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Error  Probability  for  Direct-Sequence  Spread-Spectrum 
Multiple-Access  Communications-Part I: Upper 

and  Lower  Bounds 
MICHAEL B .  PURSLEY, FEiLow, IEEE, DILIP 7tr. SARWATE, SENIOR MEMBER, IEEE, AND 

WAYNE E. STARK, STUDENT MEMBER, IEEE 

Absrract-Upper and  lower  bounds on the  average  probability  of 
error  are  obtained  for  direct-sequence  spread-spectrum  multiple- 
access  communications  systems with  additive  white  Gaussian  noise 
channels.  The  bounds, which are  developed  from  convexity  properties 
of the  error  probability  function,  are valid for  systems in which the 
maximum  multiple-access  interference  does not exceed  the  desired 
signal  and  the  signature  sequence  period  is  equal  to  the  duration of the 
data  pulse.  The  tightness  of  the  bounds  is  examined  for  systems with a 
small  number  of  simultaneously  active  transmitters.  This is accom- 
plished by comparisons  of  the upper  and  lower  bounds for  several 
values of the  system  parameters. The  bounds  are  also  compared with 
an  approximation based on the  signal-to-noise  ratio and with the 
Chernoff  upper  bound. 

INTRODUCTION 

D URING the past few years there has been considerable 
interest in efficient methods for obtaining approximations 

and bounds for  the average probability of error in asynchro- 
nous direct-sequence spread-spectrum multiple-access (SSMA) 
communications systems. Among the published contributions 
to t h i s  problem are the approximation based on the signal- 
to-noise ratio (SNR) [6, p.  7981,  the bounds based  on 
moment-space techniques [14], approximations based on 
series-expansion methods and Gauss quadrature rules .([SI 
and [ 13]), approximations based on the integration of the 
characteristic function [3] (see also [4]), and our preliminary 
versions of the bounds obtained in the present paper ([ 11 and 
[ 111). Each of the proposed methods has its advantages and 
disadvantages, and the choice of method  for  a given applica- 
tion ultimately depends on the system parameters, the 
required accuracy, and the available computing equipment. 
Some of the methods require fairly sophisticated computer 
software (e.g., [14]), while others are  very  easy to apply. 
In particular, the approximation based on the SNR  can  be 
evaluated from  the  tabulated correlation parameters (e.g., 
[2] , [ 101 , and [ 121 ) without  the use of a  computer. 

One of the key issues  is whether a bound on the  error 
probability is required or an approximation will suffice. 
Generally speaking, it is much easier to obtain an approxi- 
mation than a  bound,  but upper and lower bounds together 
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supply more information. For instance, in order to guarantee 
that  a particular error rate specification is or is not attainable 
for a given set of system parameters, bounds on the prob- 
ability of error are required. Moreover, any bound is  also 
an approximation, and an upper and a lower bound together 
furnish not only an approximation but also a  bound on the 
resulting error in the approximation'. 

The present paper is devoted to bounds on the average 
probability of error. These bounds are conceptually simpler 
than  the moment-space bounds given in [14j and we have 
found  that  they are  easier to evaluate for small to moderate 
values of K ,  the number of simultaneously active transmitters. 
The relative simplicity of the bounds we present is evident 
from the  fact  that  the paper gives all of the necessary details 
to enable the reader to compute these bounds. The evaluation 
of our bounds does not require the determination of convex 
hulls, the solution of sets of nonlinear equations, or the 
computation of high-order moments of the multiple-access 
interference. Moreover, the numerical results presented in 
[ l ]  show that our bounds are much tighter than  the second- 
moment  bound of [ 141 , and we have found  that  the improved 
bounds given in the present paper are  also tighter than  the 
single-exponential bounds of [ 141 . 

The  main  disadvantage with the bounds presented in t h i s  
paper is that  the  computational requirements increase 
exponentially in K .  Thus, these bounds are not suitable for 
systems with a large number of simultaneously active trans- 
mitters. However, they are suitable for packet radio systems 
and other applications involving bursty data transmission, 
and they are  also suitable for  hybrid frequency-hopped direct- 
sequence SSMA systems. It should be noted  that  for SSMA 
systems with relatively few chips per bit (e.g.,' 31), the number 
of simultaneously active transmitters must necessarily  be  small 
in order to achieve satisfactory performance. 

As shown in [8], the bounds developed in this paper can 
also  be modified to give bounds on the probability of error for 
spread-spectrum communications over certain specular multi- 
path channels. The multipath interference is handled in the 
same  way  as the multiple-access interference is handled in the 
present paper. The  main  change that must be  made is that 
crosscorrelations are  replaced  by autocorrelations. 

