Entertainment Game AI vs. Serious Game AI

Michael van Lent
Associate Director of Games Research
Serious games

• An entertaining virtual experience that’s purpose goes beyond entertainment

• Serious game purposes include:
 • Education
 • Training
 • Communications
 • Public Policy
 • Marketing
 • Mental Health Therapy
 • Medical Diagnosis
ICT’s Game Portfolio

- Full Spectrum Command Boardgame
- Full Spectrum Command
- Full Spectrum Warrior
- Full Spectrum Leader
- LEADERS
- Joint Fires & Effects Trainer System
- SLIM-ES3
- ELECT BiLAT
- ADFO-CCLT
- DMCTI
- ELECT urbanSIM
- PTSD VR Therapy
ICT’s Serious Game Process

1. Define task looking at COE and current needs
2. Identify target users and SMEs
3. Define the domain/task
4. Conduct a cognitive task analysis
5. Identify the learning objectives
6. Develop an instructional/game design
7. Identify appropriate research technologies
8. Develop a prototype
9. Pre-production
10. Production
11. Formative & Summative assessment
12. Refinements & Enhancements
13. Transition to non-University partner
Research integration

eXplainable AI
Adaptive Opponents
Natural Language Understanding
Mixed Reality R&D
Integrating Architecture
Intelligent Forces
SmartBody
Intelligent Coach/Tutor
Social Simulation

Full Spectrum Command
Full Spectrum Warrior
Full Spectrum Leader
LEADERS
JFETS
SLIM-ES3
Role-Playing Simulation
ELECT BiLAT
DMCTI
C3IT
ELECT urbanSIM
Similarities and Differences

<table>
<thead>
<tr>
<th>Entertainment Game AI</th>
<th>Serious Game AI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Similarities and Differences

<table>
<thead>
<tr>
<th>Entertainment Game AI</th>
<th>Serious Game AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Not about winning</td>
<td></td>
</tr>
</tbody>
</table>

Wrong view of game AI
Right view of Game AI
Similarities and Differences

<table>
<thead>
<tr>
<th>Entertainment Game AI</th>
<th>Serious Game AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Not about winning</td>
<td>• Not about winning</td>
</tr>
</tbody>
</table>
Wrong view of serious game AI
Similarities and Differences

Entertainment Game AI
- Not about winning
- Cheating is often okay

Serious Game AI
- Not about winning
 - Explicitly reason about learning goals
 - Intelligent tutoring
 - Positive/negative reinforcement
 - Guided Experiential Learning
Entertainment Game AI

(defrule true
 =>
 (disable-self))

(defrule timer-triggered 4
 =>
 (cc-add-resource food 700)
 (cc-add-resource wood 700)
 (cc-add-resource gold 700)
 (disable-timer 4)
 (enable-timer 4 2700))
Similarities and Differences

Entertainment Game AI
- Not about winning
- Cheating is often okay
- Static behavior works

Serious Game AI
- Not about winning
- Cheating is sometimes okay
Entertainment Game AI

; The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.

(defrule
 (game-time > 1100)
=>
 (attack-now)
 (enable-timer 7 1100))

(defrule
 (timer-triggered 7)
 (defend-soldier-count >= 12)
=>
 (attack-now)
 (disable-timer 7)
 (enable-timer 7 1400))
Similarities and Differences

<table>
<thead>
<tr>
<th>Entertainment Game AI</th>
<th>Serious Game AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Not about winning</td>
<td>• Not about winning</td>
</tr>
<tr>
<td>• Cheating is often okay</td>
<td>• Cheating is sometimes okay</td>
</tr>
<tr>
<td>• Static behavior works</td>
<td>• Static behavior doesn’t work</td>
</tr>
</tbody>
</table>
Adaptive Opponents

- Two inspiring occurrences:
 - FSC game designers “tricking” the SMEs
 - B-training at Ft. Sill
- Most entertainment game AI is static and scripted
 - Learning to beat the script is fun
 - Designer can control the player’s experience
 - Quality assurance is manageable
- Serious games required variable and adaptive AI
 - Prevent gaming the game
 - Address student’s specific needs
 - Give instructors “sufficient” control
Adaptive Opponents Requirements

• Generate multiple plans for the same scenario
 • Prevent gaming the game
 • Remember what this specific student has seen
 • Challenge the student to adapt on the fly
• Support the instructor (don’t replace the instructor)
 • Instructor provides high-level guidance
 • Adaptive Opponents fills in the details
 • Reason about learning objectives
AO/IFOR System Architecture

Diagram showing the system architecture with entities such as Soar Cmdr, Soar Leader, Soar Entities, OTB TFs, Pedagogic Planner, Instructor, OneSAF, and Gamebryo.
Similarities and Differences

Entertainment Game AI
• Not about winning
• Cheating is often okay
• Static behavior works
• Little after-action review
• Observational fidelity is the goal

Serious Game AI
• Not about winning
• Cheating is sometimes okay
• Static behavior doesn’t work
• Extensive AAR is valuable
• Observational fidelity is not enough
Explainable AI Motivation

- **XAI for Training**
 - “The OPFOR can provide valuable feedback on the training based on observations from their perspectives. …the OPFOR can provide healthy insights on:
 - OPFOR doctrine and plans
 - The unit’s actions.
 - OPFOR reactions to what the unit did.”
 - What if the OPFOR is a computer-generated entity?
 - Solution: Explainable Artificial Intelligence (XAI)

- **XAI for Analysis**
 - Validation, Verification & Accreditation
 - Debugging
 - Causality analysis
Review Questions:

- What is 3rd Platoon's mission?
- What is 3rd Platoon's mission status?
- How is 3rd Platoon task organized?
- How many soldiers are in 3rd Platoon?
- What is 3rd Platoon's ammo status?

