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Coding for Frequency-Hopped  Spread-Spectrum 
Communication  with  Partial-Band 

Interference-Part I: Capacity  and Cutoff Rate 

Abstract-The performance of optimal codes on frequency-hopped 
channels with partial-band interference is investigated. The performance 
measures considered are channel capacity and cutoff rate. Worst-case 
partial-hand Gaussian noise interference is assumed with  the interference 
independent of the transmitted signal. The capacity and cutoff rate  are 
calculated as a function  of the signal-to-noise ratio. We consider soft 
decision receivers and hard decision receivers  with  and without side 
information. Optimal code rates are found for each of the above cases. 
The required signal-to-noise ratio for reliable communication when codes 
are  used is determined as a function of the code rate. 

0 
I. INTRODUCTION 

VER  the  last  several years  there has been considerable 
interest in the problem of coding for channels with 

partial-band  interference.  Many  authors  have  considered  the 
performance of codes on such  channels [1]-[4] .  Some  work 
has also been done in computing  the  computational cutoff 
rate  for  certain  of  these  channels [5]-[9] .  These  papers show 
that the use of coding is extremely  important when consider- 
ing the worst  case  performance  against  an intelligent jam- 
mer.  Evaluation of  the coded error  probabilities [7], [ l o ] ,  
[ I  11 for antijam  communication  systems  show that gains  on 
the  order of 30-40 dB  can be obtained over uncoded systems. 

There  are  several key issues  that  arise when considering 
coding for spread-spectrum  communications in the  presence 
of partial-band interference. One issue is whether or not the 
decoder knows if the  received  signal has been jammed or not. 
Naturally,  the  decoder  knowing  and using this side  informa- 
tion in a clever way can improve the performance  compared 
to coding without side  information  available.  Another  issue 
that must be addressed is that of interleaving. If we are 
considering a fast  frequency-hopped (F’FH) spread-spectrum 
( S S )  communication  system,  then  there is  just  one symbol 
transmitted per  hop and interleaving  is  unnecessary.  How- 
ever,  for slow  frequency-hopped  (SFH)  spread-spectrum 
communication with multiple  symbols per  hop,  the symbols 
in a single  hop  are  subject  to  the same  type of interference, 
and  thus,  the  errors that occur  on  different  symbols in the 
same  hop are dependent.  Interleaving  these  symbols  breaks 
up the memory of the channel and allows the use of random- 
error correcting codes. Alternatively, burst-error correcting 
codes could be used without interleaving. The papers that 
consider error-correction usually consider only random-error 
correcting codes with interleaving (or fast frequency hopping). 

In  this  paper  we  examine  the  performance of codes in 
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terms of the  channel  capacity and channel cutoff rate.  We 
consider  the  following  cases. 

SFH (with one or more  symbols per hop) 

Side  information  available 

No side  information  available 

Soft decisions 

Hard decisions. 

We model the interference (jammer) as adding noise to  the 
transmitted signal. We  also make the assumption that the 
jamming signal is independent of the transmitted signal (i.e., 
repeat-back jammers and frequency follower jammers  are not 
considered). In Section I1 we describe  the channel models that 
will be used  in the analysis. In Section I11 the capacity of SFH 
channels will be  derived. In Section IV the corresponding 
analysis will be made when the cutoff rate is used as  the 
performance criterion. Finally, in Section V we will give 
numerical results and draw conclusions. In Part I1 of this paper 
the performance of specific codes will be analyzed. 

11. CHANNEL MODELS 
The block diagram of the  communication  system  we are 

considering  is  shown in Fig. 1 .  The model we  employ for  the 
frequency  hopper  and dehopper  is that of [12] and will be 
summarized  here. The data  signal b(t) is a sequence of 
nonoverlapping  rectangular  pulses of duration T.  The ampli- 
tude of  the Ith pulse of b(t), IT 5 t < (I + 1)T, is the 
random  variable X,  which takes values in the  input  alphabet 
A .  For MFSK with M orthogonal  tones, A = (0, 1 ,  * * - , M 
- 1 } . We  treat  the  sequence X i ,  i 1 0, as  the coding  channel 
input  (shown in dotted  lines in Fig. I) .  

As in [12]  the MFSK  modulator  output, when b(t) is the 
input,  is  the  signal 

c (t)  = COS (27rvc + b(t)A] t + O(t)) (1) 

where A is  the  spacing between MFSK  tones  and e(?) is  the 
phase  signal  introduced by the modulator. If b(t) = j ,  IT 5 t 
< (I + 1)T, then e( t )  = 6, for IT I t <: (I + 1)T, where 0, 
is a random  phase. We note here  that, while we  described  the 
modulator for MFSK as that of M orthogonal  tones, the 
results  presented here  are applicable  to  any  set of M 
orthogonal  signals. 

The frequency  hopper  then  changes  the  frequency  accord- 
ing to a hopping  pattern f(t) which is a sequence of 
nonoverlapping  rectangular pulses of duration Th with f ( t )  = 
fi, jTh 5 t I ( j  + l )Th,  where Th is  the time between hops 
and fJ E S = { Y, , v2, . . . , vq} . The  set S is the  set of 
frequencies  to which the  signal  is  allowed  to  hop.  Some 
necessary restrictions  on S are given in [12]  for MFSK with 
M = 2, which may be easily extended for M > 2. The 
number of symbols per hop is taken to be N, where N, = 
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Fig. 1. Communication system block diagram. 