SYSTEM  MODEL 
This paper is concerned with bounds on the average prob- 

ability of error for an asynchronous binary direct-sequence 
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spread-spectrum  multiple-access (SSMA) communications 
system  with an additive white  Gaussian  noise  channel.  The 
model that is  employed in  the present  paper  is taken  from 
[6]. This model has  been  used in most of the recent perform- 
ance  analyses for asynchronous b i n a j  direct-sequence SSMA 
communications (e.g., [l] , [3], [ l l]  , [13], and [14] j ,  and 
it has  been  generalized [7] to provide a model for asynchro- 
nous  quaternary direct-sequence SSMA (e.g., ,[4] , [SI , and 
[9]). Although  some  of the results that we obtain here  can 
be extended  in  a  straightforward manner to quaternary 
systems, we restrict attention to binary  systems throughout 
the paper. 

The, received  signal in  the asynchronous  binary direct- 
sequence SSMA system  is the  sum of K spread-spectrum 
signals Sk( t  - T k ) ,  1 < k < K ,  plus  an additive white  Gaussian 
noise  process n(t) which  has  (two-sided) spectral density 
;No. For  the model of [6], the spread-spectrum  signal 
Sk( t  - T k )  iS given by 

sk(t - T k )  = @ak(t -- Tk)bk(t - T k )  cos (wet f pk) (1) 

where ak(.) is the code  waveform, bk(') is the  data signal, 
T k  is a time-delay  parameter  which accounts  for propagation 
delay and  the lack of synchronism  between the signals, and 
q k  is the phase  angle for  the kth  carner (the  time delay for 
the carrier has  been  absorbed in t&). The  reader  is referred 
to [6]  for  a detailed description  of the code and  data wave- 
form. Basically, a k ( t )  is a periodic infinite sequence ofnon- 
overlapping  rectangular  pulses  which  are called code  pulses 
or chips. Each  code  pulse has  duration T,. The amplitude 
of  the  nth pulse  is a,(k), where a,(k) is $1 or -1 for each 
n and where (an(k) )  = -1 ,  (k); a o ( k ) ,  ... is a periodic 
sequence with period p .  The data signal bk(t) is a sequence 
of  nonoverlapping  rectangular pulses, each  of  which  has  dura- 
tion T .  The amplitude of the Zth pulse  is denoted by bl (k) .  
We assume that there are exactly N full code  pulses in each 
data pulse, and  therefore it must be that T =  NT,. We also 
assume that N is a integer multiple  of p .  Several of the prop- 
erties of the code and  data waveforms are summarized in  a 
compact  form by ak( t )  = ai(k). for jT,  < t < ( j  + 1)T, and 

In this paper we are concerned  with  the average prob- 
ability of error.  Consequently,  the parameters b l (k ) ,  T k ,  

and cpk are treated as random variables. We assume that the 
collection of all of these parameters  (i.e., for < I < 00 
and  1 < k < K )  is a  set of  mutually independent  random 
variables and that P(bl(k) = + 1) = P(bl (k)  = -1) = 3 for 
each 1 and k .  From these basic assumptions and certain prop- 
erties of the SSMA system we can  draw the following con- 
clusions. First, because of;  the  symmetry of the problem we 
may restrict attention to the output of the receiver for signal 
sl(t - T ~ ) .  Second, since oniy relative time  delays and phase 
angles are important, we may set T~ = cpl = 0. The  parameters 
T k  and L& are then  the  time delay  and  phase  angle for  the 
kth signal relative to the first. Third,  the  properties of  an SSMA 
system and  the  stationarity of the noise n(t)  permit us to 
consider  only  time  delays modulo T and phase  angles modulo 
2n, rather  than  the absolute  values of these  parameters. 

bk(t)  = bl (k)  for I T  < t < (I + I ) T .  

If bo(' is the  data  bit  for  the first signal  during the interval 
[0, T I ,  then  the output of a correlation receiver  matched to 
the first signal  is the random  variable 

where bk = (b-1 ( k ) ,  bo (k ) )  and  the channel  noise component 
77 is  given  by 

rl = [ n(t)al ( t )  cos act d t .  

The  multiple-access interference Ik , l (bk,  T k ,  p k )  which ap- 
pears in (2) is  defined in terms  of the  continuous-time partial 
crosscorrelation functions 

and 

which  are  defined in [6].  For, the  present analysis we need 
consider  only i = 1 and k > 1. It is  shown in  [6] dnd [7] 
that the multipie-access interference  component is  given 
by 

for 0 < T < T and 0 < cp < 2n, and that for rectangular chip 
waveforms the  continuous-time partial crosscorrelation func- 
tions are given  by 

R k ,  i(7) = ck, i(l - N) T~ 

+ [ ck, i(Z + 1 - N )  - ck, i(Z- N ) ]  (7 - IT,) (6a) 

and 

where Z = [T/T,J and  where ck,i is the aperiodic crosscorrela- 
tion  function which is defined  by 
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and c k , i ( l )  = 0 for 11 I 2 N .  Notice that  from (5)-(7) the 
multiple-access interference is a linear function of T on the 
interval [IT,, ( 1  + l)T,] provided the chip  waveform is,a 
rectangular pulse. Furthermore,  it depends  upon  cp.,only 
through  the  term cos cp, a  property which  holds for ""other 
types of  chip  waveforms  as  well [7], [9].  

