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Coding for Frequency-Hopped  Spread-Spectrum 
Communication  with  Partial-Band 

Interference-Part 11: Coded Performance 

Abstract-The  performance  of  codes  in a frequency-hopped  spread- 
spectrum communication  system with  partial-band  interference is investi- 
gated.  The  performance  measure  considered is the  decoded  bit error 
probability. A simplified  interference  model  and  worst-case  partial-band 
Gaussian noise interference  model  is  considered  with  the  interference  noise 
statistically  independent of the  transmitted  signal.  We  consider soft 
decision receivers  with  side information and  hard decision receivers  with 
and  without  side  information. 

T 
I. INTRODUCTION 

HE design of error-correcting  codes  for the additive 
white  Gaussian  noise  channel  is  well  understood.  Coding 

for channels for which the noise is not  Gaussian  and not 
white  is much less well  understood.  One  such  channel that 
arises in practice is that of  a  partial-band interference or 
pulsed  interference  channel.  For  example,  a  frequency- 
hopped  spread-spectrum  communication  system that is  oper- 
ating in the presence of a  partial-band  jammer  has  interfer- 
ence that is on part of the time  (when the signal is  transmitted 
in a jammed  band)  and  off part of the time  (when the signal is 
transmitted in an  unjammed  band).  Another  such  channel  is  a 
frequency-hopped  multiple-access  channel.  In  addition  to the 
interference,  there may be  some  white  Gaussian  noise that 
causes additional errors.  One of the issues involved  in the 
design of a  communication  system  operating in partial-band 
interference,  and in particular the error-correction  coding  to 
be  used,  is that of side  information availability. If the 
decoder  has  knowledge of which  symbols  were  received 
when interference is  present,  then  these  symbols  carry less 
weight in deciding  which  codeword  is  transmitted  than  those 
received  when  there  is no interference  present. If the decoder 
does not have this side  information,  then no such  weighting 
can be made.  In this paper  we  present analytical methods for 
determining the error probability of codes  on  such  channels 
both  when side information  is  present  and  when side 
information  is unavailable. 

Several  other  researchers  have  analyzed the error proba- 
bility of some  codes  considered  here (e.g., [1]-[4]). The 
analysis in these  papers  has  been largely that of deter- 
mining the bit error probability of  convolutional  codes, 
possibly in conjunction  with repetition codes  and  with soft 
decisions, for which  case  a  union-Chernoff  bound  has  been 
employed.  Also,  the effect of background  noise  has largely 
been  ignored.  In  these  papers  there  is  lacking a comparison 
between the performance of several different receivers. In 
this paper we determine  what  gains  can  be  achieved  using 
side information  with soft decisions  over  hard  decisions  with 
side information  and  over  hard  decisions  without side 
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information.  We  also  consider the effect of background  noise 
in addition to  the  interference  and  determine  under  what 
conditions  can the background  noise  be safely neglected. We 
consider  three classes of codes: repetition codes,  convolu- 
tional codes,  and  Reed-Solomon  codes (RS codes). New 
analytical results are  also  presented for repetition codes on i) 
two.$ate  channels for which  background  noise  is  present  and 
ii) M-ary  symmetric  channels.  For repetition codes  with  a 
soft decision  receiver,  we  use  an  exact  value  for the error 
probability. Trumpis [5], in  an  unpublished  manuscript,  has 
derived  an  exact  expression for the error probability of 
repetition codes  with soft decision  (square-law  combining) 
decoding.  Here we write  the error probability as an integral 
which  may be easily evaluated by standard  numerical 
integration techniques.  When  evaluating the error probability 
of convolutional  codes,  we  use  exact  values for the error 
probability between  two  codewords instead of using the 
Chernoff  bound.  For the dual-k  convolutional  codes  we 
present  a new class of  upper  bounds that approaches the 
union  bound  without the Chernoff  bound.  These new bounds 
are computationally tractable and  offer  considerable  im- 
provement over the existing bounds.  For Reed-Solomon 
codes  we  consider  two cases: the channel that cannot  declare 
erasures  and the channel that can  declare  erasures (but does 
not make errors). The  later  channel  corresponds  to the case 
of side information available. 

From the analysis we make the following  general  conclu- 
sions. First, background  noise  can (conservatively) be 
neglected if the signal-to-background  noise  ratio is larger 
than the average signal-to-jamming  noise ratio by about 3 dB 
and, in  many cases, if the average  signal-to-jamming  noise 
ratio  is the same or even less than the signal-to-background 
noise  ratio, the background  noise  can  be neglected. For  large 
or small  signal-to-jamming  noise  ratios, the performance of a 
hard  decision  decoder is the same  with  and  without side 
information.  The  difference  between  hard  decisions with side 
information  and soft decisions  with side information  is on the 
order  of 1-3 dB,  whereas the difference between  hard 
decisions  with  side  information  and  without side information 
varies considerably  (between 0 and 8 dB).  One final 
conclusion we draw  is that a partial-band jammer  can  be 
neutralized, provided  codes of small  enough rates are used. 

In Section I1  we introduce the basic channel  model  we will 
use  to  model  interference  in a frequency-hopped  spread- 
spectrum  communication  system.  The error probability of 
the above  three classes of  codes  is  determined  both  with  and 
without side information.  The  techniques  developed in 
Section I1 are applied  in  Section I11 to  determine the error 
probability of codes on partial-band interference and  hard 
decisions. We  consider the case of side information available 
and no side  information available. The effect of  background 
noise  is  also  considered.  In  Section  IV the error probability 
of a soft decision  decoder  with side information available is 
examined for repetition codes  and for convolutional  codes. 
Finally,  in  Section  V  we  draw  conclusions  and  compare the 
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error probability of actual codes  to the channel capacity and 
cutoff rate which  were  determined in Part I of this paper. 
This is done for the three cases mentioned above: soft 
decisions with side information,  hard decisions with side 
information,  and  hard  decisions  without side information. 

11. INTERFERENCE MODEL 
In this section we describe  a  channel model for interfer- 

ence in a  slow  frequency-hopped  spread-spectrum  communi- 
cation system  and  evaluate the error probability of some 
codes when used on this channel.  We will consider  a  system 
which transmits  m  symbols  during  each  hop.  The model  is 
general  enough  to  include  background noise and  channel 
memory in a  frequency-hopped  spread-spectrum  communi- 
cation  system with partial-band interference. The  channel 
model consists of  two states 0 and 1. When the state of the 
channel is 0, each  input  symbol is transmitted  over  an  M-ary 
symmetric  channel with crossover probability po/(M - 1) 
(i.e., symbol error probability PO). When the state of the 
channel is 1, each  symbol is transmitted  over  an  M-ary 
symmetric  channel  with  crossover probability p I / ( M  - 1). 
The state of the channel  can  change  only  on  every  mth 
symbol.  The  sequence  of  channel states is a  sequence of 
independent, identically distributed random variables. The 
probability of the channel  being in state 1 is p and the 
probability of being in state 0 is 1 - p.  The  case  of  a  strong 
interferer  and  no  background  noise isp, = 0 andp, = (M - 
1 ) / M  with p being the probability that a  symbol is subject to 
interference.  The  model  with p o  = 0 and P I  = (M - 1 ) / M  
also  gives  an  upper  bound  to the error probability of  any 
coded  system  using  hard  decisions  (when  there is no 
background noise). The  models  with p1 = (M - 1 ) / M  can 
be  used  to  evaluate the minimum fraction of the band that a 
jammer must occupy  to  be effective (cause the bit error 
probability to  be  larger  than the desired error probability), 
irrespective  of  jamming  power  or  noise distribution [6]. In 
the next  three  subsections we will evaluate the error 
probabilities of three classes of codes  on this channel. 