Th/T.  The  output of the  frequency  hopper  is  the waveform 

s(t )  = J2P cos (2nf(t)t + $(t)) (2) 

where 

and 

$(t) = 6(t)  + (Y(t). (4) 

In (4)  a(t) is  the  random  phase  signal  introduced by the 
frequency  hopper  with a(t) = cyj in the intervaljTh 5 t 5 ( j  
+ 1)Th. In (2)  P is  the  power of the  received  signal.  See [ 121 
for  further  discussion  of  the  signal  models  used. 

The  jamming  signal j ( t )  at  the  receiver  will  be  modeled  as 
a  weighted  sum  of  bandpass  Gaussian  processes: 

4 
j ( t )  = Zi(t)ji(t) ( 5 )  

i =  I 

where { j i ( t ) :  0 5 t 5 m} is  a  Gaussian  noise  process  with 
spectral  density NJ over  a  bandwidth of W/q Hz centered  at 
frequency f, + vi + (M - l ) A / 2 .  Here W is  the  total  spread 
bandwidth  of  the  transmitted  signal.  The  power  of  each 
signal, j i ( t ) ,  is  then NJ W/q. In (5 )  Zi(t) is  a  sequence of 
nohoverlapping  rectangular  pulses of duration nTh, where 
&(t) = Z i , !  for ITh 5 t < ( I  + l )Th.  We  assume  that  the 
spectral  density Si(w) of j i ( t )  is such  that si(cd)&(w) = 0 for 
all w and i # k .  Thus, j i ( t )  andjk(t)  are independent  random 
processes  for i # k .  

The  jammer has  the  freedom  to  choose  the  distribution of 
the random variables Z i . l  subject  to  an  average power 
constraint: 

The  strategy  for  a  partial  band 
following  distribution  for Z ~ J :  

P{z,,J=o} = 1 --p 

I q. (6) 

jammer  is  to  choose  the 

O < p S l  (7) 

P{ZjJ=Jl/p} = p  

where p is  a  constant  that  represents  the  fraction of band  that 
has  interference.  The  average  power  constraint (6) with  the 
assumption  that Z i ( t )  and j i ( t )  are independent  yields  total 
average  power  of  the  interference of NJ W.  Also,  for  each i, 
Z i , /  is  a  sequence of independent,  identically  distributed 
random  variables  with  statistics  given by (7). The received 
signal f i t )  is  then  given by 

r ( t )=s ( t )+ j ( t )+n( t )  (8) x , .  , . . ,  

1 0 3 7  

where n(t)  is  the  thermal  noise,  which  is  a  white  Gaussian 
noise  process  with  spectral  density N0/2 .  The received  signal 
is  first  dehopped by an  ideal  frequency  dehopper.  The  output 
of  the  frequency  dehopper, rd(t) ,  can  be  written  as 

~ d ( t )  = 6 P  COS [ 2 r ( f c  + b( t )A) t  + $(t) + P(t)] 

+ 2 b ( v k ,  f(t))zk(t)jk(t) + n(t)-  (9) 
k=  1 

In (9), 6(u, r) = 0 if u # r and 6(u, u )  = 1 .  Also, n( t )  is  a 
band-limited  white  Gaussian  noise  process with bandwidth 
much larger  than  that of the  demodulator  and p ( t )  is  the  phase 
signal  introduced by the  dehopper.  The  factor 6(vi, f(t)) in 
the  middle  term  of (9) represents  the  filtering  done by the 
dehopper. 

The  demodulator  we  consider  processes  the  received 
signal by computing  the  M-dimensional  vector Y, =   YO^, 
Y l j ,  * -, YM-,J where 

y. .= y.. 2 +  y.. 2 
1.J 1 J . C  l , J J  (10) 

Y. = { rd(t) cos 27rdfc + iA)t dt 
(i+ l b  

j 7  
L J s C  ( 1  la) 

and 

(i+ I)r 

i7 

Y .  bJ,s = { rd(t) sin 2adfc+ iA)t dt. U l b )  

For  slow  frequency  hopping  (SFH), 7 in (1 1) is  just T and 
Ns = Th/T  is the  number  of  symbols  per  hop.  Define the 
integers I and n by 0 5 I < Ns and j = nNs + 1. Then 5 is 
the  channel  output  of  the Ith symbol  of  the  nth  hop.  Then, 
using (9) in (1 1) we  can  write 

Yi j , ,=JP/2  S(& i ) T  cos (qj) 
9 

+ a ( v k ,  f n ) Z k , n q k , j , s +  t j , s  ( 12a) 
k=  1 

~,~,,=.\lP/2 6 ( ~ , ,  i )  T COS (qj) 

4 
+ 8 ( v k ,  f n ) Z k , n q k , j , s + f j , s  (12b) 

k=  I 

where 

*j=6j+CY,+Pn. (1 3) 

