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Performance Limits of Reed–Solomon Coded
CDMA with Orthogonal Signaling

in a Rayleigh-Fading Channel
Sang Wu Kim and Wayne Stark,Fellow, IEEE

Abstract—The asymptotic performance of Reed–Solomon (RS)-
codedM -ary orthogonal signaling with ratio-threshold test (RTT)
type demodulation in a Rayleigh-fading channel is considered.
We show that the minimum �Eb=N0 needed for error-free com-
munication is e ln 2 (2.75 dB) with RTT, and 4.79 (6.8 dB)
with hard decisions. The optimum code rate that minimizes the
required �Eb=N0 is e�1 with RTT and 0.46 with hard decision,
and the optimum ratio threshold approaches 1 for largeM .
Next, we investigate the fundamental limit in direct-sequence
spread-spectrum multiple-access (DS/SSMA) system employing
anM -ary orthogonal code of lengthN =Mm, which is obtained
by spreading every row of anM �M Hadamard matrix with a
user-specific random sequence of lengthN . We derive the min-
imum �Eb=N0 for error-free communication as a function of the
number of users, the optimum code rate that minimizes�Eb=N0,
and the maximum limit on the total information transmission
rate. Then, we consider a multirate DS/SSMA system, where a
population of users simultaneously transmit at different power
levels a variety of traffic types of different information rates. We
derive the minimum required �Eb=N0 and the optimum code rate
for each traffic type.

Index Terms— DS/SSMA, multirate DS/SSMA, orthogonal
modulation, ratio threshold test, Reed–Solomon code.

I. INTRODUCTION

T HE USE OF side information permits identification and
erasure of symbols that have been impaired by channel

effects such as fading, jamming, background noise, etc. Since
more erasures can be corrected than errors, it is advantageous
to determine the reliability of the received symbols and erase
unreliable symbols prior to the decoding process. There are a
number of methods for generating side information, and their
performances have been analyzed in [1]–[3].

In this paper we consider the ratio threshold test (RTT) [3]
as a method for generating information on the quality of the
channel. RTT declares an erasure whenever the ratio of the
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largest to the second largest of the energy detector outputs does
not exceed a fixed threshold greater than one. Hard decisions
can be considered as a special case of RTT with ratio threshold
set to one. Performance analysis of RTT technique has been
made in various channels [3]–[6]. In this paper we investigate
the asymptotic performance of Reed–Solomon (RS)-coded
orthogonal signaling with RTT in Rayleigh-fading channel.
We derive the asymptotic probabilities of symbol erasure and
symbol error for large , and the minimum for error-
free communication. We also derive the optimum code rate
and the optimum ratio threshold that minimize the required

, and examine the power gain that RTT provides over
hard decisions.

Next, we consider an RS-coded direct-sequence spread-
spectrum multiple-access (DS/SSMA) system, where a stream
of bits is encoded by an -ary orthogonal code
of length , where is a positive integer. The
orthogonal code is obtained by spreading every row of an

Hadamard matrix with a user-specific random sequence of
length . In [7] a number of different coding schemes for
DS/SSMA system are analyzed and compared. In this paper
we derive the minimum for error-free communication
as a function of the number of users, the optimum code rate
that minimizes the required , and the maximum total
information transmission rate. Then, we extend to a multirate
DS/SSMA system, where a population of users simultaneously
transmit at different power levels a variety of traffic types such
as interactive data, digital voice, and video. These traffic types
have different information rates, and are encoded (RS) with
different code rates and spread to a fixed bandwidth. We find
the minimum for error-free communication for each
traffic type, and the optimum code rate that minimizes the
required in terms of power ratios, number of users,
and spreading gains.

The rest of this paper is organized as follows. In Section
II we derive the probabilities of symbol erasure and symbol
error for orthogonal modulation with noncoherent detection
and RTT. Then, we find their asymptotic probabilities for large

. In Section III we derive the minimum for error-
free communication, and the optimum code rate that minimizes
the required . In Section IV we consider a DS/SSMA
system employing an -ary orthogonal code. We derive the
minimum for error-free communication as a function
of the number of users, the optimum code rate that minimizes
the required , and the maximum limit on the total
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information transmission rate. In Section V we investigate the
fundamental limit in multirate DS/SSMA system. In Section
VI we present our conclusions.