A .  Repetition  Codes 
First  we  determine the error probability of repetition codes 

on this channel  with  maximum likelihood decoding.  For 
simplicity we will only  consider the case of m = 1. The 
results,  though, will be  applicable for the case m > 1 if 
interleaving of  codewords is done.  Calculations  of error 
probability for m > 1 without interleaving are quite tedious 
and will not be  examined  here.  These calculations have  been 
performed in [7] for the special case of po = 0 andpl = 112.  
If the channel state is not available to the decoder,  then the 
overall channel is an  M-ary symmetric  channel  with error 
probability ppI + (1 - p)po. A maximum likelihood 
decoder will decide that 0 was  transmitted if there are more 
zeros  than  any  other  symbol in the received  word. If there is 
a tie between  two or more  symbols, the optimal  decoder  can 
choose  any  of  those  symbols.  The error probability of a 
binary repetition code of length n on  a  binary  symmetric 
channel (M = 2) with  maximum likelihood decoding  without 
side information is 

n 
P e , b =  w/p'(l  -p)"-' ( 1 )  

/= I 

where wl is the number  of error patterns of  weight I that will 
cause  a  symbol error and 

P = PP1+ ( 1  - PIPO. (2) 

For M = 2 ,  WI is given by 

'0 I<e, n odd; I c e - 1 ,  n even 
where e is the least integer greater  than  or  equal  to (n + 1)/ 
2. For M > 2 ,  wl can  be  determined  from the results in 
Appendix A. 

When the state of the channel is known  to the decoder, 
then the maximum likelihood decoder is more  complicated 
than just  comparing the number of zeros  and  ones. The 
maximum likelihood decoder  for  the two-state channel,  with 
each state being  a  binary  symmetric  channel, is derived in 
Appendix B. The bit error probability is also  derived in 
Appendix B. Let do be the number  of 0's  received  when the 
channel is in state 0, dl be the number  of 0's received  when 
the channel is in state 1, I be the number of times  out  of n that 
channel is in state 1, 

&=do In - +dl  In - Po P1 
1 -Po 1 -P1 

and 

I PI n - 1  Po 
2 1 -p ,  2 1-po 

CY/=- In -+- In -. 

The maximum likelihood decoding rule is to decide 1 if 6 > 
CY/ and to decide 0 otherwise.  The bit error probability for 
maximum likelihood decoding is then  given by 

* ( 1  - p l )dyp l ) ' -d l ( l  -po)dO(po)n-'-dO 

1 

When po = 0, the error probability for  maximum likelihood 
decoding simplifies to 

where ?rn is the error probability of  a repetition code  of  length 
n on a  binary  symmetric  channel  with  crossover probability 
pl. This is given by (1) with p replaced by pl. The  error 
probability of an  M-ary repetition code  on the two-state 
channel  with side information available is, in general, much 
more  complicated  to  derive,  even for small n. When there is 
no background  noise (PO = 0) and side information is 
available, the analysis is simplified considerably. In this case 
the maximum  likelihood  decoder  only  looks  at the symbols 
that are not jammed (if any)  and  chooses the output  to  be that 
symbol (they all must  be the same since there is no 
background noise). If all the symbols are  jammed, the 



STARK: CODING FOR FREQUENCY-HOPPED SPREAD SPECTRUM-PART II 

decoder  chooses the symbol  which  was  received the  most 
(ties are resolved by randomly selecting one of the contend- 
ing  symbols). Thus,  there  is  an  error  only if all symbols  are 
transmitted  over the jammed  channel.  This  happens  with 
probability p". The probability of a symbol error, given that 
all symbols are  jammed,  is  the  same  as the symbol error 
probability of  an  M-ary repetition code  on  an  M-ary 
symmetric  channel  with  symbol error probability P I .  

B. Convolutional  Codes 
Next we  consider the error probability of convolutional 

codes  with  maximum likelihood decoding. When side infor- 
mation is unavailable, the calculation of error probability of 
binary  convolutional  codes is straightforward, since the 
channel is just  a binary  symmetric  channel with error 
probability p given in (2).  Bounds on the bit error probability 
for a rate l / n  code  are  given in [8] as 

m 

1047 

p e ,  b 5 wjpj 
j = d ,  

where wj is the number of paths  with  information weight j ,  
and Pi is the error probability between  two  codewords  which 
differ in j symbols and df is the free distance of the code. 
Notice that Pj is just the error probability of a repetition code 
of length j which is given in (1) with j = n.  For  most  codes 
wj is known for only the first few  values of j .  In [9] (see also 
181) these are tabulated for some  good  codes.  For these codes 
we  must truncate the series in (7) and get an  approximation  to 
the error probability. One class of  codes for which w, is 
known for  all j are the dual-k rate l / v  convolutional  codes 
[9].  These  codes  have  symbol  alphabets of size 2k and are 
thus well suited for  M-ary  modulation.  For these codes the 
bit error probability on an  M-ary  symmetric  channel  can  be 
bounded by [lo] 

where a = v ,  b = 2k - 1 - v, M = 2k,  and qj is the error 
probability between  two  codewords of a repetition code of 
length j on an  M-ary  symmetric  channel.  This  can  be  shown 
to be given by (see Appendix  A) 

where p is the symbol error probability of the channel.  When 
the Bhattacharyya  bound [l 11 is used (qj 5 D'), (8) reduces 
to the familiar form [lo] 

where 

In [ 101 Odenwalder  obtained  an  improved  upper  bound for 
the dual-3  rate 1/2  code.  Here we obtain  a class of upper 
bounds  for  any  dual-k rate l / v  convolutional  code. We first 
break the summation  over j in (8 )  into two  sums: 

Now notice that in the second  term of (12), the coefficient of 
Pz,+uj-l is positive, so that we can  further  upper bound P, by 
bounding P2v+uj-l by D2u+uj-1. Thus, 

Now the second  term in (13) can  be  summed,  provided c = 
aDU-' + bDu < 1  to yield 

+ D ' " c ~ + ~ [ ~  + ( J +  1)(1 - ~ ) ] / ( l  -c)? . (14) I 
The  condition that c < 1 is necessary for the convergence of 
the series that upper  bounds the error probability in both (10) 
and (14). This  condition is met for error probabilities of 
practical importance. 