Also in (12)  ?lj,k,cr Vj,k,s, and $jp are independent 
sequences  of  independent,  identically  distributed  (i.i.d.) 
zero-mean  Gaussian  random  variables.  The  variance of 7 k j . c  
and is N J T / ~  while  the  variance of GjVc and i j j , s  is NoT/4.  
Notice  in (12) that  the  random  variables  subscripted  with n 
change  only  every  hop,  whereas  those  subscripted  with j 
change  on  every  symbol of every  hop.  The  random  variables 
that are fixed  for  an  entire  hop  cause  the  channel to have 
memory.  However,  conditioned  on  these  random  variables, 
the  channel  is  memoryless.  The  channel  is  memoryless  from 
hop to hop  and  fits  exactly  the  model in [ 131 of channels  with 
memory.  Let S,, be  a  sequence of random  variables  defined  as 
follows. Iff, = vk for  some k,  1 5 k 5 q, then s,, = 1 if 
z k , , ,  # 0 and s,, = 0 if zk,, = 0. The distribution of s, is  then 

P { S , = O }  = 1 --p 

PIS.= 11 =o.  (14) 
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The  random  variables in (12) can  easily  be  shown  to be 
Gaussian when conditioned X,, q,, and S,, with mean 

EIYj,j,cIXj, qj, S n ] = J p / 2  a(&, i ) T  cos 9, (15a) 

and  variance 

The  conditional  density  of Y;j can be computed  as 

p(y; j lxj=l ,  S n )  

I + i  

where 

1 1 
&=- S,,NJT p + -  NOT 

4 1 4  

A = PT2/2 
and I o ( X )  is  the  modified Bessel function of order 0. 

tioned  on Xi and S,  is  given by 
The  joint  density  of  the  random  vector Yj when condi- 

M- I 

p(yj lxj=l ,  S n ) = n  pcYijIq=I, S J -  (1 8) 
;=o 

Furthermore,  the  channel with input X, and  output Yj is  a 
memoryless  channel only when conditioned  on S, .  However, 
if  we let X @ )  = (X,,,  XnN,+l, - . , X(,+ I ) p , - l )  and Y(") = 

input X(") and output Y(,) is  a  memoryless  channel. 
The  channel with input X(") and output Y(") is  called  the 

channel  with  soft  decisions  and no side  information. If in 
addition  to Y("), S,, is  an  output  of  the  channel,  then  this is 
called  the  channel  with soft decisions and side  information. If 
the  receiver  after  computing  chooses  the  index  of  the 
largest  component  as  the  transmitted  symbol,  then  the 
receiver  has  made  a  hard  decision.  The  probability  that  the 
receiver  makes  an error on  any  symbol of the  nth  hop  is  given 

(YnN,, YnN,+I, , Y((n+l)N,-  I ) ) r  then  the  channel with 

by 

where E = PT.  For  hard  decisions  without  side  information 
available,  the  channel  output  is just the  index of the  largest 
component  of Yj which,  for  each j = nN, + I ,  is just an M- 
ary  symmetric  channel with transition  probability P,,,("). For 
hard  decisions  with  side  information  available,  the  channel 

output is the  index of the  largest  component of  and the 
value of S,,. 

For  the  purposes  of  this  part of the  paper, we  will assume 
that  the  thermal  noise is negligible (i.e., No = 0). However, 
in Part I1 of the  paper  this will not be assumed. When No = 0 
and S,  = 0, (17) is no longer  valid. In this case K j  = (PT2/ 
2)6(x i ,  i ) .  For No = 0 and S,  #0 ,  P{  Yii= (PT2/2)6(X,, 
i)) = 0 SO that side  information is available  implicitly.  For 
other decoding rules (suboptimal decoding), soft decisions 
may  not imply that side  information is present.  For these soft 
decision decoding rules with  no side  information,  the  perform- 
ance is generally  poor when there is a  partial band jammer (see 

111. SFH CHANNEL  CAPACITY 
In  this  section we compute  the  capacity of a  slow 

frequency-hopped  spread-spectrum  system  subject  to  partial- 
band jamming.  We  first  consider  the  case  of  side  information 
present,  then  the  case of no side  information  present. When 
side  information  is  present,  the  channel  capacity is indepen- 
dent  of  the  number of bits  per  hop or the  channel  memory 
[ 131. Without  side  information  the  channel  capacity  is  less 
than the  capacity  with  side  information,  and  increases  to  the 
capacity with side  information  as N, becomes  large [ 131. 

The  capacity of the  channel is obtained  from  a  game 
theoretic  formulation in which the  transmitter  (coder)  is 
allowed  to  choose  any  distribution  on  the  channel  input,  and 
the jammer is  allowed  to  choose  any p E (0, 13 as the 
fraction of the  band  that  is  jammed.  The  payoff  function  of 
the  game is the  mutual  information  between  the  channel  input 
and output.  The  coder  chooses  his  distribution on X(, )  in 
order  to  maximize  the  mutual  information,  while  the  jammer 
chooses p E (0, 11 in order  to  minimize  the  mutual 
information.  The  channel  capacity  is  then  given by 

1141). 