AVERAGE  PROBABILITY OF ERROR 
The  receiver  which is matched to the first signal  produces 

the output 2 at time T. This  receiver  is not  optimum  for 
making a decision on the  data symbol b o ( ' )  (i.e., 2 is not a 
sufficient statistic), since the  total  interference is not a white 
Gaussian  noise process. However, this type of  receiver  is em- 
ployed  in  nearly  all  direct-sequence  spread-spectrum  systems. 
It is relatively easy to implement  and we  believe that  its 
performance is  very  close to that of the optimal  receiver 
(at least for large N). 

The actual  bit decision is made  as follows. If Z 2 0 the 
decision is that bo(' ) = + 1 ;  otherwise, the decision is that 
bo( ' )  = -1. Thus, an error occurs if 2 2 0 when  in fact 
b o ( ' )  = -1 or  if 2 < 0 when bo( ' )  = +l.  Because  of the 
symmetry of the  problem, these two  types of errors occur 
with equal probability.  Thus, we may  assume  in  all that 
follows that bo(' ) = +I  ; that is, a positive data pulse  is sent 
by the first transmitter during the time interval [O, T ]  . 

The conditional probability  of error given that b o ( ' )  = 
+1 is a  function of the  data symbols b = (b , ,  b 3 ,  -., bK),  
the delays 7 = (T,, 7 3 ,  ..., T K ) ,  and the phase  angles cp = 
(cp2, cp3, .-, cp~). Since 17 is a zero-mean  Gaussian random 
variable with variance $NOT, the conditional probability 
of error  for  a given b ,  7 ,  and cp is 

K 

f'e, l(b,T,V)=Q 1 + 2: Ik , I (bk,Tk, '&) ( [ k=2 I) 
where the  function Q is defined  by 

Q ( y )  = (277)- 1 / 2  [ e-( l I2)X2 dx 

and  the parameter LY is  given by CY = (2PT/N0)' 1 2 .  Notice 
that if there is no multiple-access interference (e.g., ifK = l ) ,  
then the error probability is just 

Q(&> = Q([pT /No]  1'2) = Q([ 2Eb/NO] 1 / 2 )  

where E, is the energy  per data  bit. 
The average probability of error E,1 is the  expected 

value  of Pe,l (b ,  7 ,  cp). Assuming that  the time  delays (modulo 
T )  are  uniformly distributed on [0, TI and the phase  angles 
(modulo 2n) are  uniformly distributed on [0, 2771, then 

p e , l = ( 8 s ~ ) l - ~ ~ , ~ ~ ~ , l ( b , ~ , p ) d T d p  (9) 

where Z b  denotes  the sum  over  all b = (b , ,   b3 ,  -., b K )  such 
that b k  = (bF1 ( k ) ,  b o ( k ) )  with bl(k)  E (-1, +l} .  

Although J d7 is a multidimensional integral over 
[0, T ]  K-l  and J dq  is a multidimensional integral over 
[0, 2n] K - l ,  each  of these integrals can  be  replaced  by a 
sequence  of  one-dimensional integrals. This  sequence  can  be 
bounded recursively to provide bounds on Fe,, . 

First, we define 
K 

G ~ @ , ~ , P ) = Q  (2 1 + I k , l ( b k , r k , V k )  . (10) ( [ k=2 I) 
Next:, for 2 < n 4 K k t  

G,+l(b,7,cp) 

= (877T)-121bn G , ( b , ~ , p ) d ~ ,  dcp, ( 1  1) 

where Zb, denotes  the sum  over  all b,  E {-I, +1}2. Notice 
that G,(b, 7, p) depends on b k ,  T k ,  and p k  only if k 2 n. In 
particular, GK+  (b,  7 ,  p) does not depend on b ,  7 ,  and cp at 
all. Indeed, we  see from (9) that 

GK+l(b,7,(p)=Fe,1* ( 1  2) 

The bounds presented in this paper  depend  primarily on 
the  fact that Q(x) is convex for x 2 0. As a  result,  the  bounds 
are  valid for spread-spectrum  multiple-access  systems for 
which 

K 

2 I k ,  1 cbkj 7 k ,   q k )  (1 3) 
k=2 

for all  b ,  7 ,  and cp. Because  of symmetry properties  of the 
multiple-access interference this condition is equivalent to 

l ~ z k , l ( b k , T k > ~ k ) l G 1  (14) 

for all b ,  7,  and cp, which  is the requirement that  the maximum 
multiple-access interference must be  less than  the desired 
signal component at the output of the correlation receiver. 
This restriction is  imposed in all that follows. 