II. PROBABILITIES OF SYMBOL ERASURE AND SYMBOL ERROR

Let

(1)

be the transmitted signal, where is the signal amplitude
and is the th tone frequency. We assume that the tone
frequencies are chosen such that the signals

are noncoherently orthogonal, i.e.,
. The received signal at the input of the energy

detector given that is transmitted is

(2)

where is Rayleigh distributed, is uniformly distributed
over , and is the white Gaussian noise of one-sided
spectral density . We assume that and are independent,
and are also independent of . Then, the noncoherent1 th
energy detector output , given that is transmitted, is
given in (3) and (4), shown at the bottom of the page, where

(5)

(6)

are independent Gaussian random variables each with mean
zero and variance . Since is Rayleigh distributed and

is uniformly distributed over , is a Gaussian
random variable with mean zero and variance . Thus,
the conditional probability density function of ,
given that is transmitted, is

(7)

where

(8)

1AsM increases, the performance of noncoherent demodulation approaches
that of coherent demodulation with a significant advantage in receiver com-
plexity [12].

where is the average code symbol energy.
If an RS code of rate is used, then the average information
bit energy is .

RTT generates an erasure if

(9)

for some parameter , and each , and
produces an error if

(10)

for some , when is transmitted. Notice that
conventional hard decisions corresponds to the special case
of . Because of the symmetry of the signal set, the
probability of symbol error is independent of the transmitted
signal if each signal is transmitted equally likely. Thus, for
our analysis we assume that is transmitted without loss
of generality. Then, the probability of symbol error is

(11)

(12)

(13)

Notice that if we let in (13), then we get the well-
known probability of symbol error formula with hard decisions
in Rayleigh-fading channel [8]. The probability of correct
decision is

(14)

(15)

(16)

whereas the probability of symbol erasure is

(17)

(3)

(4)
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A. Limit Analysis

In this subsection we find the following asymptotic probabil-
ities: , , and .

Proposition 1:

(18)

Proof: Letting in (15) gives

(19)

where

(20)

as . If we let , then

(21)

(22)

, for large (23)

implying

(24)

Therefore, we get

(25)

(26)

Proposition 2:

(27)

Proof: Letting in (12) gives

(28)

where

(29)

If we let

(30)

then for large

(31)

(32)

Since the term in (32) predominates over
all others

, if (33)

implying

, if (34)

Thus, we can write

(35)

It is to be noted that the term in (28) has
in effect been eliminated from the integrand, but has been
compensated for by increasing the lower limit from zero to

. The compensation is exact as approaches infinity.
Performing integration in (35) gives

(36)

(37)

Notice that and in (37) yields the same result
given in [9]. The asymptotic probability of symbol erasure can
be obtained by applying Propositions 1 and 2 in (17), which
results in

(38)

Thus, for large , all errors become erasures if .

III. CODED PERFORMANCE

In this section we derive the minimum required for
error-free communication with RTT and errors-and-erasures
decoding. We present the optimum ratio threshold and the
optimum code rate that minimize the required . This
is compared to receivers that do not erase (hard decisions)
and use errors-only decoding.

Let be

if the RTT ouput is correct
if the RTT ouput is an erasure
if the RTT ouput is in error.

(39)

As the RS code can correct any set ofsymbol errors
and symbol erasures provided [10], the
probability of not decoding correctly with RTT and errors-
and-erasures decoding is

(40)

In this paper we assume that the code symbol size is,
and thus a large implies a large block length , because
of the property with RS codes. An ideal
interleaver/deinterleaver is assumed in order to randomize
error bursts caused by long fades. Thus,
are assumed to be independent. By the central limit theorem
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[11], as the code length becomes large, the distribution of
approaches a normal distribution with

(41)

and

(42)

(43)

Thus, as while is fixed

(44)

(45)

where

(46)

(47)

Equation (45) shows that error-free communication is possible
with RTT and errors-and-erasures decoding provided

(48)

(49)

or equivalently

(50)

(51)

The right-hand side of (49) is the maximum possible code
rate for error-free communication, and is called the achievable
rate. Inspection of (50) reveals that the optimum ratio threshold
that minimizes is arbitrarily close to one, but is
slightly greater than one. Thus, the minimum required
for error-free communication with RTT can be arbitrarily close
to (but is slightly greater than) . This is because
we want to choose as small as possible but greater than one.
We will ignore this small difference. Fig. 1 shows
versus code rate. The optimum code rate that minimizes

can be found from (50) as

(52)

For values of given in (52), the is

dB RTT
dB hard decisions

(53)

Fig. 1. ( �Eb=N0)min versus code rater.