When side information is available, the error probability 
of binary  convolutional  codes is still given by (7); however, 
P, is the error probability between  two  codewords of a 
repetition code  with side information available, given by (5) 
with n = j .  For  dual-k  codes, (14) is still valid for the 
channel  with side information when Pj is the error probabil- 
ity between  two  codewords of a  length j repetition code for 
that channel  and D is the Bhattacharyya  parameter  for the 
channel with side information, which is given by 

C. Reed-Solomon Codes 
The last code  we  consider  for this interference model is the 

Reed-Solomon code.  Since Reed-Solomon codes  are  non- 
binary, the code  symbols must have  alphabet size greater 
than 2.  We will consider  two  cases.  The  two  cases  corres- 
pond  to m > 1, M = 2 and  m = 1, M > 2. We  note that it 
is also possible to  have  m > 1 and M > 2. The analytical 



results presented below are  general  enough  to  include the 
case m > 1 and M > 2, but  no numerical results will be 
given for that case.  See [ 121, [6] for numerical results for that 
case.  The Reed-Solomon codes we consider will  have 
alphabet size M m  so that one  code  symbol ( m  M-ary 
symbols) is transmitted  during  each  frequency-hop. We will 
assume that the decoder  can detect with probability 1 when 
the number of errors and erasures is greater than the 
capability of the code. When the decoder detects that too 
many errors have  occurred, the decoder  outputs the received 
information  symbols.  The  undetected error probability can 
be calculated using  techniques in [13]. Let N denote the 
length of the RS code and K the number of information 
symbols  per  codeword. When side information is unavail- 
able, the channel is an Mm-ary channel with code  symbol 
error probability given in (15). 

The probability of a  code  symbol (m M-ary  symbols) being 
in error at the output of the decoder with a  bounded distance 
decoder [8, p. 191 may  be calculated as 

where e = L(N - K ) / 2 J  and LxJ is the largest integer 
less than or equal  to x. The bit error probability can be 
determined  from ( 1  6) using the techniques in [6] as 

With side information available, a possible decoding 
strategy (although not maximum likelihood decoding) is to 
erase  those  symbols which are  received  over the bad channel. 
With this strategy an  erasure will occur with probability p .  
An (N, K )  RS code is capable of correcting t errors and s 
erasures  provided s + 2t I N - K .  The  decoded bit error 
probability can  also  be  derived  using  techniques similar to 
those in [6] as 

where 

s+I<N 

(1 -p- (1  -p)(l-(1 -po)"))N-l-S-f (19) 

and 

s + I < N  

This  decoding  technique will not be effective when the 
jammer  has the freedom  to  choose p .  This is because p = 1 

will cause  every  symbol to be  erased.  For the channel for 
which p is fixed, such as  multiple  access  channels, this 
decoding  technique will be  superior  to  decoding  without side 
information. A decoding  algorithm that avoids this problem 
for  jamming is given in [6]. 

D. Numerical Results and Discussion 

The error probability of the various  codes  mentioned was 
evaluated  for the simplified jamming model  in  which the 
unjammed error probability po was zero and the jammed 
error probability p I  was 1/2. In  Fig.  1  the  error probability of 
repetition codes  of  length 1,  3, 5, and 7 is shown  with  and 
without side information.  For n = 1  (no  coding) the error 
probability with  and without side information is the same. 
In Fig. 2 the error probability of  Reed-Solomon codes with 
m = 5 and 8 (N = 2 m  - 1) and  binary  convolutional  codes 
with constraint length 7 and 9 are  shown for the case of side 
information available, while in Fig. 3 the corresponding 
results are  shown when  no side information is available. It is 
clear from the figures that for a specified bit error probabil- 
ity, the largest value of p such that the error probability is 
less than the specified error probability is larger  with side 
information than without. It is also clear that with side 
information, the minimum fraction of band that must  be 
jammed in order for the error probability to be greater than 
the specified error probability is nearly the same for 
convolutional  codes and  Reed-Solomon codes,  while  without 
side information (interleaving the convolutional  codes) the 
Reed-Solomon codes  can  withstand  larger  values of p .  This 
suggests that without side information,  using  binary  codes 
with interleaving (of depth logz M )  on an  M-ary  channel is 
not a good idea. From these figures one  can  determine,  for 
any  coded  system  (with or without side information)  and  a 
specified error probability, the minimum fraction of band 
that must  be jammed for the resulting error probability to  be 
greater  than the specified error probability. (See [6] for 
further  discussion of this.)  Results  for  other  values of po and 
p ,  will be  given in the next  section,  where these error 
probabilities are related to signal-to-noise ratios. 

111. HARD DECISION  RECEIVER 
As in Part I, we  consider  an  M-ary  communication  system 

in  which there are  two  possible states 0 and 1 of the  channel. 
The  channel is in state 1 when the jammer is present  during  a 
particular frequency  hop.  The probability of symbol error, 
p l ,  in this case is given by [14] 

where E is the energy  per  transmitted  symbol and NJ/2 is the 
average  noise spectral density. The  channel is in state 0 when 
the jammer is absent  during  a particular frequency  hop.  The 
probability of symbol error, PO, in this case is given by [I41 

1 M  
Po=- (- l ) j  M 

j = 2  

The probability of the channel  being in state 1 is p .  The 
probability of the channel  being in state 0 is 1 - p .  When the 
receiver  has side information, the decoder  knows the state of 
the channel  for  each  symbol  sent. 

A .  No Side Information 
We now determine the bit error probability of the codes 

considered in Section I1 when  no side information is 
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Fig. 1. Bit error probability for repetition codes of length 1 ,  3,  5 ,  and 7 on 
two-state  channels  with  and  without side information. 
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Fig. 2. Bit error probability for Reed-Solomon codes and  upper  bound  on 
bit error probability for convolutional codes on  two-state  channel  without 
side  information. 
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Fig. 3. Bit error probability for Reed-Solomon  codes  and  upper  bound on 
bit error probability for convolutional  codes  on  two-state  channel  with  side 
information. 

available. First consider the repetition codes.  We  assume, 
temporarily, that there  is  one  symbol  transmitted  during  each 
frequency hop. If rn symbols are  sent, interleaving rn 
codewords will give the same error probability, although this 
is not necessarily a  good  strategy.  Without side information 
the coding  channel  is  just  an  M-ary  symmetric  channel with 
symbol error probability p I p  + po(l - p).  The  decoded bit 
error probability is then  given by (1) for repetition codes. If 
we are interested in the worst-case error probability, then (1) 
is maximized  over p: O s p  5 1 .  However, it is easily seen 
that maximizing P e , b  is  equivalent  to  maximizing p,. The p 
that maximizes (1) is inversely proportional  to E/NJ with a 
constant  term that depends on E/No: 

( l ' 
E/NJ< A  (E/No) 

where 

For very large E/No compared to E/NJ,  (1 8) and (19) become 

and 

E/NJ<  AM 

E / N J ~   A M .  