The symmetry  property mentioned  above is due to the 
following relationships: 

I k ,  1 ( - b k ,   T k ,   q k )  = -zk, 1 ( b k ,   T k ,  p k ) ,  (15a) 

z k , l ( b k ~ 7 k , 2 ~ - ~ k ) = z k , l ( b k , 7 k ~ ~ k ) ,  (15b) 

and 

z k , l ( b k , 7 k , 7 7 - - k ) = - I k , l ( b k , 7 k , c p k ) .  (15c) 

Because  of these properties we can replace (1 1 )  by 

C,+l(b>7,cp) 

= (277T)- C b ,  l(1'2)Tl' G,(b, 7, Ip) dTn &,. (16) 
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LOWER BOUNDS FOR THE AVERAGE PROBABILITY 
OF ERROR 

The first step in obtaining a lower bound on pe,l is to 
consider (16) with n = 2 and develop a lower bound 
G3L(b,  7 ,  q) for G3(b, 7 ,  (p). 'The bound G3L(b,  7,cp) must 
have.the  property that  it is suitable for dse in (16). This limits 
the  types of lower bounds  that can be considered. The next 
step is. to obtain  a suitable lower bound G4L(b,  7 ,  p) for 
G4(b,  7, q), and so on. The approach that we develop gives 
a bound CnL(b, T , ,  cp) on G,(b, 7 ;  cp) with the  property  that 
the dependence of CnL(b,  r, cp) on b, ,  r,, and (P, is of the 
same ford for each n. Hence, the  bound on is derived 
from  a sequence of essentially identical bounds on Gh(b, 7, cp) 
for n = 3 , 4 ,  -.., K + 1 .  

The sequence is set up as follows. Let CnL(b, 7,cp) be  given 
and define 

Since G,(b, 7 ,  9 )  2 GnL(b, 7 ,  q) for each b ,  7,  and p, then 

where A(1, i) = (I + J-' i)T,  for 0 < Z < N a n d  0 < i < J ,  
and for any positive integer M 

M-1 $ ( m + l )  

G,+ 1 (b,  7, cp) 2 (2170 z: 1 &/@, 7 ,  cp) d(P, 
m=O $ ( m )  

(20) 

where $(in) = +mn/M for 0 < m < M. We then derive 
G$+ (b ,  7 ,  p) by obtaining lower bounds on the integrals 
of (19) and (20). These lower bounds are presented in 
Appendix A. 

The lower bound on pe,l is in terms of the interference 
spectrum skL(i)  defined as follows. Let S k L ( i )  be the Set 

where 

nality of the set skL(i) .  Notice that SkL(i)  = o for I i  I > WN, 
and that  the symmetry properties (i.e., (15)) of the  inter- 
ference function Ik,l imply that s k L ( i )  = skL(-i). Next, 
for 0 < m < M  define 

r(m) = M(?rJN)-' {sin [(m + l)n/2M] - sin [mn/2M]}. (23) 

Finally, let X i  denote the sum over  all i = (iz , i; , e-, iK) such 
that I ik I < 2JN for 1 < k < K ,  and let E m  denote the sum 
over  all m = (m2, m 3 ,  -., mK) such that 0 < mk < M for 
l < k < K .  

The lower bound is then 

This bound  is, valid for each choice of the positive integers J 
ind M. Larger  values of J and M give tighter bounds at  the 
expense of increased computation. As pointed out in 
Appendix A, the right-hand side of (24) can  also  be  viewed as 
an approximation to which is obtained from an applica- 
tion of a rectangular integration ride to the integrals of (19) 
and (20). Hence, the difference between pe,l and the lower 
bound of (24) converges to zero as J + m and M -+ 03. More- 
over, the approach that we have taken guarantees the  con- 
vergence  is monotonic. 

UPPER  BOUNDS FOR THE AVERAGE  PROBABILITY 
OF ERROR 

In order to obtain an upper bound on pe,l we  use a  pro- 
cedure which is analogous to  that developed in the previous 
section. This amounts to finding a' sequence of upper bounds 
cnU(b, 7 ,  cp) on the quantities ~ , ( b ,  r ,  cp) for n = 3 , 4 ,  - * ,  
K + 1 .  Thus, (17) and (18) are replaced by 

and 

respectively. 
Expressions (19) and (20) apply if we simply replace the 

lower bounds dnL(b,  7 ,  .cp) and CnL(b,  7 ,  cp) by  the corre- 
sponding upper bounds G, u(b, 7 ,  cp) and Gnu@,  7,,q), and 
reverse the inequality in (20). In Appendix B we obtain upper 
bounds  on  the integrals 
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where A'(Z, j) = [ I  4 ( j / J ' ) ]  T,, and Let p = +1 and define 

where $'(m) = 3 mnlM'. Application of (31) with h(x) = hl(x) requires the cam- 
' The upper bound on the average probability of error is putation of E{hl(X)}. From  [6] and the  fact  that  the dis- 
given in terms of an interference spectrum Sku(i). This tribution of Xis  symmetric about  its mean we  see that 
Spectrum is defined as Sk u(i) = I sku( i )  1, where sku(i) is 
the set ;(a} = p(x2) = 3 ( S N R J ~  (34) 

sku(i) = { ( b k ,  z,J): ~ J ' N I ~ ,  l ( b k ,  A' (~ ,J ) ,  0)  = i}. (29) where  SNR,  is given in [61 for rectangular pulses and in [7i 
and [9]  for general  pulse shapes. 

