
SoarDoc User’s Manual

Dave Ray
ray@soartech.com
October 16, 2003

Introduction
SoarDoc is an embedded metadata documentation format and tool for Soar. This format
facilitates the automatic generation of flexible project documentation in the spirit of
Doxygen, Javadoc, and other documentation generation tools.

The SoarDoc tool takes as input a set of Soar source files and produces as output a set of
HTML documentation for the files. The output provides several distinct “views” onto the
documentation. For example, the documentation can be browsed by source file, problem-
space, operator, or by a complete alphabetical index of production names.

Getting Started
This document assumes you already have the SoarDoc source code installed on your
system. SoarDoc requires Python version 2.2, available from www.python.org. SoarDoc
is not compatible with earlier versions of Python. To find out which version of Python
you have type “python –V” at the command line.

The file soardoc.py in the src/ directory is the main script for SoarDoc. To run SoarDoc,
you must pass soardoc.py as an argument to the python interpreter, like this:

 $ /path/to/python /path/to/soardoc/src/soardoc.py

Running the makebat.py script in SoarDoc’s root directory will generate a shell script
called soardoc (soardoc.bat on Windows systems) that simplifies this process. For the
rest of this document, it is assumed that this script is available on the system path.

SoarDoc will generate documentation for any directory tree of Soar source files, even if
they haven’t been commented yet. Once you have the SoarDoc executable, try this:

 $ cd /path/to/your/source/code
 $ soardoc

This will create a new directory html/ in the current directory containing a set of HTML
files giving a basic overview of your system. If your Soar productions are already
documented by preceding comments, try these commands instead:

 $ cd /path/to/your/source/code
 $ soardoc –C UseExistingComments=1

SoarDoc will generate the same documentation as before, but it will include your existing
comments in the production documentation.

To further customize SoarDoc’s output, see the Configuration Options section.

The next section describes how to document your code to make the most out of SoarDoc.

Documenting the Code

Special Documentation Blocks
Special documentation blocks are simply specially formatted Soar comments. The
general format is as follows:

 ##!
 #
 # ... text ...
 #
 #

The block ends at the first line that does not begin with a # character. The contents of the
blocks can be any valid SoarDoc command, as well as HTML, which will be passed
through to the output unchanged. HTML tags allow the user to easily format text, create
bulleted lists, insert hyperlinks to external data, include images, etc.

Note: Since Soar comments are really Tcl comments, extra care has to be taken with {
and } characters. They must be balanced even though they appear in comments.

Documenting a File
A documentation block whose first command is @file provides documentation for a file
(usually the file in which is appears). Here is a sample for a file:

##!
@file
@brief A brief description of the file’s purpose.

A more detailed, possibly
multi-line description of the file’s purpose.
This text can be formatted with normal
HTML tags.

@project MyProject

@kernel 8.3 Works
@kernel 8.4 Comments about kernel 8.4...

@created ray 20030120 MyProject

@modified ray 20030120 MyProject
Added new production
@modified [1] ray 20030127 MyProject
Made some general changes...

The @file command specifies the name of the file that is being documented (use relative
paths as necessary). If the name is not given, then the name of the current file is
assumed. The @brief command specifies a short description of the file, used for indices
and tables of content in the output. The main body of text is a more detailed description
of the file and its contents. The @project command specifies a list of projects to which
the file belongs. The @kernel command specifies a list of Soar kernel version numbers
with which this file is compatible.

For more details on the @created and @modified commands, see the Documenting
Change History section.

Documenting a Production
A documentation block that precedes a production definition provides documentation for
that production. Here is an example:

##!
@production test0
@brief A brief description of the production.

A more detailed, possibly
multi-line description of the production.
This text can be formatted with normal
HTML tags.

@kernel 8.3 Works
@kernel 8.4 Comments about kernel 8.4...

@problem-space test0
@type elaboration
@created ray 20030120
@modified [1] More specific description of
change [1]

sp {test0
 (state <s> ^problem-space.name test0
 ^superstate.operator.point <r>)
-->
 (<s> ^point <r>)
 (<r> ^sub-achieved *yes*)
}

Here most of the commands are identical to those found in a file-scope documentation
block. Since this documentation block immediately precedes a production definition,
then the @production command is not entirely necessary, but if the production was
located elsewhere, or if it was generated by, say, a call to a TCL function, the
@production command would be required. The @problem-space command specifies a
list of problem spaces to which the production belongs. Similarly, the @operator
command is used to specify operators. The @type command indicates the production’s
type. See the Command Reference section for details.

In the case of the @type, @kernel, @problem-space, and @operator commands, these
may be specified at file scope and then inherited by the documentation of all productions
in the file. When appropriate, this will reduce the amount of repetitive typing required to
adequately document a production.