In (24) and (25), A(E/No) and B(E/No) depend  on E/No and 
M ,  while  in (28) and (29), A M  and BM depend  only  on M. 
Numerical  values for A(E/No) and B(E/No) are given  in 
Table I for M = 2. This  is a generalization of the work of 
Houston [l5], who  considered  only the case of  no back- 
ground noise. The  constants A M  and BM may  be determined 
from [15]. The  error probability of convolutional  codes  can 
be easily evaluated by using (25) in (9) and  then (9) in (7) or a 
truncated  version of (7). The  error probability of  Reed- 
Solomon  codes  can be calculated by using p* given  by (25) in 
(16) for P,. 

B. Side  Information  Available 
When side information  is  available, the error probabilities 

given  in (22) and (23) can  be used  in (5) to determine the 
error probability of  a repetition code  and  also of a convolu- 
tional code by then  using (5) in (7). The  error probability of 
Reed-Solomon  codes that correct both errors and  erasures 
can  be  determined  using (19)-(21). However, since the 
Reed-Solomon  decoding  algorithm  erases  those  symbols that 
are  jammed and is not a maximum likelihood decoding 
algorithm,  a strategy for the jammer  is  to  jam the entire  band, 
thereby  causing  every  symbol  to  be  erased,  which  causes the 
decoder to make  an error with probability close to 1. Another 
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TABLE I 
CONSTANTS FOR DETERMINING ERROR PROBABILITY FOR BINARY FSK 

NOISE 
WITH WORST-CASE PARTIAL BAND JAMMING AND BACKGROUND 

Eb/No=  lOd6 

10.0 
15.0 
20.0 
01 

3.6112  0.46702 
2.3017  0.39366 
2.0842  0.37547 
2.0000  0.36788 

'e,b too 
E b / N g I O d 6  

10-4 

Fig. 4. Bit error probability for length 7 repetition codes on  worst-case 
partial-band  jamming  channel  with  binary  FSK. 

decoding  algorithm which uses side  information that elimi- 
nates this  problem is given in [ 161. Another method of using 
the Reed-Solomon codes on channels with side  information 
is  to concatenate a repetition code and a Reed-Solomon code. 
The  error probability  of  such a code  can  be easily calculated 
from  the  error probability  formulas of each code separately. 

C.  Numerical Results and Discussion 
The  error probability  of  various  codes  was  evaluated for 

the  case of a hard  decision  receiver both with and without 
side  information.  In  Fig. 4 the  error probability of a binary 
repetition code of length 7 is shown for &/No taking the 
values 10, 15, 20, and 30, dB.  Notice  that for very high 
signal-to-jamming noise  ratios  the  background noise is 
dominant  (even  compared to a pulsed jammer), so the use of 
side  information  becomes  superfluous. When the signal-to- 
jamming  ratio  is very small,  then  the jammer need not pulse 
to  cause  larger error probability, so again  side  information is 
not necessary. For  the repetition code of length 7, the 
background  noise  has  an  effect only when the  background 
noise  power is smaller  than  the average jamming noise 
power. In Fig. 5 the  approximate  upper bound to  the bit error 
probability of the  constraint length 7 binary  convolutional 
code  from [lo] is shown with and without side  information. 
Notice that the error probability when Eb/No is  15  dB  differs 
from  the  error probability for no  background  noise (&,/No 
= 00) by less  than 1 dB  for  error probabilities between 

and This is true both with and without side 
information. Also notice that for  error probabilities in this 
range,  the  availability  of  side  information  improves  the 
performance by about 4 dB when' Eb/No is greater  than 15 
dB. When Eb/No is less  than 10 dB  and  the error probability 
is greater than there is essentially no  difference 
between the  performance of convolutional  codes with and 
without side  information  available. 

The  error probability of an  M-ary  orthogonal  code, or 

wlth slde mformotlon 

wlthoul side mformolion 

I 
t 2  16 24 30  36 

E b / N J ( d 6 )  

Fig. 5 .  Upper  bound  on  bit error probability for constraint  length 7 
convolutional  code  with  and  without  side  information  on  worst-case 
partial-band  jamming  channel  with  binary  FSK. 

equivalently M-ary  orthogonal signaling when side  informa- 
tion is unavailable, is shown in Table I1 for Eb/No of 5 ,  7.5, 
10 and 00 dB. Notice that for this  code  (or modulation) the 
effect of background  noise is negligible  for Eb/No greater 
than around 10 dB. If we used another  code  such as a Reed- 
Solomon code or even a repetition code in conjunction with 
the  .M-ary  signaling,  then  this would even  further  suppress 
the effect of the  background  noise. The  error probability of 
M-ary repetition codes of length 1, 3 ,  5 and 7 are shown in 
Fig. 6 when no  side  information is available and in Fig. 7 
when side  information is available for  the case of no 
background  noise.  In  Fig. 8 the bit error probability of three 
different Reed-Solomon codes is shown when no  side 
information is available. In Fig. 9 the error probability of 
dual-5  convolutional  codes is shown both with and without 
side  information. In calculating  the error probability for 
dual-k  codes we used (14) with J = 10. In Table I11 the 
bounds of (14) are shown for J = 1, 5 ,  and 10 [denoted by 
P,(J)] along with the  upper bound of (10) [denoted by 
P,(UB)]. Notice that as Eb/NJ becomes  larger,  the  bounds 
for  various  values of J become nearly the  same. When this 
happens,  the  upper  bounds  then are the union bound on  the 
error probability. By comparing this to  the union-Bhattacha- 
ryya (UB) bounds, we can  determine  the additional differ- 
ence between the  two.  For  the  case of no  background  noise 
and worst-case  jamming,  the UB bound is a factor of about 9 
worse than the union bound at &/NJ of 20 dB or about 4 dB 
worse  at error probability of 

IV. SOFT DECISIONS 
We now consider  the error probability of codes that 

employ a soft  decision  receiver. We  do not consider 
maximum likelihood decoding any more,  since in an  actual 
implementation of a decoder  this would involve highly 
nonlinear processing (e.g., computing Bessel functions, 
etc.).  Instead we consider  the  more  practical  case of square- 
law combining.  With soft decisions  the jammer has as a 
possible strategy  transmitting very narrow high-amplitude 
pulses.  Just  one pulse with large  enough  amplitude  can  cause 
the error probability  between two codewords to be nearly 
1/2. Thus, with soft decisions it seems likely that a very  low 
duty cycle jammer would be optimum [2]. On the  other  hand, 
such a jammer would be quite easy to  detect and those 
symbols that are  jammed could  be  erased.  This would force 
the jammer  to have a higher duty cycle  and,  thus,  use  smaller 
amplitude  pulses.  In  this  part we will make the  following 
simplifying assumptions.  First,  the  decoder  has perfect side 
information  about  the  presence of a jammer. Second,  there is 
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TABLE II 
BIT ERROR  PROBABILITY FOR 32-ARY  FSK WITH PARTIAL-BAND  INTERFERENCE 