In this case J' can  be  of the  form $-L for some integer L ,  but The computation of E{h2(X)} is  more complicated so the 
it is sufficient for our purposes to restrict J' to be an integer. details are omitted. The result is 
Let Xi' and E,,,' be defined in the same  way  as Et and E,,, with 
J and M replaced by J' and M'. The upper bound is E{h2(a} = E{eSX}  

which is valid for all positive integers J' and M'. As with  the 
lower bound,  the upper bound given by (30) becomes tighter 
as J' and M' increase. Indeed, if Ffl denotes the right-hand 
side  of (30), then the error FEl - Pe,l  is nonnegative and 
it decreases monotonically to zero as J' -+ 00 and M' -+ 00. 

>-. 

GENERALIZED CHEBYSHEV  BOUNDS 

We examine a class  of upper bounds which includes the 
Chebyshev and Chernoff bounds. This  class  is  derived from the 
generalized  Chebyshev inequality 

which holds for ariy nonnegative, nondecreasing function h,  
any real number 0 such that h(P) > 0, and any random variable 
X .  We consider two such functions: 1) the  function h ,  defined 
b y h l ( x ) = x 2  f o r x > O a n d h l ( x ) = O f o r x < 0 , a n d 2 ) t h e  
function h2 defined by h2(x) = exp (sx), where s is an  arbitrary 
nonnegative real number. The latter case  is the well-known 
Chernoff bound, which can  be optimized by minimizing the 
upper  bound  with respect to s. 

From (2) and (1 5) it follows that can  be written as 

where q' is a zero-mean Gaussian random variable with vari- 
ance a-'. In (32) q', b ,  7, cp are  all random variables and 
Pe,l  is the average probability of error as defined in (9). 
- 

where Io is the modified Bessel function of order zero. 
The general  Chebyshev bounds can  also  be evaluated for 

random signature sequences which are  defined as follows. 
For each k ,  the sequence (an(k) )  is a sequence of independent 
identically distributed random variables with P { u ~ ( ~ )  = f l}  = 
P { q t k )  = -1) = + for each j .  Also, for each i f k ,  ul(i)  and 
uj(k) are independent. The resulting bound is pe < %-)-' , 
where 

The function R is the aperiodic autocorrelation function  for 
the chip waveform [9]. By evaluatingE{h2(X)}and applying 
the result to (31) gives 

Pe G min exp {-s + 1 s2/&} 
- 

s> 0 2 

T ,  2 n/2 

* [; k --i [f(S,7>(PIlNdVd7 I"-' (37a) 

where 

f ( s ,  7, cp) = cosh (ST- R (7) cos cp) 

cosh (ST- R (T, - 7 )  COS cp). (3 7b) 

These bounds are  specialized to binary PSK direct-sequence 
systems by letting R(T)  = 7 for 0 < 7 < T,, which is the 
aperiodic autocorrelation function  for  the rectangular chip 
waveform. 
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NUMERICAL  RESULTS 
In this section we present some representative numerical 

results which will give an indication of the tightness of the 
bounds. Numerical  values  are given for  the bounds for various 
choices of signature sequences. For K = 2 and K = 3  the 
signature sequences are rn-sequences, and for K = 4  the Gold 
sequences of period 31 are employed since there are only 
three nonreciprocal rn-sequences of period 31. The  phases of 
the rn-sequences employed for our numerical results are the 
auto-optimal least-side1obe.energy (AO/LSE) phases given in 
[ 101 or  the phases which maximize the SNR [2] . The shift- 
register tap connections and initial loadings are given in 
[2, Table 51 for  the phases which maximize the SNR and in 
[IO, Fig. A.11 for  the AO/LSE phases. 

Tables of numerical values for the bounds are here for 
various values of the parameters K ,  N ,  and Eb/NO. In order 
to give an indication of the  amount of computation required 
in each case, we have specified the values  of J and M used in 
(24) to compute  the lower bound and the values  of J‘  and” 
used in (30) to compute  the upper bound. 

In Table I we  give values for  the lower and upper bound 
[(24) and (30)] denoted by e,l and F K l ,  respectively, 
as a  function of J andM for K = 2 and N =  31. For  the  data 
in this table, J‘  = J and M’ = M .  The sequences are the first 
two AO/LSE sequences given in [ lo ,  Fig. A.l(a)] . Since K 
is only 2, we can approximate the integrals using  an algorithm 
based on Simpson’s rule. This calculation gives 2.3975 X 

as the approximate value  of p e , l .  Notice that  the 
lower bound converges faster than  the upper bound. This is 
due to the  type of bounds being used for  the integrals in (19), 
(20), (27), and (28). For example, the integral in (28) is 
bounded using the rectangular rule which is the weakest bound 
employed. This accounts for  the slower  convergence in the 
upper  bound.  For K = 3 and N = 31  the bounds are given in 
Table I1 where  again J’ = J and M’ = M .  

