction
in the definition of error events for MUDFSE and MLSE. A
valid error sequence for ath order MUDFSE
can have no more than consecutive zeros according to
the definition in (13), whereas for MLSE. When
all error sequences have length symbol. In this case

In other words, a zeroth order GA-MUDFSE
approaches the performance of the ISI-free channel. Notice
that the analysis does not consider decision error propagation.

B. MUDFSE

In the absence of ideal bias, the occurrence of an error event
in MUDFSE depends, in addition to the distance of the error
sequence, on the residual interference arising from tentative
decision errors on the inputs
following the error event. Note that the tentative decision
errors following an error event in the main detector are
correlated with the main decision errors due to memory in the
channel. In order to simplify analysis, we assume that tentative
and main decision errors occur independently and the tentative

4Note that this definition of distance is different from the one given in [2].

decision error process is stationary. Thus, we get the pairwise
error probability for MUDFSE using (24), (18), and (21) as

(28)

where is the probability that the sequence of tentative
decision errors (where

follows the error event and is the residual
interference, given by

(29)

The residual interference can be viewed as the pro-
jection of the tentative decision error vectoronto the main
decision error vector as determined by the channel correla-
tion spectrum

Note that, unlike DFSE where error distances diminish, in
general, when memory order is decreased as compared to
channel memory the distances for MUDFSE remain the
same as in the case (MLSE). The variance of the
residual interference however, increases from zero as
the memory order is made smaller than in MUDFSE. This
sharp contrast between the behavior of MUDFSE and DFSE is
consistent with the fact that the operation of matched filtering
collects all the energy of the pulse transmitted at time
into the corresponding output sample [2],
while the operation of noise whitening results in the scattering
of some of this energy into subsequent output samples

When and is given
by

(30)

i.e., MUDFSE reduces to a zero-forcing decision-feedback
detector for unwhitened channels (where feed-forward filtering
is replaced by tentative decision feedback).

C. UDFSE

Using (18), the pairwise error probability in the case of
UDFSE can be written as

(31)

where is the probability that the sequence of inputs
follows the error event

for i.i.d. equiprobable inputs) and is the untreated
interference given by

(32)
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Fig. 1. Error-state diagram forL = 2; J = 1:

Note that (31) provides an exact expression for the pairwise
error probability of UDFSE unlike (28) for MUDFSE.

D. Symbol Error Probability

Assuming that all input sequences are equally likely, the
symbol error probability for UDFSE, GA-MUDFSE, and
MUDFSE can be union-bounded as [3]

(33)

where is the number of symbol errors entailed by the
error sequence and is the number of
input sequences that can haveas the error sequence where the
symbol alphabet is given as
for even. In the case of binary phase-shift keying (BPSK)
modulation, (33) simplifies to

(34)

Note that the above bounds on the probability of symbol
error are obtained assuming no decision error propagation (a
separation of more than symbols between error events).
The effect of error propagation, however, is usually small at
medium to high signal-to-noise ratio (SNR).

VI. BOUND EVALUATION

To evaluate the symbol error probability for MUDFSE, we
make use of the error-state diagram as in [13]. The error-
state diagram used for determining the generating function of
channel codes for MLSE [13, pp. 283] has to be modified

in the case of MUDFSE so that the error sequences satisfy
(13). The modified diagram is shown in Fig. 1 for the case
of binary signaling over an AWGN channel with memory

and memory order chosen for MUDFSE. It has
dimensionality The nodes are labeled with the error states
which are ternary -tuples with components that take values
in The transitions are labeled with the branch
generating function as the
exponent of dummy variable and the number of symbol
errors entailed by the transition as the exponent of variable
A factor of 1 2 is used to account for the weighing factor in
(34) if the transition involves an error. The transitions which
lead back to the 0 and 0 states (except from the 00 state)
have been eliminated because error sequences which contain a
zero in the middle are not allowed in the case according
to the definition in (13).

Instead of enumerating all allowable error paths through
the channel code trellis, we are interested in enumerating the
paths that terminate with a 1 and 1 separately because
the residual interference given by (29) depends on the tail of
the error path Thus, in
general, we seek generating functions
corresponding to the paths which terminate with a given tail
(such that ).

Let be the generating function for the error paths
which terminate in the tail found
by solving the state equations simultaneously. Each generating
function can be series expanded as follows:

(35)

where is the number of error paths (weighted by the
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Fig. 2. BER performance of various detection schemes on channel 1.

number of symbol errors on the path per the number of the
corresponding input sequences) with Euclidean distance
that terminate in the tail Then, the symbol error probability
for MUDFSE can be computed as

(36)

where we use the fact that the residual interference
depends on the error sequenceonly through the tail of the
error sequence and the distance of the error sequence

Note from Fig. 1 that the error-state pairs that are negative
of each other are indistinguishable on the basis of branch
values. Thus, they can be combined as in [13]. It follows that
the number of paths that terminate in the tailis the same as
the number of paths that terminate in the tail Moreover,
since (36) simplifies to

(37)

In general, the reduced error-state diagram for binary signaling
comprises nonzero nodes with terminating
nodes.