5.0 dB 

0.0 
5.0 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 
45 .O 

2.3105 x lo-’  
7.6083 x 
2.5483 x lo-* 
9.4818 x lo-’ 
4.4218 x lo-’ 
2.8217 x 
2.3157 X lo-’ 
2.1557 x 
2.1051 x lo-’ 
2.0891 x lo-’ 

2.0345 x 10-1 
6.4342 x lo-’ 
2.0351 X 
6.4395 X lo-’ 

6.4925 X lo-‘ 
2.0933 ‘ x  lo-‘ 
7.0222 x 
2.6231 x 
1.2329 x 10:: 

2.0404 X 10-3 

Fig. 6. Symbol error probability for repetition  codes on chanpel  with  hard 
decisions  and  no side information  on  worst-case  partial-band  jamming 
channel  and 32-ary FSK (&/No = OD). 

m dB 

1.8998 X l o - ’  
6.0077 x lo-’ 
1.8998 X lo-’ 

1.8998 X 

1.8998 X 

1.8998 X 
6.0078 x 

6.0077 X 10-3 

6.0077 X 10-4 

6.0077 X 10-5 

1.7585 x 10-I 
5.4347 x 10-2 
1.7586 x 
5.5613 X lo-’ 
1.7586 x lo-’ 
5.5613 x 
1.7586 X 
5.5613 X 
1.7586 X 
5.5613 x 

E ~ / N J  (dB) 

Fig. 8. Error probability for Reed-Solomon  codes  on  channel  without side 
information  on  worst-case partialband jamming  channel  and 32-ary FSK 
(&/No = W). 

with  side 
informotion 

%de informotion 
without 

5 IO 15 20 

Fig. 7. Symbol error probability for repetition codes on  channel  with  hard Fig. 9. Upper  bound  on  bit error probability for  dual-k convolutional codes 
decisions  and side information  on  worst-case  partial-band  jamming with  and  without side information  on  the  worst-case  partial-band  jamming 
channel  and 32-ary FSK (Eb/No = 00). channel  with 32-ary FSK (&/No = m). 

no  background  noise present. Together these two  assump- 
tions imply that the decoder will make an  error in comparing 
two  codewords  only if all the symbols  where the two 
codewords  differ are  jammed.  Since  just  one  symbol is not 
jammed,  it is received  over  a noise-free channel  and, thus, 
will  not  be  in error. If all  such  symbols  are  jammed, the 
decoder  uses  square-law  combining of the code  symbols  to 
make  a  decision on which  codeword  was transmitted. We 
note  here that the analysis can  be  done  for  other  cases  (no 
side information,  background  noise present) but the results 
are quite complicated.  We do not consider the error 

probability of block  codes  (Reed-Solomon,  etc.)  besides the 
repetition code, since in practice soft decision  decoding is 
very difficult to  implement.  See [ 171 for  some  numerical 
results concerning soft decision  decoding of  R-S codes. 

A. Repetition  Codes 
The error probability of repetition codes of length L can  be 

calculated for the channel  with soft decisions  and side 
information as follows. Since  we are assuming  square-law 
combining, the receiver  adds the outputs  of the square-law 
detectors only if all  symbols  have  been  jammed.  Let Yo be 
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TABLE 111 
UPPER  BOUNDS ON BIT  ERROR PROBABILITY FOR 32-ARY FSK WITH PARTIAL-BAND INTERFERENCE  (HARD  DECISIONS. 

NO SIDE  INFORMATION)  USING  DUAL-5  RATE 1/2 CONVOLUTIONAL  CODES 
~~ 

PAJ) 
Eb/NJ (dB) PA 1)  PAS) PJO)  Pe(UB) 

11 .o 
12.0 
14.0 
16.0 
18.0 
20.0 
22.0 
24.0 

0.9942 x l o - ’  
0.1260 x IO-’  
0.8378 x IO-’ 
0.1077 x 
0.2026 x 
0.4993 x 
0.1476 x 
0.4903 x 

0.6456 x lo-’  
0.4562 x I O - ’  
0.2492 x 
0.4853 x 
0.1290 x 
0.3926 x 10-5 
0.1304 x 10-5 
0.4599 x 10-6 

0.3339 x 10-1 
0.2080 x 
0.2228 x 
0.4807 x 
0.1288 x 
0.3926 x 
0.1304 x 
0.4599 x 

0.1110 x 10-0 
0.1798 x IO-’ 
0.2111 x 10-2 
0.4431 x 
0.1165 x IO-’ 
0.3450 x 

0.3701 x 
0 . 1 1 0 1  X 10-4 

the  output of the  square-law  detector for symbol i on  the j th 
symbol  of  the repetition code, 1 I j 5 L ,  0 I i 5 M - 1 .  
When the  input  code  symbol X; takes  the  value I and  the 
jammer  is present,  the density function of Yll is given by [ 181 

where 

g L ( x ) = x L - k X / ( L -  l ) ! ,  

A = E,/NJ,  and is  the modified Bessel function of order 
k .  In  obtainin  (28) we have  normalized Yi in [18]  by 
dividing by & T/2p.  The  decoder  then  computes Zi, 0 I i 
5 M - 1 where 

L zi=c Y, (29) 
; = I  

and L is  the  length of the repetition code or the level of 
diversity  used. The density of Zi is well known  [19] to  be 
given by 

( ~ L ( Y ; , ; ,  4 ,  Z i z O ,  i = l  
P(Z;IX;=~, 1 s j s L ) =  gL(Yi,;), zizO, i z f  (30) 

Zi< 0. 

The decoder  then  makes a decision that symbol I was 
transmitted if Z/ = max { Zi: 0 5 i 5 M  - 1 } . The 
probability of error is then  the probability that all L symbols 
are  jammed times  the  probability of error given that all L 
symbols are  jammed: 

Pe,M(L, P )  

=pLP(Z,>Z, for some k+f (X;=I ,  1 ~ j ~ n }  

= p L [ l - P { Z / > Z k  for all k+l lX ,=f } ]  

This  expression  can  be  evaluated using standard  numerical 
integration techniques to determine Pe,M(L,  p ) .  When M = 
2,  the  integral in (31) can be  evaluated to yield 

This  reduces  to  the  standard  result [20] of Marcum when p = 
1 (i.e., an  additive white Gaussian  noise  channel).  The error 
probability against  the  worst-case  jamming  strategy  can  be 
found by maximizing (31) over p .  The  form of the optimal 
jamming  strategy is for the jammer  to have a duty factor p 
that is inversely  proportional to  the signal-to-noise ratio: 

When p = p * ,  the  error probability  has  the  form 

where AL,M and BL,M are constants  and are given in Table IV 
for M = 2 and M = 32 and various  values of L .  