For more details on the @created and @modified commands, see the Documenting
Change History section.

Documenting a Problem-Space
Although not explicitly defined in the Soar code, a problem-space may be documented
using a SoarDoc documentation block. Here is an example:

##!
@problem-space test0
@brief This is problem space test0

Long description of problem space test0...

@operator operator0

This block defines documentation for problem-space test0. The @operator command
specifies the name of the operator that spawns this problem-state. If omitted, then the
parent is assumed to be the operator with the same name as the problem-space (as is the
convention in Soar programming).

Documenting an Operator
An operator can be documented in the same manner as a problem-space. Here is an
example:

##!
@operator operator1
@brief This is operator1

Long description of operator1...

@problem-space test0

This block defines documentation for operator operator1. The @problem-space
command indicates its position in the operator hierarchy by specifying the names of the
problem-spaces in which the operator may apply.

Documenting Change History
Using the @created and @modified commands, the change history of a documentation
block (and the object it documents) can be recorded. Each command encodes who made
the change, the date, the project the change affects, and any developer comments.

By using a special reference parameter, related changes in multiple parts of a file can be
grouped together. For further details and example usage see the @created and
@modified command documentation in the General Commands section.

Main Page Documentation
The main documentation page can be customized by inserting a documentation block as
follows:

##!
@mainpage Title of Custom Main page

<h1> Introduction </h1>
Here is some kind of introduction…
<h2>Section 1</h1>
Some more stuff here.

The body of a @mainpage block can be arbitrary HTML. It may also include @ref
commands to reference other areas of the documentation.

Structural Commands

Groups
Structural documentation commands allow for more granular control over the final output
of SoarDoc. Files and productions can be arbitrarily grouped, creating a hierarchical
organization of documentation. For example, productions and files could be
hierarchically grouped by operator.

Here is a grouping example:

##!
@group group1

@brief A brief description of group1

Detailed description of group1.

... Meanwhile, in another file ...

##!
@file
@brief A file.

Description of file...

@ingroup group1

...

This example defines a group called group1. The @ingroup command is used to assign
a documentation block to a particular group. A documentation block may be assigned to
multiple groups.

References
Using the @ref command, inter-block links can be created:

##!

This is a description that has a
link @ref prod:bowtie*elaborate*state*problem-space
to a production.

This effect could also be achieved by embedding HTML anchors into the documentation
blocks, but this would be an assumption about the file layout of the final HTML output.

Ignoring Soar Code
Using the @start-no-soardoc and @end-no-soardoc commands, a section of a Soar
source file can be ignored by SoarDoc. Here is an example usage:

##! @start-no-soardoc

source load.soar
... other code and productions that should be ignored

##! @end-no-soardoc

Datamap Generator Integration
SoarDoc can use the XML files generated by the Datamap Generator (dmgen) to produce
browsable, graphical representations of problem-spaces and operators. Graph generation
requires an installation of the latest AT&T GraphViz tools.

GraphViz is available from http://www.research.att.com/sw/tools/graphviz/

The procedure is as follows:

• Run dmgen on your productions to generate a datamap, using the XML
output mode. See dmgen.doc for details of how to do this.

• In your SoarDoc config file (soardocfile):
o Set SoarDoc’s XmlDatamap parameter to the directory where the

XML files are stored.
o Set SoarDoc’s ShowDatamaps parameter to 1.
o Set SoarDoc’s DotPath and DotExeName parameters to point to

the DOT executable in your GraphViz installation.
• Run SoarDoc

Note that graphs (and HTML pages) will only be generated for
problem-spaces and operators that have been documented. Running
SoarDoc in autodoc mode with the XmlDatamap parameter set will
generate stub documentation for all problem-spaces and operators
that dmgen identifies. See the Overriding Configuration Parameters
The –C command-line option can override configuration parameters specified in the
configuration file. The basic syntax of the command is:

$ soardoc –C NameOfParameter=ValueOfParameter

If ValueOfParameter is a string value, it must be enclosed in single quotes, like this:

$ soardoc –C OutputDirectory=’output’

On Linux, it is necessary to enclose these options in double quotes to prevent the shell
from stripping out the single quotes. On Linux, the above example becomes:

$ soardoc –C “OutputDirectory=’output’”

Unfortunately, for all command-line examples in this manual, these double quotes must
be added to use them in Linux.
Existing Soar Code section below.

The image format used by DOT images is controlled by the DotImageFormat
parameter. Since some datamaps can be very large and gif and jpeg formats have image
size limits, it is recommended, when possible, that you use the png format.