C =  maxmin Z(X("); I"")) = min maxZ(X("); F")) (20) 

when no side  information is available, and when side 
information  is  present  the  capacity  is  given by 

X(") p p X'") 

C= max  min z(x@); Y("), s,,) = min maxz(X(n); Y("), s,). 
(21) 

X'") p p XI"' 

In [15]  it  has been shown  that  the  optimal  distribution on X @ )  
or coding  strategy  is  to  choose X(n)  to be a  vector of i.i.d. 
random  variables.  It  also  can  be  shown  [16,  p. 6 4 1  that  the 
optimal  distribution  of X, is  the  uniform  distribution on A ,  
since this is  a  symmetric  channel.  Thus, we let X, have 
uniform  distribution on A .  The  justification of C and as the 
channel capacity is given in the Appendix. 

A .  Side Information Available 
First  consider  the  case  of  side  information  available.  In 

this  case  the  capacity is independent  of  the  number of bits  per 
hop, so we assume  without  loss of generality  that N, = 1. 
With this  assumption  the  mutual  information  is  given by 

Z(X,; q, Sn)=pZ(Xj; TISn= 1) 

+(1 -p)Z(X,; IqS,=O). (22) 

Furthermore, if S,, = 0 then  there  is  no  noise so that I(Xj; 
YJlS,, = 0) = 1  symbol when the  coder  chooses  the  uniform 
distribution  on A .  When S,, = 1 the  mutual  information  is 
determined  from  the  channel  statistics  given in (17) and (18): 



STARK: CODING FOR FREQUENCY-HOPPED  SPREAD SPECTRUM-PART I 1039 

The  above  integral is  an  M-dimensional  integral  which  can  given by 
be evaluated  numerically  for M = 2.  For M > 2 numerical 
evaluation  becomes  computationally  difficult. To compute 1 M  
the  capacity,  however,  requires  the  computation  of min I ( 4 ;  P,,,(Ep/NJ) =- (-  I)j(Y) exp I-” (1 - 1/J1] 
yi ,  Sn): M j = 2  NJ 

min I(Xj;  y i ,  S,) = min [( 1 - p )  + PCM(EP/NJ)] (23) (3  1) 

where  which  is (19) with No = 0. The  capacity c~(p )  of an  M-ary 
symmetric  channel  with  crossover  probability p is given by 

P P 

CM(Ep/NJ)=Z(X,; yilSn= 1). (24) 

&(p) = 1 + (1 - p )  logM (1 - p )   + p  logw ( P / ( M -  1)). 
Here we take  as  our  unit of capacity  M-ary  information 
symbols/M-ary  channel  symbol.  For  the minimum of (23), (32) 
the  worst  case p ,   p * ,  satisfies 

Thus, with side  information  available and hard  decisions,  the 
capacity  of  an  M-ary FSK channel  subject  to  partial-band 
jamming  is  given by 1, E/NJ C TM 

p* = TM - E.lNJ? TM 
(25) 

E/NJ ’ cM(pe,s(E/NJ)), E/NJ C TM 
TM- T&,,,(Pe,s(TM)) 

where T M  is  the  solution  to 1- E/NJ ’ E/NJ>,TM 

With p given  in (25),  the  minimum  mutual  information is 
given by 

(27) 
Since  the  capacity  is  the  maximum  of  the  minimum  mutual 
information and is  achieved by a  uniform  input  distribution, 
we have 

where ‘TM is  a  constant. 

B. No Side Information 
Next consider  the  case  of no side  information  available  and 

hard  decisions.  Consider  the  case Ns = 1 .  Again,  the 
jammer’s  strategy is to choose p to  minimize  the mutual 
information.  However,  because  the  capacity  is  a  decreasing 
function of the error probability when the error probability  is 
less  than (M - l)/M, an  equivalent  strategy  for  the jammer 
is to  maximize the error probability. The error probability is 
given by the  average of the error probability when S, = 1 
and the error probability when S,, = 0. 

G(E/NJ) ,   E /NJ<  TM The  error probability  is  assumed  to  be 0 when S,, = 0. The 

T’M[ 1 - CM(TM)] (28) maximum error probability  is  given by 

1- 
E/NJ 

9 E/NJ>TM.  pe,s(Ep/NJ) = oy$ Ppe,s(Ep/NJ) 

For  binary FSK with soft decisions, C2(x) has  been 
computed  as [17] Pe,s(E/NJ)  E/NJC AM 

p e , s ( E / N J )  = AMP~,~(AM) I E/NJ 
E/NJ? AM 

- exp { -(Yo2+Y12))f(x, Yo, Y l )  dY0  dYl (29) (35) 
where  where AM is  a  constant.  This  constant AM is the  same  as  that 

found by Houston [ 11 when computing  the  worst  case  partial- 
band jammer  for  M-ary FSK.  The  capacity  is  then  found 
using (32) as f ( x *  Yo, Y l )  = Io(2xYo) log;? 