B. Convolutional Codes 
The  error probability of convolutional  codes  can be 

determined using the union bound and  the  formulas  for  the 
error probability  of repetition codes. The  error probability of 
binary  convolutional  codes is calculated using (7) with P; 
replaced by P&, p )  given in (32). For dual-k  codes we use 
(14) and (32) with D given by  [2 11 

exp [ - w(Ep/NJ)/(l+  w)] 
1 - W Z  

D = p  

where 

r. - 
4 

to obtain an  upper bound on  the  error probability.  The worst- 
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TABLE IV 
CONSTANTS FOR DETERMINING WORST-CASE ERROR PROBABILITY 

FOR M-ARY SIGNALING AND PARTIAL-BAND JAMMING 

L M AL.M BL. M 

1 2 2.00 0.368 
3 2 2.54  0.523 
4  2 2.63  0.682 
5 2 2.70 0.912 
6  2 2.74 1.239 
7  2 2.78 1.702 
8  2 2.80 2.359 
9  2 2.82 3.289 

10 2 2.84 4.61 1 

12 2 2.86  9.175 
13 2 2.87 13.005 

1 32 3.61 1.704 
2 32 3.44 3.014 
3 32 3.32 5.052 
4 32 3.23 8.180 
5 32 3.17 1.293 X 10' 

3.12 2.007 x 10' 
3.072 x 10' 

3.06 4.653 X 10' 
3.03 6.985 x 10' 

10  32 3.01 1.041 x lo2 

' 1 1  2 2.85 6.493 

h 32 32 3.08 
8 32 
9 32 

case error probability is calculated by maximizing these 
expressions  over p.  

C. Numerical Results 
We  present  numerical results for several different codes 

when binary FSK and 32-ary FSK are used. First we show in 
Fig.  10 the bit error probability for repetition codes of length 
1,  2,  3,  5, 7, and  11  for  binary FSK modulation. In Fig.  11 
we show the bit error probability of the constraint length 7 
binary  convolutional  codes  of rate 1/2  for the cases of hard 
decisions, no side information;  hard decisions, side informa- 
tion available; and soft decisions, side information available. 
From this we see that for this code, soft decisions  are better 
than  hard  decisions by about 3 dB  when side information is 
available, and that side information is better than no side 
information by 4.5 dB  when hard  decisions  are made  and the 
desired error probability is In Fig. 12 the symbol error 
probabilities of repetition codes of length 1, 3, 5 and 7 are 
shown for 32-ary  FSK. In Fig. 13 the bit error probabilities 
for  dual-5  convolutional  codes of rate 112,  114, 116, and 1/8 
are  shown. 

V. CONCLUSIONS 
The error probability of various  coding  schemes  on 

channels with partial-band interference has  been investi- 
gated. Analytical  techniques  have  been used to  evaluate the 
error probability of the codes. New bounds  have  been  found 
for dual-k  convolutional  codes,  which  are significantly better 
than the previously used bounds.  The  use  of side information 
in decoding  has  been investigated to  determine the gain 
achievable when side  information is present. In Table V we 
list the values  of Eb/N,  necessary  for bit error probability of 

for soft decisions  with side information  and  for  hard 
decisions both  with and  without side information.  For Reed- 
Solomon  codes with soft decision, we  mean soft decisions 
when combining the outputs  for  each diversity transmission 
and  not of the code itself. Thus,  for diversity 1, soft decisions 
and  hard  decision  decoding  have the same  performance  when 

5,b  

,*'- 
loo 
i 6 '  
I d '  

1 o - ~  
IO' 

I 0-' 

1 6 "  

1 6 '  

1 0-8 

E ~ / N J  (dB) 

Fig. 10. Bit  error  probability  for  binary  repetition codes  with soft decision 
decoding  with  side  information  and  worst  case  partial-band  jamming  using 
binary  FSK (Eb/No = OD). 

'e.b 
10 O 

Io-' 

IO2 
16' 
IO' 

16' Hard decisions 

16' available 

16' 
.; Soft  decisions 

side informallon 
available \\ 

\ I 

0 5 I O  I 5  20 
E / NJ (dB) 

Fig. 11.  Bit  error  probabilities  for  rate 1/2, constraint  length 7 convolutional 
codes  with  binary  FSK  on  worst-case  partial-band  jamming  channel. 

Eb/NJ (dB) 

Fig.  12.  Symbol  error  probability  for  repetition  codes  on  channel  with  soft 
decisions  and  side  information  on  worst-case  partial-band  jamming 
channel  and  32-ary FSK (&/NO = OD). 
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.- 
0.0 5.0 iO.0 15.0 20.0 

TABLE V 
SIGNAL-TO-NOISE RATIO REQUIRED FOR BIT ERROR PROBABILITY OF 

10-5 FOR VARIOUS CODES AND CHANNELS 

Code ( W N o ) , , s  (P? Rate 
(bitddimension) ’ 

Soft Decisions 
No Side  =de Information Si& Information 
Hard Decisions Hard Decisions 

I I I I lnlorma 
Uncoded 112:O 50 I 45.66  (5.4x IOd) I 45 66 (54x  IO? I 45.66  (5.4x IOd)  

tion 

K=7. Blnary 

14 52 (0 14) 11 04(0 66) 9  57 (0 51) 1/4=0.250 K=9. Bmary 

16.73 (0 09) 
Convolutlonal 

11.96 (0 53) 10 46 (0 51) 1/4=0.250 

Convolutlonal 
Binary 
repetition 

~ 

1/6=0.167  27.61  (9.93 X IOd) 21 34 ( 069) 20 50 (.068) 

Blnary 

code. n=7 
repetitlon 

code, n = 5  
Binary 

repetition 
22 63  (.055) 17.95 ( 280) 16 91 ( 275) 1/10:0.100 

Binary 1/18=.055 15.67  (.687) 16.85 ( 707) 19.28  (.212) 
repetitlon 
code. n = 9  
Binary 1/22=0.045 15  70 (.844) 16 91 (669) 16.67  (.299) 
repetitlon 

Binary 
, code, n = l l  

repetition 

1/14=0.071 15.92  (.496) 20.91 (.127) 17  05  (.509) 

1/26=0.038 15.84  (.972)  18.32 ( 382) 17.07 (1  00) 

repetitlon 
. code, n = l  

M-ary 

repetition 

code. n = 3  
M-ary 

repetition 
25.20  (6.55  x IOd) 17 89 (8 36 x IOd) 15.84 ( 5  20 x loe) 5/86=0.0521 