In Table I11 the upper and lower bounds are given for 
several  values of K and N .  In Tables IV,  V, and VI the bounds 
are given for K = 2, 3, and 4, respectively, and N = 31. k s o  
tabulated is the approximation Feq1 = Q(SNRl) suggested in 
[6]. The values  of J ,  M ,  J ’ ,  and M’ were chosen to give 
moderate  computation  for each case. The sequences for Tables 
IV and V are the first two or three AO/LSE rn-sequences of 
[lo, Fig. A.l(a)] . For Table  VI the sequences are four Gold 
sequences that have the  property  that  the maximum inter- 
ference is  less than  the desired signal. The shift-register tap 
connection for these sequences is 3551 (in the  notation of 
[ 101 ), and the initial loadings (in octal notation)  for sequences 
1 through 4 are 1756, 0355, 0432, and 1306, respectively. 

The importance of the selection of the phases of signature 
sequences for direct-sequence SSMA systems is illustrated in 
Fig. 1: In this figure the upper and lower bounds are shown 
for  two  different sets of  phases of the same set of three rn- 
sequences of period 31. These phases, which are given in [2] , 
give the minimum and maximum possible SNR. Notice that  at 
a  bit  error rate of IO-’, the difference in performance is 
about 2 dB. Thus, proper choice of the phases of the signature 
sequences can significantly improve the efficiency of a direct- 
sequence SSMA system. 

TABLE I 
BOUNDS FORK = 2, N = 31, AND &/No = 10 dB 

J M Pe, 1 pe, 1 - L  -u 

20  10 2.322 2.689 (X 10-5) 
40  20 2.378 2.534 (X 10-5) 
60 30 2.389 2.485 (X 10-5) 
80 40 2.393 2.463 (x 10-5) 

160 80 2.396 2.429 (X 10-5) 
300  150 2.397 2.414 ( ~ 1 0 - 5 )  

TABLE I1 
BOUNDS FOR K = 3, N = 31, AND Eb/No = 12 dB 

8 
8 

16 
16 
32 
32 
64 
64 

2 
4 

5.31 
6.24 

4 8.95 
6 9.22 
6  10.20 

12 10.38 
12 10.65 
16 10.68 

36.20 (X 10-6) 
23.70 (X 10-6) 
19.87 (X 10-6) 
18.04 (X 10-6) 
16.05 (X 10-6) 
13.41 (X 10-6) 
13.24 (X 10-6) 
12.63 (X 10-6) 

TABLE 111 
BOUNDS FOR  Eb/No = 12 dB 

K N  J, M f > M’ Pe,1  Pe,1 - L  -U 

2 3 1  300, 150 300, 150 4.81 4.86 (X 10-7) 
3 3 1  64,  16 64,  16 1.07 1.26 (X 10-7) 
4 31 32, 4 8, 16 4.01 6.16 (X 10-5) 
2  127 160, 40 80, 80 3.94 3.98 (X 10-8) 
3  127 12,  16 16, 12 1.17 1.42 (X 10-7) 
2 255 120, 40 40, 80 1.98 2.00 (X 10-8) 

TABLE IV 
BOUNDS AND APPROXIMATION  FOR K = 2, N = 31  (J= 160, 

M = lOO;J‘= 80,” = 120) 
_ -  

Eb/No (dB) p i ~  Feyl K ,  1 

4 1.44 1.45 1.44 (X 10-2) 

10 2.40 2.42 2.34 (X 10-5) 
12  4.81 4.89 5.13 (X 10-7) 

6 3.35 3.36 3.34 (X 10-3) 
8 4.22 4.24 4.17 (X 10-4) 

14 2.28 2.34 4.43 (X 10-9) 

TABLE V 
BOUNDS AND  APPROXIMATION FOR K = 3 A N D N  = 31 (J =f = 

32,M = M  = 15) 

4 1.66 1.69 1.66 (X 10-2) 
6 4.58 4.77 4.56 (X 10-3) 
8 8.43 9.11 8.13 (X 10-4) 

10 1.06 1.21 0.92 (X 10-4) 
12 1.04 1.29 0.70 (X 10-5) 
14 9.68 13.32 4.40 (X 10-7) 
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4  1.87  1.99  1.88 (X 1 8 2 )  
(x 10-3) 

10 . 2.44  3.74  2.48 (X 10-4) 
12  3.74  7.29  3.84 (X 10-5) 

6  5.85  6.67  5.94 
8 1.36  1.74  1.38 (X 10-3) 

14  5.37  14.19  6.16 (X 10-6) 

Upper Bound ----- Lower Bound 

TABLE VI1 
BOUNDS, APPROXIMATION, AND CHERNOFF BOUND FOR 

K = 3 A N D N = 1 2 7 ( J = 1 2 , M = 1 6 ; J ' = 1 6 , ~ = 1 2 )  

4  1.35 1.36 1.35 8.67 (X10-2) 

10 1.11 1.22 1.08 12.6 (X10-5) 
12  1.17 1.41 0.98 16.3 (X10-7) 

6  2.86 2.91 2.86 22.0 (X10-3) 
8  2.95 3.07 2.94 27.5 (X10-4) 

14  3.03  4.35  1.62  51.8 (Xl0-l0) 

p:. 
, .  