This indicates that RTT provides a gain of 4.05 dB over hard
decisions . The power gain that RTT provides over
hard decisions as a function ofis obtained from (50) as

(54)

The discontinuity of as the ratio threshold ap-
proaches one can be explained as follows. Equations (37) and
(38) indicate that all errors become erasures if for large

. Since the RS code can correct twice as many erasures
as errors, we may obtain a power gain by setting . In
addition, (38) indicates that the erasure probability decreases
(or the correct probability increases) asis decreased. The
implication is that it is better to erase unreliable symbols
and correct erasures rather than to make a hard decision and
correct errors. Figs. 2 and 3 show the required for the
probability of not decoding correctly to be 10 versus
code rate for – with RTT (Fig. 2) and hard
decisions (Fig. 3). We find that the optimal code rate for finite

converges to the asymptotic value, and the convergence
rate is faster with the optimal ratio threshold test. Also, the
required at the asymptotic optimum rate is very close
to the actual minimum .

IV. DS/SSMA WITH ORTHOGONAL MODULATION

In this section we consider an RS-coded DS/SSMA system,
where a stream of bits from RS encoder output is
encoded by an -ary orthogonal code of length ,
where is a positive integer. The orthogonal code is obtained
by spreading every row of an Hadamard matrix with
a user-specific random sequence of length. Fig. 4 shows the
orthogonal modulator, where is
the th row in the Hadamard matrix, and is the random

sequence of user. We assume the sequence
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Fig. 2. Required�Eb=N0 for PE = 10
�5 versus code rater: optimum RTT.

Fig. 3. Required�Eb=N0 for PE = 10
�5 versus code rater: hard decision

demodulation.

is a random sequence

with , for all and , and

(55)

(56)

That is, is an orthogonal code of length

. The encoder output is binary phase-shift-keying (BPSK)
modulated. Then the modulator output of user is

(57)

where is the signal magnitude, is the Hadamard
encoder output of user, is the random sequence of
user , is the carrier frequency, and is the carrier phase
of user . The chip waveform is a rectangular pulse,

for and zero elsewhere, where is the
chip duration. We assume there areusers, each transmitting

channel bits per seconds independently.
We assume the channel is modeled as a frequency-

nonselective Rayleigh-fading channel with multiple-access
interference and background noise. This model is pessimistic
in the sense that we do not assume that we can resolve
the multipath signals and make a diversity combining. The
received signal is

(58)

where channel gains are independent
and identically (Rayleigh) distributed, the channel-induced
phase deviation of user is assumed to be uniformly
distributed over , and the path delay of user

is assumed to be an integer multiple of (i.e., chip
synchronous). is a Gaussian random process with mean
zero and two-sided power spectral density .

The noncoherent demodulator is shown in Fig. 5, where
, and the noncoherent

detector output of the reference user
(user 1) given that is transmitted by the reference user
(i.e.,

) and that
acquisition/tracking is perfect (i.e. ), is

(59)
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Fig. 4. Orthogonal modulator of userk.

and

(60)

for , where

(61)

(62)

(63)

(64)

As the multiple access interference term in (59) and (60) is the
sum of independent terms, we model it by a Gaussian
random variable. Thus, it follows from (59) and (60), and
the fact that the conditional probability
density function of , given is transmitted by
the reference user, is

(65)

where

(66)

and . If we assume that the path delay
in (58) is uniformly distributed over , then a factor

of 2/3 should be multiplied in the multiple access interference

term in (66). Equation (66) indicates that the equivalent noise
spectral density is

(67)

(68)

The minimum for error-free communication is found
by replacing in (50) by , which yields

(69)

(70)

where

(71)

For large (where ), can be interpreted as the
total channel transmission rate, and thus represents the
total information transmission rate in information bits/channel
chip. For finite , becomes negligible as becomes large.
However, if grows as , then approaches
a nonzero value. The optimum code rate that minimizes

is found from (69) as

(72)

with RTT, and that with hard decisions is given in
Table I.

When the optimum code rate and the optimum ratio thresh-
old are used, with RTT is

(73)

and that with hard decisions is given in Table I. Note that the
required minimum grows exponentially with the total
channel transmission rate . Table I indicates that the power
gain that RTT provides over hard decisions is more significant
with larger .

The maximum limit on the total information transmission
rate for error-free communication is found from (69) as

RTT

hard decisions
(74)

(75)



KIM AND STARK: PERFORMANCE LIMITS OF RS-CODED CDMA 1131

Fig. 5. Noncoherent demodulator of userk.

TABLE I
ropt AND ( �Eb=N0)min VERSUSRb; RTT AND HARD DECISION

The thoughput as a function of the code rate is shown in Fig.
6. If we optimize the right-hand side of (74) over the code
rate , we get the same optimum code rate as in (52). Then,
the maximum total information transmission rate in
information bits/channel chip is

RTT

hard decisions
(76)

RTT

hard decisions
(77)

for , i.e., in an interference-limited system. This
indicates that RTT provides an increase in total information
transmission rate by a factor of 2.5 over hard decisions.