M-WY 42 45  (4  IlX IOd) 42 45(4.11X IOd) 42.45 (4.11X IOd) 5/32=0.156 

5/160=0.0312 11.65  (0.22)  17.23 (.068) 13.56 (0.21) 
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side information  is present. From this table and other 
numerical results presented here, we have the following 
general  conclusions  about the worst-case  partial-band jam- 
ming  channel.  When side information  is  available, the 
difference between  hard  and soft decisions  is  between 1 and 3 
dB.  The  difference  between  hard  decisions  with  and  without 
side  information  varies  quite  a  bit.  For low rate codes the 
difference  is  very  low,  while  for high rate codes the 
difference  between  decoders  with  and  those without side 
information  can  be  considerable  (on the order of 6 dB or 
more).  For fixed rate  codes, the difference between side 
information  and no side information  decreases  as the length 
of the code increases. These  conclusions  agree with those in 
[ 181, based on capacity  and  cutoff  rate  as the performance 
measure. In Table V we also  list the minimum  required 
signal-to-noise ratio  necessary for reliable communications 
for  various  code rates considered  previously.  We  also list the 
minimum  required signal-to-noise ratio  for  a Reed-Solomon 
coded  system  which also employs diversity (see [6]). AS a 
comparison, the minimum signal-to-noise ratio to  achieve 
capacity for soft decisions with side information  is 6.72 dB at 
rate 0.24 bits per  dimension.  Binary  convolutional  codes  of 
rate 1/2 achieve error probability with signal-to-noise 
ratio of 9.57 dB and rate of 0.25 bits per  dimension.  For 
binary FSK with hard  decisions  and side information availa- 
ble, the capacity  is  achieved with signal-to-noise ratio of 7.82 
dB at rate 0.250 bits per  dimension,  while  binary  convolu- 
tional codes  require 1 1.96 dB at the same  rate.  For  hard 
decisions  without side information, the signal-to-noise ratio 
for  capacity is 7.98 dB,  while  convolutional  codes require 
16.73 dB.  As  can be seen,  binary  convolutional  codes are 
about 2 dB  away from  capacity with soft decisions  and side 
information,  and  more  than 8 dB  away from  capacity with 
hard  decisions  and no side information. 

The  models used  in this paper are quite general  and  can be 
used to evaluate the error probability of codes in  many other 
systems,  such  as  a  frequency-hopped  multiple-access  system 
where the interference results from signals of two or more 
users occupying the same  frequency at the same time. In that 
case the two-state model of Section I1 would be appropriate, 
with the bad state being  a hit from  one or more  other users. 
The analysis can  also  be easily extended  to  include  fading 
channels. 

APPENDIX A 

ERROR PROBABILITY FOR REPETITION CODES ON M - A R Y  
SYMMETRIC CHANNELS 

In this Appendix we derive the error probability for 
repetition codes  on  an  M-ary  symmetric  channel ( M S C ) .  Let 
p be the probability of a  symbol error on an MSC and let q = 
1 - p .  Also let X represent the input to the channel (X E 
(0, 1 ,  * a ,  M - 1 )) and Y the output. Then the probability 
that Y = y given that X = x is given by 

P {  Y = y l X = x }  = x = y  
IP / (Z-   l ) ,  X f Y .  

Assume the information  symbol  to be transmitted  is X = 
0. The repetition code  sends this symbol n times. The 
decoder  counts the number of times  each  symbol was 
received  and  chooses the one that had the largest count,  as the 
transmitted  symbol.  Let Yi, 0 5 i I M - 1, be the number 
of times that symbol i was received. For n = 1 the symbol 
error probability P,,, (1) is just p ;  for n = 2 the error 
probability P,,, (2) can be computed by considering the 

probability of correct  decision 

p c , m  = 1 - Pe,s(n). 
This can be computed  as 

Pc,,(n)=P(Yo=2}+P{ Yo= 1, r j=  1, some j#0}/2. 
The first term  is the probability that both  symbols  transmitted 
were  received correctly and  is  equal  to (1 - P)~. The  second 
term is the probability that a  tie  occurred, which is decided 
randomly  between X = 0 and X = j .  This is given by (1  - 
p)p so that 

PJ2) = (1 -p)2+p(1  -p) = 1 - p .  

For n = 3 we have the probability of correctly decoding 
(3) given by 

P C , S ( ~ ) = P { Y O ~ ~ }  

+1/3P{Y0=l,  Y;=l ,  y i = l ,  iz0, jz0,  i#j} 

=93+3P9z+9P(M-IP) M -  2 

M-2 
M -  1 

For n = 4 we  have 

PC,,(4) = q4 + 4q3p + 6q2p (- P )  
M -  2 
M -  1 

+3q2P-++P P (EP)(EP) M - 2  M - 3  
M -  1 

+ (M - 2)(M - 3) 

( M -  1)2 9P3- 

For n = 5 

M-2 + 15 -1 4 2 p 3  + ( M -  2)(M-  3)(M- 4) 
( M -  1)2 ( M -  113 9P4.  

For n = 6 

+ 20 
( M -  2)(M- 3) 10 

( M -  1)2 +-I ( M -  1)2 ir3p3 

+ [15 
( M -  2)(M-  3)(M- 4) ( M -  2)(M- 3) 

( M -  1)3 (M-  113 
+ 45 

+ 15 -1 M - 2  q2p4 
( M -  113  

+ ( M -  2)(M-  3)(M- 4)(M- 5 )  
( M -  1)4 QP’. 
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Notice in  each  case  that PJn)  is expressed as 

n - l  

PC,&) = aiqn-'p'. 
i = O  

For n = 7 the  coefficients  are 

1 ai 

0 1 

7 

21 

35 

4 35 [6 

5 21 [ 

( M -  2)(M- 3) ( M -  2)(M- 3)(M- 4) + 
( M -  1 ) 3  ( M -  1 ) 3  

+ 5  ""'1 
( M -  1 1 3  

( M -  2)(M- 3)(M- 4)(M- 5 )  
(M-  1 1 4  

+ 5  
( M -  2)(M- 3)(M- 4) ( M -  2)(M- 3 )  

+ 5  
( M -  1 1 4  (M-  1 ) 4  1 

( M -  2)(M- 3)(M- 4)(M- 5)(M-   6)  
6 

( M -  1 ) 5  

For any Mand n withp = (M - l)/M, Pe,Jn) = (M - 1)/ 
M .  We  can calculate an upper bound on P & z )  for any n by 
applying the union bound technique. This is calculated as 
follows: 

where Pe,s(2)(n) is the  error probability between two code- 
words of  a repetition  code of length n .  Assume without loss 
of generality  that  the  two  codewords are  the all zero's 
codeword  and  the  all  one's  codeword.  Then  the  probability 
of error  for this code with two codewords is 

1 
2 

P,,,(*)(n) = P{ Yo > Yl}  + - P {  Y, = YI} 

j r k a n  
j <  k 

+ 1 / 2  '3 ( ) ( 1 - p ) j  
j = O  j ,  j 

A simpler bound can be obtained by using the Bhattacharyya 

bound on Pe,s(*)(n). This bound is 

where D is given as 

D =  ( M&)p+2Jp(l - p ) / M -  1 . 