.?. TABLE VI11 
APPROXIMATION AND CHERNOFF  BOUND FOR RANDOM 

SEQUENCES OF LENGTH 127 WITH K = 3 

EbINo (dB) Fe FeC 

4  1.35 X 10-2 4.33 x 10-2 
6  2.85 X 10-3 1.10 x 10-2 
8 2.41 X 10-4 1.37 X 10-3 

10 1.05 X 10-5 6.51 X 10-5 
12  9.29 X 10-8 1.02 x 10-6 
14  1.44 X 10-10 6.69 X 10-9 

Fig. 1. Upper  and lower bounds for two sets of sequences with dif- 
ferent phases ( K  = 3, N = 31). 

Numerical  results for K = 3 and N = 127 are  shown in 
Table VI1 for the AO/LSE sequences given in [lo] . In addi- 
tion to the bounds of (24)  and (30), the approximation 
?e,l and the Chernoff  bound E,l are  shown. Results  on 
the  Chernoff  bound Fec for random sequences  of length 
127 are presented in Table VI11 for K = 3. As expected, 
the Chernoff  bound is not very tight. Numerical  values for 
the  approximation pe = Q(m) for random sequences 
are  also  given. We found the Chebyshev bound was far too 
loose to be  of  any interest, so detailed numerical results 
are not presented. As an illustration, the Chebyshev bound 
is 1.26 X lo-' for random sequences  of length  127  with 

We close  by  giving  some  comparisons between  the  bounds 
presented in this paper  and the monent-space  bounds of 
[14]. The numerical  results presented in [l] for the  second- 
moment  bounds indicate that the bounds  presented in this 
paper are tighter even for small values  of J .  In addition, 
we have found that our  bounds are tighter than  the single- 
exponential  moment-space  bounds (even for relatively small 
values  of J and M>. For K = 2  and N = 31 we computed 
the single-exponential bounds and the bounds  presented in 
this paper. The two signature sequences  are  specified  by the 
feedback  connections  45  and  67  with loadings 06 and 36, 
respectively.  These  are two sequences from  the set obtained 
in 121. For Eb/No = 12 dB the upper  and  lower single-expo- 

K = 3 and Eb/NO = 14 dB. 

nential bounds are 7.830 X and 5.401 X re- 
spectively.  The difference between  the  upper  and  lower 
bounds is 2.429 X Our bounds for J' = J = 20 and 
M' = M = 10 are 9.020 X and 6.871 X so the 
difference is 2.149 X For J' = J = 40 and" = M = 80 
we find that  our  bounds are 7.680 X and  7.309 X loA7, 
which is a difference of only  0.371 X low7, 

APPENDIX A 
In this Appendix we present the lower bounds for the 

integrals that appear in (19)  and (20). These  are obtained 
as  key steps in the derivation of (24). 

The first step is to consider  (17)-(20) for n = 2. We let 
G2L(b,  7 , q )  = G,(b, 7 ,q )  and observe from  (10) and (13a) 
that 

(A.3) 
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From  a comparison of (10) and (A.l) it is  easy to see that  the quantity T,-1(b- l (2)R2,1(ITc)  + b0(2)k2 ,1(ITc)}  
the  quantity P3 is  given by takes on integer values between -N and N (this follows 

from (6) and properties of the aperiodic correlation function). 
K Consequently, (6) and (A.lO) imply that (2JT/TC)I2,l(b2, 

0 3  = x Ik, l @ k ,  r k ,  q k ) *  (A*4) i(Z, j ) ,  0) takes on integer values between -2JN and 2JN. 
k= 3 Since T = NT, we define S 2 L ( i )  as in (21). Let S2L(z) = 

ISZL( i )  1, the number of elements in S2L( i ) .  From (19) and 
(A.11) we have 

Furthermore, if we define 

R k ,  1 ( r )  dr 

and Q(a[l + p3 + (i/N') cos ~ 2 1 )  (A.12) 

(A.6) where N' = 2JN. It follows from (20), (23), the convexity 
of Q on [0, -), and the symmetry of the multiple-access 

(A. 13) 
Notice that we have. not made use of (6) in arriving at 

(A.7). Instead, (13)-(20) and (A.1)-(A.7) are  valid for then G3(b,  T ,  (0) 2 G3L(b,  T ,  v), as required. 
arbitrary time-limited pulses such as the sine  pulse considered This completes the derivation of the lower bound  for 
in [7] and [9]. For  the rectangular pulse it follows that n = 2. The next  step in obtaining a lower bound  for pe,l 

is to employ (A.13) with f13 as defined in (A.4) to (17)- 
rk(z,  j )  = J -  T S k .  1 (@, j ) )  (A.8) (20) with n = 3. For example, (17) yields 