Answer to Question:

There are 24 soldiers in 3rd Platoon. 3 soldiers are wounded. 1 soldier has been wounded.
Similarities and Differences

Entertainment Game AI
- Not about winning
- Cheating is often okay
- Static behavior works
- Little post-action review
- Observational fidelity is the goal
- Must support user authoring of new scenarios

Serious Game AI
- Not about winning
- Cheating is sometimes okay
- Static behavior doesn’t work
- Extensive AAR is valuable
- Observational fidelity is not enough
- Must support user authoring of new scenarios
Transitioning the Learning Process

• Authoring tools
 • Potentially a different set of target users
 • End user as author
 • Instructor as author
 • TRADOC developer as author
 • Computer programmer as author
 • Parallel production effort
 • Assessment of the authoring tools

• Instructional package
 • Stand-alone learning materials
 • Trainer support materials
 • Distributed learning package
Plan

- I'm not here to talk about any of that. I'm here because I hear you've been having some trouble with the market.
- If you tell me the name of the person who promised you things and make me a list of the things you need, I will look into it as quickly as I can. I'm also hoping you can help me with some information.
- Is it true that there is trouble with the market? We would like that to stop.
- I want to help you, and I promise I'll talk to my superiors. Meanwhile, can you give me some information?

Text

Fard: Do not measure us based on our station. Measure us by the safety of our neighborhoods.

Fard: [Fard nods at your compliment.]

Fard: I hope you've come with some good news for me. My department, it is not running well. We have many things that we need. I've had some bad experience with some of the people who came before you. Too many times I've been promised things I do not receive.
Modular cultural data model

- What if we want to swap out Iraqi culture for Japanese culture?
 - What changes and what stays the same?
 - What does a modular, cultural data model look like?
 - How does a HBM use the cultural data model?
 - Is a standard for all HBM architecture feasible?
- Counter arguments
 - Culture is too pervasive
 - Every culture needs its own model (anti-universalism)
 - Every data model will be biased by the author’s culture
 - Emic vs Etic perspectives
Culturally Affected Behavior (CAB)

- CAB goal: develop a computational approach for **representing** and using cultural knowledge modularly at the individual and aggregate level.
 - Appearance
 - External behavior (including language and gestures)
 - Internal knowledge (including reasoning strategies)
- Scoping the problem
 - Not modeling individual variations (personality)
 - Not modeling how an individual learns cultural knowledge
 - Not modeling how culture groups form
 - Not modeling how cultures change over time
CAB Approach

- Approaches to social & cultural modeling

Pure Engineering Approach

- CAB is aiming for the theoretic end of the spectrum
- CAB Approach v1
 - Step 1: Literature Survey
 - Anthropology, Sociology, Psychology, Linguistics, International business, Modeling & simulation, AI
 - Step 2: Select the right theory
 - Evidence-based
 - Mature enough for computational modeling
 - Step 3: Implement the theory

Pure Theoretic Approach
CAB Approach v2

• CAB Approach 2.0
 • Step 1: Literature Survey
 • Step 2: Select one or more candidate theories
 • Mature enough for computational modeling
 • Community support
 • Engineer acceptance
 • Step 3: Implement the candidate theories
 • Step 4: Validate the system and the theory
 • Go to step 2

• Advantages
 • We benefit from generations of smart social scientists
 • We can provide evidence to the social scientists
Candidate Theories (so far)

- **Shared Symbols**: members of a culture share a common mapping from perceived symbols (objects, gestures, words…) to internal concepts. [Warner 1959, Shweder & Levine 2003]
 - Culturally-specific perception
 - Cross cultural misperception
- **Schemas**: frameworks for organizing knowledge and actions such as scripts, stereotypes and worldviews. [DiMaggio 97]
 - Conventionalized cultural behaviors
 - Biases
- **Theory of mind**: the ability to understand that others have beliefs, desires and intentions that are different from one's own. [Nichols & Stich 2003]
 - Cultural awareness
 - Biases
The CAB Data Model

- Physical appearance
 - 2D images
 - 3D models
 - Skins/textures
- External behavior
 - Linguistic model (Shared Symbols, Schemas)
 - Animations (Shared Symbols)
 - Action schemas (Schemas)
- Internal knowledge
 - Task model
 - Perceptions (Shared Symbols)
 - Reasoning schemas (Schemas)
 - Second order culture models (Theory of Mind, Schemas)