Fig. 6. ThroughputrRb as a function of code rater.

V. MULTIRATE DS/SSMA

We consider a multirate DS/SSMA system, where a pop-
ulation of users simultaneously transmit a variety of traffic
types such as interactive data, digital voice, and video. These
traffic types have different information transmission rates and
performance requirements. In this paper we restrict attention
to the case of two traffic types, but it is straightforward to
generalize the result to the case of more than two traffic types.

We assume that there are users transmitting type-1
information at a rate of bits/s with power , and
users transmitting type-2 information at a rate of bits/s
with power . A stream of information bits from
type- information source is encoded by an RS encoder of
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rate and then encoded by an -ary orthogonal code of
length , for some positive integer , and is sent
during seconds. We assume that the
chip duration is for both traffic types, so that the spreading
code length is . That is, we spread all signals to the
same bandwidth, regardless of their source bit rate. Thus, the
positive integer should be , where

is the largest integer not exceeding. In this section we
find the minimum for error-free communication, and
the optimum code rate that minimizes the required , for
both types of information.

Let
be the transmitted signal of user transmitting type-

information, where is the Hadamard encoder output,

is the random sequence, and is the carrier phase,
all of user transmitting type- information. Then the received
signal is

(78)

where and are channel gains, and
are path delays, and and are channel

induced phase deviations. Note that there are two indexes,

one corresponding to the information types (subscripts) and
the other corresponding to the user numbers (superscripts).
The noncoherent detector output of
the reference user (user 1) transmitting type-1 information,
given that is transmitted by the reference user and that
acquisition/tracking is perfect (i.e., ), is given in (79)
and (80), shown at the bottom of the page, where

(81)

(82)

(83)

(84)

Similarly, the noncoherent detector output
of the reference user transmitting type-2 infor-

mation, given that is transmitted by the reference user,
is

(85)

(79)

(80)
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(86)

If we assume that the multiple-access interference is Gauss-
ian, then it follows from (80) and (86), and the fact that

, for all , , , and , that the
conditional probability density function of ,
given that is transmitted by the reference user transmitting
type- information, is

(87)

where is given in (88), shown at the bottom of the page,
and

(89)

where , for all and . If we let
, and , then the equivalent

noise spectral density for type- information is given
in (90), shown at the bottom of the page. Then, the minimum

for error-free communication for type-information
traffic is found by replacing by , and by in
(50), which yields

(91)

or equivalently

(92)

(93)

where
(94)

(95)

(96)

(97)

Note that depends on the number of users and ,
and the source information rates and . For RTT, the
optimum code rate that minimizes is found
from (92) and (93) as

(98)

Notice that increasing the power of one traffic type requires to
lower the code rate of the other exponentially with the power
ratio of two traffic types. When the above optimum code rate
and the optimum ratio threshold are used, with

(88)

(90)
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RTT is

(99)

The optimum power ratio that minimizes
[dB] [dB] is

(100)

VI. CONCLUSION

In this paper we have investigated the asymptotic perfor-
mance of RS-coded -ary orthogonal signaling with ratio
threshold test (RTT) in Rayleigh-fading channel. We derived
the asymptotic probabilities of symbol erasure and symbol
error for large values of , and the minimum needed
for error-free communication. We found that the minimum

needed for error-free communication is (2.75
dB) with RTT, and 4.79 (6.8 dB) with hard decisions. The
optimum code rate that minimizes the required is
with RTT and 0.46 with hard decisions, and the optimum ratio
threshold that minimizes the required approaches one
for large .

Next, we considered a DS/SSMA system employing an
-ary orthogonal code of length , which is

obtained by spreading every row of an Hadamard
matrix with a user-specific random sequence of length. We
showed that the optimum code rate with RTT is ,
where is the ratio threshold, and the minimum
needed for error-free communication is , where

is the total channel transmission rate.
The maximum limit on the total information transmission
rate in information bits/channel chip is
with RTT and 0.209 with hard decisions, in interference-
limited region. It is found that the power gain that RTT
provides over hard decisions is more significant with larger

.
Then, we extended to a multirate DS/SSMA system, where a

population of users simultaneously transmit at different power
levels a variety of traffic types of different information rates.
We derived the minimum for error-free communica-
tion, and the optimum code rate that minimizes the required

, for each traffic type in terms of power ratio, number
of users, and spreading gains. It is found that increasing the
power of one traffic type requires to lower the code rate of the
other exponentially with the power ratio of two traffic types.
The results may easily be generalized to the case of more than
two traffic types.
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