APPENDIX B 

REPETITION CODES ON TWO-STATE CHANNELS 
Consider a two-state channel described below.  The chan- 

nel when the  state is 0 is a binary symmetric channel with  bit 
error probability po. The channel when the  state is 1 is a 
binary symmetric channel with bit error probability p I .  A 
sequence of channel symbols xl, x2, * * , x, is  sent  over a 
sequence of channels. The state of the channel at any time j ,  
s j ,  is a random variable. The sequence { S i ) , =  is a 
sequence of i.i.d. random variables with P ( S ,  = 1) = p and 
P { S ,  = 0) = 1 - p.  A repetition  code is used on  this 
channel. When side information is not available,  the  overall 
channel is a BSC with error probability p p I  + (1 - p ) p o ,  
and the error probability of  a repetition  code  is a straightfor- 
ward calculation. With side information the maximum 
likelihood decoding rule  is calculated as follows.  Let do = 
number of 0's received on channel 0, dl = number of 0's 
received on channel 1, I = number of times out of n thal 
channel 1 was used, 

p ( y ,   s l x = ( l l l  * * .  1 1 ) )  

p ( y ,  SIX= (OOO * - * 00)) 

Assume first that po # 1/2 and p I  > pa. The maximum 
likelihood decision rule is then 

or 

PI  PI & $ d l  In - +do In - >- In - 
1 -P1 1-Po 7 2  l -P1  

n-1 Po +-ln-. 
2 1-Po 

An error  occurs if 0 is transmitted and 

In A>O 
or 

P1 n - [  P0 6>a/k- In -+- In - . 
2 1 - p ,  2 1 -p ,  



The  probability of error P, is   then  given  by M. B. Pursley  and W. E. Stark,  “Performance of  Reed-Solomon  coded 
frequency-hop  spread-spectrum  communications  in  partial-band inter- 
ference,” ZEEE Trans. Commun., vol.  COM-33, pp. 767-774,  Aug. 
1985. 
W. E. Stark, “Coding for frequency-hopped  spread-spectrum  systems 
with  banilwidth  limited interference,” in 1st Can. Domestic, Znt. 
Satellite Commun. Conf. Proc., June 1983,  pp. 9.4.1-9.4.4. 
G. C.  Clark and J. B. Cain, Error-Correction Coding for Digital 
Communications. New York:  Plenum,  1981. 
J. P.  Odedwalder, “Optimal  decoding of convolutional  codes,’’ Ph.D. 
dissertation, Sch. Eng. Appl. Sci., Univ. California, Los  Angeles, 
1970. 
-, “Dual-k convolutional  codes for non-coherent  demodulated 
channels,” in Proc. ZEEE  Znt. Telem. Conf., 1976,  pp.  165-176. 
A. J. Viterbi and J. K. Omura, Principle of Digital Communication 
and Coding. New York:  Academic,  1975. 
W. E. Stark and  R. J .  McEliece,  “Capacity  and  coding in  the  presence 
of fading  and jamming,” in Nut. Telecommun. Conf.  Rec., Nov. 
1981, pp. B7.4.1-B7.4.5. 
T:&sami and S. Lin,  “On  the  probability of undetected error  for the 
dxuimum distance  separable  codes,’’ ZEEE Trans. Commun., vol. 

W. C. Lindsey  and  M.  K.  Simon, Telecommunication Systems 
Engineering. Englewood Cliffs, NJ:  Prentice-Hall, 1973. 
S .  W. Houston, “Modulation  techniques for communication-Part I: 
Tone  and  noise  jamming  performance  of  spread  spectrum M-ary FSK 
and 2, 4-ary DPSK waveforms,” in Proc. IEEE Nut.  Aerosp. 
Electron. Conf.. June  1975, pp.  51-58. 
M. B. hrsley and W. E. Stark, “Ahtijam  capability of frequency-hop 
suread-swctrum with  Reed-Solomon  codine.”  in Proc. ZEEE Mili- 

COM-32,  pp.  998-1006,  Sept. 1984. 

If po = 0 or p 1  = 112 then  the  decision  rule  becomes 

0 

2do-(n-1)  SO l r n  
I 

0 

2dl-1 SO J=n. 
I 

That  is,  if I < n, examine  only  the n - I bits  that  are thry C/mmun. Conf., Oct. 31,  1983, pp. 7-11. 
received Over channel 0. If there  are  more  than  half 0’s then [17] w. E.  Stark, “Capacity  and  cutoff rate of frequency-hopped  channels 
decide 0, otherwise  decide 1. If I = n, then  decide 1 if there with  slow  Rayleigh fading,” in Proc. 20th Annu. AIIerton Conf. 
are  more 1’s received  than 0’s. Commun.,  Contr., Comput., Oct.  6-8,  1982, PP. 697-701. 

REFERENCES 
B. K. Levitt  and J. K. Omura, “Coding  tradeoffs for improved 
performance of FH/MFSK  systems  in  partial  band noise,” in Nat. 
Telecommun. Conf. Rec., Dec.  1981,  pp.  D9.1.1-D9.1.5. 
J. K. Omura  and B. K. Levitt,  “Coded error probability  evaluation for 
antijam  communication systems,” ZEEE Trans. Commun., vol. 
COM-30,  pp.  896-903, May 1982. 
H. H. Ma and  M. A. Poole, “Error-correcting codes  against  the  worst- 
case  partial-band jammer,” ZEEE Trans. Commun., vol.  COM-32, 
pp.  124-133, Feb.  1984. 
A. J. Viterbi  and I. M. Jacobs, “Advances in coding and modulation 
for noncoherent  channels  affected by fading  partial  band, and multiple- 
access interference,” in Advances in Communication Systems, vol. 
4 New York:  Academic,  1975,  pp.  279-308. 
B. D. Trumpis, “On  the  optimum  detection  of  fast  frequency  hopped 
MFSK signals in worst  case jamming,” personal  communication 
(preprint). 

[18] -, “Coding  for frequency-hopped  spread-spe&m  communication 
with  partial-band  interference-Part I: Capacity  and  cutoff rate,” this 
issue,  pp.  1036-1044. 

[19] W. C. Lindsey,  “Error probabilities for Rician  fading  multichannel 
reception  of  binary  and N-ary  signals,” ZEEE Trans. Inform. 
Theory, vol.  IT-IO,  pp.  339-350, Oct. 1964. 

[20] J. I. Marcum, “Statistical  theory  of  target  detection by pulsed radar,” 
ZEEE Trans. Znform. Theory, vol. IT-6, pp.  259-267,  Apr.  1960. 

[21] I. M. Jacobs, “Probability  of error bounds for binary  transmission  on 
the  slowly  fading  Rician channel,” ZEEE Trans.  Znform. Theory, 
VOI.  IT-12, pp. 431-441,  Oct.  1966. 

* 
Wayne E. Stark (S’77-M’78), for a  photograph  and  biography, seep. 774 of 
the  August  1985  issue  of  this TRANSACTIONS. 