In order to compute (37), we assume that the sequence
of tentative decision errors is an i.i.d. sequence which is
independent of the sequence of main decision errorsand has

distribution

(38)

where is the probability of tentative decision error which, in
the case of a single-stage MUDFSE algorithm, is the symbol
error probability of a conventional matched-filter detector.

As the noise is correlated, tentative decision errors are
correlated with each other as well as with main decision
errors. Our assumptions are thus optimistic because errors in
the tentative detector will tend to occur in bursts, inducing
errors in the main detector. Nevertheless, independence can
be assumed in case noise correlations are small.

VII. PERFORMANCE RESULTS

In this section, we compare the performance of the various
detection algorithms discussed in this paper via simulation and
analysis using several example channels. First, we consider
binary signaling over static time-dispersive AWGN channels.
The receiver is assumed to have perfect knowledge of the
symbol timing and the impulse response of the channel. We
run each simulation for a count of 1000 errors.

Channel 1 is given by
where represents the normalized channel correlations. The
ISI channel has memory Fig. 2 shows the BER
performance of the various detection schemes on this channel.
The memory order is chosen to be one for UDFSE and
MUDFSE. The bounds in Fig. 2 are computed using (34) by
averaging over all error sequenceswith squared distance

For MUDFSE, the probability of tentative
decision error in (38)] is found from simulation. The



1792 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 9, DECEMBER 1998

Fig. 3. BER performance of various detection schemes on channel 2.

bounds are tight, especially for moderate to high SNR as
can be expected of union bounds (the curves are virtually
indistinguishable from those for simulation in the case of
UDFSE and GA-MUDFSE at high SNR). Note that the
bounds are approximate as they do not account for decision
error propagation. However, the effect of error propagation
is usually small in schemes that employ conditional decision
feedback at medium to high SNR, as noted in [3]. The semi-
analytic bound for MUDFSE, shown in Fig. 2, seems to
diverge somewhat from the simulation curve, although it can
be expected to cross over the simulation curve at high SNR
due to dependence between the tentative and main decisions.

For channel 1, MUDFSE provides some gain over UDFSE
in the low to medium SNR range. But at high SNR, its
performance is worse than that of UDFSE. The performance
differential depends on how effectively the anticausal in-
terference components affecting UDFSE (Section IV-A) are
canceled in the modified algorithm by means of tentative de-
cisions based on matched filter outputs. GA-MUDFSE which
cancels the anticausal interference ideally, performs slightly
better than MLSE, as shown in Fig. 2. This is due to the
reasons discussed in Section V-A.

Fig. 3 shows the BER performance (simulated) of various
detection schemes over an ISI channel (2) with memory

Channel 2 is given by

The channel is minimum-phase and is arbitrarily chosen. The
various schemes are indexed with the memory order and
the decision lag Except for DFSE, all algorithms
operate on symbol-spaced samples obtained from conventional
matched filtering. Ideal noise whitening is assumed for DFSE.
All schemes shown in Fig. 3, except for MLSE, require
similar overall complexity and storage. Fig. 3 shows that

(5, 45) MUDFSE gains dB over (5, 45) UDFSE
in the SNR range shown. The two-stage scheme [(4, 45),
(4, 45)] 2MUDFSE closely approaches MLSE performance
and obtains a gain of 4 dB over UDFSE at an error rate
of 10 The single-stage and two-stage MUDFSE (reduced
computation) schemes lose less than 0.5 dB due to bias
approximation (23).

The performance of (5, 45) DFSE is also close to MLSE for
channel 2, as shown in Fig. 3. We have neglected the effects
of nonideal noise-whitening (due to fixed delay constraint) on
the performance of DFSE. The delay incurred from anticausal
(noise-whitening) filtering needed in DFSE can be compared
to the delay of a multistage MUDFSE scheme. As channel 2 is
minimum phase, the performance achieved by DFSE is the best
possible for any channel phase. The performance of UDFSE
and MUDFSE, however, is independent of channel phase.

Fig. 4 shows the BER performance (simulated) over an-
other ISI channel (3) with memory Channel 3 is
given by

Channel 3 is more correlated
than channel 2. Note that the (5, 45) MUDFSE schemes do
a little worse than (5, 45) UDFSE. This is partly because
conventional hard decisions are unreliable
The two-stage MUDFSE schemes, therefore, obtain better
performance. Due to heavy correlation between tentative and
main decisions, however, the two-stage schemes are unable to
provide as much improvement over UDFSE as obtained for
channel 2.