(A. 16) 

BQ(a[l + P 3  +12,1(b2 ,a(E, j j , '~2)1) ,  (A.11) 
Therefore, it does not depend on b 3 ,  r 3 ,  or q3.  

which can then be employed in (19) to obtain  a lower bound A comparison of (A.15) with (A.l) shows that we can 
for G2L(b,  7 ,  p). We can simplify the  computation of the obtain  a lower bound on H3(b,  7 , ~ ;  i, m)  in exactly the same 
right-hand side of (19) by replacing the triple sum (over way  as  we obtained the lower bound on d Z L ( b ,  T , ( P ) ;  namely, 
b 2 ,  I ,  and j )  by a single sum as follows. First, observe that we apply the procedure outlined  in (A.2)-(A.12). This gives a 
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lower bound of the  form r%7b- 

The pattern should be  clear at this point, so the reader should 
be  able to verify the final expression (24). 

Notice that  the lower bound of (A.ll) is also the  approx- 
imation to ‘the integral on the left-hand side  of  (A.11) that is 
obtained by applying a rectangular integration rule  using the 
value of the  function  at  the midpoint of the interval. Similarly, 
the lower bound of  (A.13)  can  be  viewed as an application of 
a rectangular integration rule to the integrals of the right- 
hand side  of (20) using the value of the  function  at some point 
(not necessarily the midpoirit) of the interval [$(in), 
$(m + l ) ] .  Thus, the error G3(b ,  7,  ( ~ ) P > - c , ~ ( b ,  7 ,  (PI in the 
bound of (A.13) is nonnegative. Moreover, it converges mono- 
tonically to zero as J + 00 and M + 00. The same conclusion 
holds for  the error p e , l  - e,l in the lower bound, where e,l = Gk; T , ( P )  is just  the right-hand side  of (24). 

APPENDIX B 

In this Appendix we present upper bounds  for  the integrals 
given in (27) and (28). First, ,the special case n = 2 is handled 
by letting 6, u(b, 7,  cp) = G2L(b ,  7 ,  q), which is  given  by 
(A.1). If the chip waveform is the recthgular pulse, then 
d ,  u(b, 7 ,  cp) is a convex function of T~ on the interval [IT,, 
( I  + l)Tc] and so 

A ’ ( l j + l )  

Tc- J / G2 u(b, 7 ,$ )  d ~ ,  
A ’ ( W  

G;Q(a[l + P 3  +Iz,r(b2,A’(I,i>,c~z)l) 

+ iQ(a[l + P 3  + I Z , I & , A ’ ( ~ ~ +  11, ~ 2 ) l ) .  (B.1) 

The inequality in (B.l) follows from  the  fact  that  the 
(normalized) integral of a convex function on any subinterval 
is not greater than the average of the values of the  function  at 
the  two  endpoints of the subinterval. Notice  also that  the 
right-hand side of (B.l) is just  the trapezoidal approximation 
to the integral; therefore the difference between the right-hand 
side and the left-hand side of (B.l) converges monotonically 
to zero as J’ + 00. 

We then proceed as in (A.lO)-(A.12) to obtain 

N” 

* Q(a[ 1 + 0 3  + (i/2J’N) COS ~ p z ] )  (€3.2) 

where N“ = 2J’N.  It is  easy to show that  the  quantity 

Q(a [ 1 + P3 - (i/2J’N) cos cp]) 

+ Q(a [ 1 + P3 + (i/2J’N) cos cp]) 

is a decreasing function of cp on [O,$-rr] . Thus 

* ‘ ( m + l )  

(2M/n) / 62 % 7 ,  CP) dP2 * ‘ ( m )  
N ’! 

i = - N ”  
< ( 2 N ” ) -  2 S2 u(i)Q(a [ 1 + 0 3  + (i/2J’N) 

cos $’(m)]). (B.3) 

Thus we let 

N” 
G3 u(b, 7, cp) = (2N”M’)- ’ 2 S2 u(i) 

i=-N” 

MI- 1 

Q(a[l + P 3  + (i/2JfN) cos $‘(k)]) 
m=O 

03-41 
which is analogous to (A.13). 

Notice that  the right-hand side  of (B.3) can  be obtained 
from an application of the rectangular integration rule to the 
left-hand side. For t h i s  approximation we  use  +e  value of 
the  function  at  the  left  endpoint [i.e., at $‘(m)] of the  in- 
terval [$’(m), $(m + l)]. Thus, the error in the resulting 
approximation converges monotonically to zero as M‘ -+ 00, 

The procedure for continuing on to n = 3 is the same as 
outlined in Appendix A,  especially  (A.14)-(A.18). By 
following the same pattern  for n = 4, 5, .-, K + 1, the 
reader can  verify the  bound of (30). 
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