Using (29) in (28) we have,  for soft decisions  with  side 
information, CM(E/NJ) = 

eM(pe,s(E/NJ))  E/NJ< AM 
(36) 

( E/NJ ) AMPe,s(AM) E/NJZ AM. 
C ~ ( E / N J )  E/N~<2.4137 

(30) 
When N, > 1 ,  the  channel  exhibits  memory  since  all  bits 

no side  information  is  available,  then  the  channel  capacity 
When  hard  decisions are made,  the  channel  with Sn = 1  is  depends on the  memory  length Ns. When  the  receiver  makes 

just  an  M-ary  symmetric  channel  with  crossover  probability  hard  decisions,  the  capacity  for  M-ary FSK is  calculated as 

E/NJz  2.4137.  during  a  particular  hop  are  either  jammed  or not jammed. If 
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[ 15, Appendix  A] 

o < p s  I 

where f f m , k  is defined  as 

The  minimization in (37) must  be  done  numerically  for N, > 
1 .  

V. SFH CHANNEL  CUTOFF RATE 
In  this  section  we  derive  the  computational  cutoff  rate  for 

channels  with  partial-band  jamming  and  noncoherent  demod- 
ulation. We  consider  both  cases  of  side  information  availa- 
ble.  Some  of  these  results  have  appeared  previously  in  the 
literature [6], [7], [9] for memoryless  channels (N, = 1). 
Here  we  present  new  results  on  the  cutoff  rate  for  channels 
with memory (i.e., N, > 1). In [7] and [9] a  different 
definition  (based  on  suboptimal  decoding) of cutoff  rate  is 
used for  the  case of soft  decisions  than  that  used  here. We 
consider  the  cutoff  rate  based  on  log-likelihood  decoding  and 
compare  the  result  to  that  in [7] and [9]. We find  that  for soft 
decisions  the  difference  is 0.14 dB  in  signal-to-noise  ratio. 
We  derive  the  form  of  the  cutoff  rate  when  evaluated  for  the 
worst  case  partial-band  interference  and  determine  the 
optimal  code  rate for minimizing  the  signal-to-noise  ratio 
required for reliable  performance.  The  cutoff  rate  is  consid- 
ered  for  three  cases:  i)  side  information  available, soft 
decisions,  ii)  side  information  available,  hard  decisions,  and 
iii) no  side  information  available,  hard  decisions.  For  cases 
ii)  and  iii)  the  cutoff  rate is also  determined  when  the  channel 
has  memory. 

A .  Side  Information  Available 
We  consider  first  the  case of side  information  available. 

Unlike  the  channel  capacity,  the  cutoff  rate with side 
information  depends  on  the  memory of the  channel. From 
[13] the  cutoff  rate with side  information  can  be  written as 

where 

J(,y)=M-% (40) 

and Ro,, is the  cutoff  rate of the  channel  when S,, = s. In 
deriving (39) and (40) it was  assumed  that  the  input 
distribution  that  achieves  the  cutoff  rate  is  the  same  for  both 
channels.  This  is  valid for  all  cases  considered  here. 

When S,, = 1 the  channel  statistics are that of an  M-ary 
FSK additive  Gaussian  noise  channel [see (1 7)] with signal- 
to-noise ratio Ep/NJ. The cutoff rate Ro(Ep/NJ) = 
-logMJM(Ep/NJ) is achieved  with a uniform  input distribu- 
tion on A .  When the  jammer is off, the channel is noiseless, so 
the cutoff rate is 1 (measured in M-ary units) and is also 
achieved  by a  uniform input distribution.  The cutoff rate of the 
composite channel (with N, = m), measured in  M-ary 
information symbolslM-ary channel symbol, is then 

where 

jM(m)(E/NJ) = max pJMm(Ep/NJ) + ( 1  - p )  
o < p 5  I 

The  worst  case  value of p = p* has  the  form 

E/NJ < OM, m 

where uM,m is  the  solution of 

J M ~ ( X )  + mXJM"-'(X)J(X)= 
When (43) is used  in (41), we  obtain 

(43) 

(44) 

(45) 

where EM,, = OM,,  JM" ( u M , ~ )  - I V - ~ U M , ~ .  From (45) and 
(41) we obtain RO,M(m)(E/NJ) as 

The constants EM," and uM,m depend  on  the  type of receiver 
(e.g., hard  decisions or soft decisions)  and  the  memory 
length of the channel. 

When  the  receiver  does not do any quantization (i.e., soft 
decisions),  then JM(x) for  an  additive  white  Gaussian  noise 
channel with E/NJ = x is  given by [ 181 

For m = 1 it is easy to check  that  the  maximization  in (42) is 
independent of M .  In  this  case (m = 1) the  cutoff  rate  is 
given by 

This  result  has  the  same  form as  the mismatched cutoff  rate 
calculated  in [9] and [7] with the  factor of 1.424 replaced by 
4e-I = 1.471 5 .  The cutoff  rate  defined  in 171 is based on a 
suboptimal  (square-law  combining)  decoding rule, while  the 
cutoff  rate  given  in (34) is  based  on  a  maximum  likelihood 
decoding  rule.  Since  square-law  combining  is much easier  to 
implement  than  log-likelihood  combining,  the 0.14 dB 
advantage of log-likelihood  combining  does not appear  to 
merit  its  use  in any coded  system. 
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For hard  decisions &(x) is  given by [16] results  we  will  plot  this  minimum  required  signal-to-noise 

where P,,,(x) is  given by (19) with No = 0,  S, = 1 ,  and x = 
E/NJ. 