Next, we simulate a BPSK modulated asynchronous
DS-CDMA system with eight users whose signature
waveforms are derived from Gold sequences of length 31.
The relative delays of users are fixed for the simulation and
are in an increasing order. The multiuser channel is static and
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Fig. 4. BER performance of various detection schemes on channel 3.

has the same spectrum as given in [11].5 Fig. 5 shows the
BER of user 1 for various detection schemes when all users
have identical SNR. Each simulation was run for a count of
500 errors. It is evident that even with ideal power control,
the performance of the conventional single-user detector is
significantly worse than optimum MLSE. (2, 28) UDFSE
provides some improvement over the conventional detector.
The four-state (unwhitened) M-algorithm that operates
directly on the matched filter output is about 2 dB worse than
the M-algorithm that operates on the equivalent whitened
minimum-phase channel. The linear decorrelator that nulls
out all interference loses about 0.5 - 1.0 dB as compared to
MLSE due to noise enhancement. (2, 28) DFSE also obtains
near MLSE performance. DFSE, the linear decorrelator and
the (whitened) M-algorithm, however, require multiuser
channel inversion and/or factorization which has complexity
quadratic in the number of users. Moreover, the M-algorithm
requires sorting of survivor paths at each iteration which is
not needed for DFSE or UDFSE as they are trellis based.

The single-stage MUDFSE algorithms which require a
bank of matched filters only, obtain the best performance on
this channel (next to MLSE). (2, 28) MUDFSE (with four
states only) closely approaches the performance of MLSE
which requires 128 states in the Viterbi algorithm. With bias
approximation, (2, 28) MUDFSE (RC) obtains a gain of 4.5
dB over UDFSE at an error rate of 0.1.

Fig. 6 shows the BER of user 1 versus the SNR of the rest
of the users. The SNR of user 1 is held constant at 7.0 dB.
It can be seen that the conventional detector, UDFSE and the
unwhitened M-algorithm do not perform well in a near–far

5The simulation results reported in [11] are off by 3 dB (worse) due to a
mistake in normalization of symbol energies.

situation. The linear decorrelator, DFSE, and the whitened
M-algorithm perform well. The MUDFSE schemes, however,
outperform the other methods and converge to MLSE in high
SNR of interfering users on this channel.

The improvement afforded by the MUDFSE algorithm over
UDFSE depends on several factors. Among these factors
is the amount of ISI, the reliability of tentative decisions,
and the choice of the memory order. On channels with
small sampled correlations, the conventional matched filter
detector makes relatively reliable decisions. The reliability
of tentative decisions can be improved further by means of
an auxiliary stage. If the memory order is not too small, the
error performance of the modified detector (28) is dominated
by error event distances in the main stage rather than the
residual interference. Close to MLSE performance is achieved
in this case. Unlike DFSE, error event distances in MUDFSE
do not diminish with the memory order, as was discussed in
Section V-A. Thus, MUDFSE generally outperforms DFSE
(with similar complexity) on channels with small correlations
since the residual interference is reliably removed. An example
is the multiuser DS-CDMA channel where well-designed
spreading codes or long spreading codes in a not-so-highly
loaded system provide low channel crosscorrelations.

The MUDFSE algorithm’s performance may be worse than
that of UDFSE (as well as DFSE) for channels with large
sampled correlations (highly dispersive ISI channels or heavily
loaded multiuser channels). This is not due mainly to the
unreliability of tentative decisions. An auxiliary stage can
render relatively reliable tentative decisions. Due to the strong
dependence between error events in the auxiliary and the main
stage, however, the main stage can not significantly improve
upon the decisions obtained in the auxiliary stage.
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Fig. 5. BER performance of various detection schemes over an eight-user asynchronous DS-CDMA channel.

Fig. 6. Near–far performance of various detection schemes over an eight-user asynchronous DS-CDMA channel.

VIII. C ONCLUSIONS

In this paper, we show that decision feedback sequence
estimation based on conventional matched filter outputs (a
reduced-state version of the Ungerboeck MLSE formulation)
is affected by untreated interference components. We derive
a modified algorithm which uses tentative decisions to cancel
the anticausal interference components. The algorithm, which

operates on matched filter outputs, provides excellent perfor-
mance/complexity tradeoffs on channels with relatively small
sampled correlations. The algorithm is insensitive to channel
phase and does not require noise-whitening. These attributes
make it attractive for bidirectional equalization in the GSM
system and multiuser detection in asynchronous DS-CDMA
systems.
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The algorithm can be improved by using soft tentative
decisions instead of hard decisions. An adaptive form of
the algorithm should be considered for time-varying media.
The algorithm can be modified to provide soft outputs for
coded systems. An approximate error probability analysis is
conducted in this paper which provides some insight into the
proposed algorithm. An in-depth analysis is needed, however,
to better identify the class of channels for which gains are
afforded by the modified algorithm and to quantify the gains
for a given channel with given complexity.
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