B. No Side Information Available 
With  hard  decisions, no side  information  available,  and Ns 

= 1, the  optimal  strategy  for  the jammer is  to  maximize&e 
average  symbol error probability  given in [34]. The  cutoff 
rate  is  then 

where JM(') is  given  in (49) with Pe,,(x) given in (35). 
When N, > 1, the  cutoff  rate is given by 

and (]IN& is  given  in (38). 

VII. NUMERICAL RESULTS 

In this  section we present  numerical  results  to  indicate  the 
bit signal-to-noise  ratio  needed  for  reliable  communication 
on  channels  with  partial-band  jamming. We present  results 
for  both  the  channel  capacity and the  cutoff  rate. 

The  minimum  value of that  is  needed  for  reliable 
communication  is  determined  from  the  channel  capacity  in 
the  following  manner.  The  capacity is a  function of the 
symbol  signal-to-noise  ratio: C(E/NJ). From the  channel 
coding  theorem  there  exist  codes of rate r in M-ary  units 
(i.e.,  M-ary information  symbolslM-ary  channel  symbols) 
such that  reliable  communication  (arbitrarily  small error 
probability)  is  possible,  provided 

r c C (E/NJ). 

This  is  equivalent to 

E/NJ>C-'(r). (52) 

The  bit  signal-to-noise  ratio  can  be  determined  from  the 
symbol  signal-to-noise  ratio by 

Using (53) in (52) we  obtain 

Eb/NJ> c- (T)/r log2 M (54) 
as  the  necessary  condition  for  reliable  communication. The 
interpretation  is  that  there  exist  codes of rate r such  that  the 
error probability  will  be  arbitrarily  small,  provided (54) is 
satisfied.  This  obviously  does not say  that  all  codes  of  rate r 
will  have error probability  arbitrarily  small  for  all Eb/NJ 
satisfying (54), only  that  there  exist  such  codes.  Further- 
more,  from  the  converse  to  the  coding  theorem, we know 
that  no  codes  exist  that  have error probability  arbitrarily 
small with rate  greater  than  capacity.  This  is  equivalent  to 
saying  that no code of rate r can  have error probability 
arbitrarily  small with Eb/NJ less  than  the  right  side of (54). 
Thus, (54) is a  necessary  condition  for  any  code of rate r to 
have  arbitrarily  small  error  probability.  In  the  numerical 

ratio  for  reliable  communication as a  function of the  code 
rate r.  

If E/NJ 2 (PM, then  using (28) and (54) we  have 

or 

as  the  necessary  condition  for  reliable  communication. If we 
wish to use the  best  possible  codes,  then  we  choose  the  code 
rate  that  minimizes  the  energy  necessary  for  reliable  com- 
munications.  The  minimization  of (56) is  easy  and yieIds the 
optimum  code  rate of 1/2. For  this  code  rate  the  signal-to- 
noise  ratio  necessary  for  reliable  communication  becomes 

In (55)  and (56) it  was  assumed  that E/NJ > TM. So, 
provided CM(T") < 1/2, optimal  codes  have  rate 112. So far 
we have not specified  the  type  of  receiver (e.g., hard 
decision, soft decisions),  but  only  that  side  information is 
available.  For  the soft decision  receiver  the  capacity  is  given 
in (30) for M = 2. For  this case we have  that "2 = 2.4137 
and Tz[l - C2(T2)] = 2.4137. Notice  that in this  case T2 = 
2.4137 and Cz(TF,) = 0.5136 > 1/2 so that (55)  and (56) are 
not valid.  The  optimal  code  rate  can  in  fact be found to be 
0.48 with Eb/NJ = 6.72 dB. For  hard  decisions  and  side 
information  available,  the  .constants  for  determining  the 
capacity  in (39) are shown  in  Table I.  For M = 2, 4, 8, 16, 
and 32,. CM(TM) is  less  than 1/2. This  means  the  best  codes 
have  rate 1/2. The  minimum  required  signal-to-noise  ratio 
(Eb/NJ)min is given as the  right-hand  side  of (57). This  is  also 
listed in Table I. 

When  side  information  is  unavailable  and  hard  decisions 
are  made,  the  capacity  is  given by (36). The  values of AM, 
C M ( A ~ )  are given  in  Table 11. The optimal  code  rate  without 
side  information  can  be  calculated in a  similar  fashion  to  the 
calculation  with  side  informatiqn  (see [19]). The  optimal 
code  rate  depends  on M and is given  in  Table 11. 

Some  researchers  consider  the  cutoff  rate  as  the  upper 
limit  of  code  rates  for  which  "practical"  and  reliable  coding 
schemes  exist. For channels  with  memory,  however,  it  does 
not seem  that  the  cutoff  rate  is  a  good  measure of the  code 
rates  for  which  practical  coding  schemes  exist  (see [13]). If 
we  use  the  cutoff  rate  as  a  measure of the  channel,  the  same 
analysis  yields 

Eb/NJ>RO,M- l(r)/r log2 M (61) 
as the  necessary  condition  for  "practical" and reliable 
communication. As with  channel  capacity,  there  is  an 
optimal  code  rate  which  minimizes  the  energy  per  informa- 
tion  symbol  necessary  for  reliable  (and  practical)  communi- 
cations.  The  optimal  code  rates  can be found 1191 for  each 
value of M and are given in Table I11 along with the minimum 
value of Eb/NJ for soft decisions with side  information.  In 
Table IV the  constants used in (46) to evaluate  the  cutoff  rate 
with hard  decisions and side  information are given along with 
@e minimum required signal-to-noise ratio.  In  Table V we 
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TABLE I 
CONSTANTS FOR DETERMINING CAPACITY WITH HARD D E C ~ I O N ~  AND 

SIDE INFORMATION AVAILABLE AND OPTIMAL CODE RATES 

M TM " M )  (EdNJ)mm (dB) rq 

2  3.017 0.4982 7.82 0.50 
4 3.275 0.4878 5.26  0.50 
8  3.661  0.4721  4.11 0.50 

16 4.015 
32 

0.4540 
4.388 

3.41 0.50 
0.4354  2.97 0.50 

-~ 

TABLE I1 
CONSTANTS FOR DETERMINING CAPACITY WITH HARD DECISIONS AND 

NO  SIDE INFORMATION AVAILABLE AND OPTIMAL CODE  RATE 

AM P~,S(AM) CM(AM) (Eb/NJ)mm (dB) rOm 

2  2.000 0.184 0.311  7.98 0.379 
4  2.383 0.293  0.331  5.48 
8  2.782 0.369 

0.396 
0.338 

16 3.194  0.426 
4.28  0.410 

0.338 3.59 0.422 
32 3.613  0.472  0.333  3.17  0.431 

TABLE I11 

TO-NOISE RATIO WITH SOFT DECISIONS AND  SIDE INFORMATION 
AVAILABLE 

OPTIMAL CODE RATES (FROM CUTOFF RATE) AND MINIMUM SIGNAL- 

M (Eb/NJ)mln (dB) TOPI POP 

2  8.33 0.454 0.927 
4  6.14 0.405 0.861 
8 5.20 0.355 0.813 

16 4.74 0.308 0.781 
32 4.52 0.266 0.763 

TABLE IV 
OPTIMAL CODE  RATES (FROM CUTOFF  RATE)  AND MINIMUM SIGNAL- 

TO-NOISE RATIO WITH HARD DECISIONS AND SIDE INFORMATION 
AVAILABLE 

M ~ M , I  CM,I (Eb/NJ)m,n (dB) r o p ~  Pop1 

2  4.268 1.007 9.84 0.454 0.974 
4 4.224 1.502 7.67 0.405 0.895 
8  4.245 1.825 6.86 0.355 0.822 

16 4.314 2.063 6.64 0.308 0.760 
32 4.460 2.291 6.72 0.266 0.714 

give the corresponding constants for the cutoff rate with  hard 
decision and no  side information when the memory length N, 
= 1. 

We will compare  our  results  for  partial-band  jamming with 
the  results  for  the  uniform  jamming  case  (i.e., p = 1). In all 
figures  we will plot the lower bound in (60) or  (61) as a 
function of the  code  rate. In  Fig. 2,  Eb/NJ necessary for 
reliable  communication is shown for binary FSK with soft 
decisions (side information  available).  Notice that for small 
code  rates (< 0.5 13),  the optimal strategy  for  the  jammer  is 
uniform jamming (p  = 1) .  The fact that for small code  rates 
Eb/NJ increases  is  due  to  the  noncoherent  combining  loss 
encountered with noncoherent  reception of binary FSK. The 
same results for binary phase-shift  keying  with coherent 

TABLE V 
OPTIMAL CODE RATES (FROM CUTOFF RATE) AND MINIMUM SIGNAL- 
TO-NOISE RATIOS WITH HARD DECISIONS AND NO SIDE INFORMATION 

AVAILABLE 

M (Eb/NJ)rnm (dB) rapt P o p  

2  10.40 0.247 0.738 
4  8.24 0.239 0.746 
8  7.43 0.228 0.734 

16 7.16 0.215 0.713 
32 7.18 0.205 0.689 

20 

.. . . . . . . .. . . . . . . . .. . . . . . Portlal-bond lamming 

15 - Uniform  jammin9 

5 -  

0 I , I , I , I ,  

0.0 0.2 0.4 0.6 0.8 1.0 
Code  Rate r 

Fig. 2. Eb/NJ needed to achieve  capacity for binary FSK with soft decisions 
(side  information available). 

2 0  _ _ _  Partm-bond lamming 
wthout side  informotion ji 
memory m = 8  ,j; mrtml-band  Jamming 

Unifwm pmming 

5 -  

0 I , , . , . , *  

0 0  0.2 0.4 0.6 0.8 1.0 
Code  Rate r 

Fig. 3. Eb/NJ needed to achieve  capacity for binary  FSK  with  hard 
decisions. 

reception ([20] or [15]) show that the necessary signal-to- 
noise ratio  decreases as  the code  rate  decreases  approaching 
the limit of - 1.59 dB. 

In  Fig. 3 the corresponding results are shown for hard 
decision  FSK. In this figure both cases of side  information 
availability are shown. Notice again that for small  rates 
uniform  jamming  is  optimal, which means side information 
is not needed, but for  large  rates  side information  can be 
worth between 1 and 5 dB. Also shown in Fig. 3 is  the case of 
no  side  information and memory 8 (N, = 8 bitdhop).  This is 
slightly better  than  the  case N, = 1 .  Without  side  informa- 
tion as N, + 03, the Eb/NJ necessary for  reliable communi- 
cation approaches &/NJ necessary for  reliable communica- 
tion when side  information is  available [13]. In  Figs. 4-6 we 
show the  corresponding  results for A4 = 8 ,  16, and 3 2 .  

Numerical  results for  the cutoff rate  parameter are given in 
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cv 
~ I-- pati-m jmminp 

............... ..... ........ Partial-band jamming 
wilhout side infcfmotim I 
with tido infomrnicm li 

Miform junminq /, I5 
m -  

- / i '  

0 I I I I I I I I  

0.0 0.2 0.4 0.6 0.8 1.0 
Code  Rate r 

Fig. 4. Eb/NJneeded  to  achieve capacity for 8-ary FSK  with  hard decisions. 

Partial-band pmminp 

Pwiiial-bond  jamming 
without  side infamalion 

wiih skie information I 
l! / i  /I 

// 

0 - " " ' 1 " ' -  
0.0 0.2 0.4 0.6 0.8 1.0 

Code Rate r. 
Fig. 5 .  EJNJ needed to achieve capacity  for 16-ary FSK with hard 

decisions. 

Partial-band  pmminq 
with  si& informmian 

15 - Uniform  jamminq 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

Code Rate r 
Fig. 6.  &INJ needed to achieve capacity for 32-ary FSK  with hard 

decisions. 

Figs. 7-9. In  Fig. 7 the  results  for  binary FSK with soft 
decisions  (side  information  available)  is  shown.  In  Fig. 8 the 
results  for  hard  decisions are shown.  In  this  figure we also 
show  the  case of memory 5 and  10  with  and  without  side 
information.  Notice  that  increasing m decreases  the  cutoff 
rate  or increases  the  necessary  signal-to-noise  ratio to 
achieve  the  cutoff  rate.  This  is  a  general  phenomenon  of  the 
cutoff rate [13]. That  is,  the  larger  the  channel  memory,  the 
smaller  the cutoff rate, while the  opposite  is  true  for channel 
capacity.  Finally, in Fig. 9 the  results  for  32-ary FSK are 
shown. 

In  Part I1 of  this  paper  we  will  determine  the  performance 

20 

Partial-  band jamminq 

I5 - . - thiiorm jamming j 

,..' 

,.... 
w -  

._...C-'-'' 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

Code  Rate r 
Fig. 7. Eb/NJ needed to achieve cutoff rate for binary FSK  with soft 

decisions  (side information available). 

--- Pariiil-band jamming 

Partial-band jamming 
without side infamatim 

with  side information 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

Code  Rate r 
Fig. 8. Eb/NJ needed to achieve cutoff rate for binary FSK with hard 

decisions. 

0 I , I , I , 1 ' , ~  
0.0 0.2 0.4 0.6 0.8 1.0 

Code Rate r 

Fig. 9. Eb/N, needed to  achieve cutoff rate for 32-ary FSK  with hard 
decisions. 

of  several  coding  schemes  for  these  channels.  We  will  also 
compare  capacity  and  cutoff  rate  results  to  the  actual 
performance  of  codes. 

APPENDIX 
In  this Appendix we give  a  justification of C = max  min 

Z(Xcn); f i n ) ,  S,) and (z = max min Z(X("); Y'")) as  channel 
capacity with and  without  side  information. We assume  that 
the  jammer's  strategy  is  such  that,  after  determining  his 
optimal  fraction  of  the  frequency  band  to jam, the  fraction is 
fixed.  That is, p is  fixed  for  an  entire  codeword.  In  this way 
the  channel is easily  seen  to  be  a  compound  channel.  In [21] 



it is shown that for finite input  and  output  compound 
channels with  input X and  output Y ,  there exist  codes with 
rate r for which the  error  probability goes  to zero as the  block 
length goes  to infinity,  provided r < max  min I(X,  Y ) .  For 
infinite  output  alphabet  the  results  are  still  true,  provided  the 
receiver knows which  channel  the  jammer  has selected [22]. 
If  this is not  the case, then  the  results  are  upper  bounds on the 
channel  capacity  and lower bounds on the  minimum Eb/NJ 
necessary for reliable communication. 

Another possible strategy for the  jammer is  to  select a new 
channel (value of p)  for each symbol of a codeword. With 
this  strategy  the  channel becomes an  arbitrarily  varying 
channel (AVC). The  capacity of a  general AVC is not 
known. However, for  a  binary  input,  binary  output  channel 
there exist codes with rate less then  max  min I(%, Y )  for 
which  the  (maximum)  error  probability of any codeword 
goes to zero as the block length goes  to infinity [23]. In this 
case the  compound  channel  and  the AVC have the  same 
capacity. For  nonbinary AVC’s the  capacity is not known. 
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