Configuration Options

Command-Line Options
Details of SoarDoc command-line options can be found by running SoarDoc with the –h
option. For example:

$ soardoc -h

Configuration File
SoarDoc is currently implemented in Python and for convenience uses Python to specify
its configuration file. When SoarDoc is run it loads default values for configuration
options. Next, it checks whether an alternate configuration file has been provided with
the –f command-line option. If so, the file is loaded. Otherwise SoarDoc looks for a file
called soardocfile in the current directory and, if it exists, it is loaded. This behavior is
similar to that of Doxygen (doxyfile) or make (makefile).

The –g command-line option will tell SoarDoc to print a default configuration file to
standard output. Thus the following command could be used to generate soardocfile:

$ soardoc -g > soardocfile

When generated this file contains a complete list of configuration parameters with
descriptions and default values. The comments in this file are the documentation for all
of SoarDoc’s configuration parameters.

Overriding Configuration Parameters
The –C command-line option can override configuration parameters specified in the
configuration file. The basic syntax of the command is:

$ soardoc –C NameOfParameter=ValueOfParameter

If ValueOfParameter is a string value, it must be enclosed in single quotes, like this:

$ soardoc –C OutputDirectory=’output’

On Linux, it is necessary to enclose these options in double quotes to prevent the shell
from stripping out the single quotes. On Linux, the above example becomes:

$ soardoc –C “OutputDirectory=’output’”

Unfortunately, for all command-line examples in this manual, these double quotes must
be added to use them in Linux.

Existing Soar Code
If you have a large existing Soar system, manually entering comment blocks for every
object in your system would be very tedious. SoarDoc has an autodoc mode which will
generate stub documentation for all undocumented (no existing SoarDoc comment block)
objects in the system.

autodoc mode is specified by setting the OutputFormat configuration parameter to
‘autodoc’. Running SoarDoc in this mode will create a file called ‘soardoc.soar’ in the

directory specified by the OutputDirectory parameter. It will contain a set of stub
comment blocks. If UseExistingComments is set to 1, SoarDoc will include any
existing comments in the stub blocks.

Since autodoc mode should be run relatively infrequently, it’s easier to run it as a “one-
liner” without having to modify your configuration file:

$ soardoc -C OutputFormat='autodoc' -C OutputDirectory='.'
 –C UseExistingComments=1

with all arguments on a single line, of course.

If you have made manual changes to soardoc.soar and then rerun SoarDoc in autodoc
mode, your changes will not be overwritten.

autodoc mode is especially useful for generating documentation for problem-spaces and
operators discovered by dmgen. After running dmgen to update your datamap, rerun
SoarDoc in autodoc mode to update the soardoc.soar file with new problem-space and
operator documentation.

Processing Soar Log (Trace) Output
SoarDoc can parse and generate an annotated HTML version of a Soar log file (the
contents of the agent window, or a file generated by the 'log' command in Soar). When
available, operator names are replaced with their @brief description, making the trace
more understandable for a non-developer.

Here's the simplest way to do this, assuming you have a log file (log.txt) in the root
directory of your source tree:

$ soardoc -L log.txt

This will generate a file html/log.html.

To change the location of the output, change the OutputDirectory config parameter. To
generate links to SoarDoc documentation, enable the LogUseSoarDocs parameter. If you
change the OutputDirectory, you will probably have to modify the
LogPathToSoarDocs parameter as well.

See the default configuration file for many more configuration options.

Command Reference
All SoarDoc commands begin with the @ symbol followed immediately by the
command’s name. They may take zero or more arguments. The arguments may span
more than one line, but the argument list is terminated with the next “blank” line (a single
‘#’ and whitespace) or the next line that is started with a SoarDoc.

General Commands
The following commands may appear in the documentation block for any object: file,
production, problem-space, operator, or group.

@brief <description>
A single-line description of the object used in indices and tables of content.

@desc <description>
A long, usually multi-line, description of the object. The @desc command is the default
command for any block. Thus, the actual command name may be omitted. For example,
the following two blocks are equivalent:

##!
@production test0
@brief A production.

@desc Here is a long description with
<i>embedded HTML tags</i>

and

##!
@production test0
@brief A production.

Here is a long description with
<i>embedded HTML tags</i>

Note that in the second block, @desc was omitted.

@ingroup <group name> [<group name> …]
Specifies that this object is a member of the given groups. The groups must have been
previously defined with the @group command. This command may appear more than
once in a documentation block.

@created <user> <date> <project> [Comment]
Indicates when the file was created and the user that created it. <date> should be in
YYYYMMDD format.

@modified [[refnum]] <user> <date> <project> [Comment]
Indicates a modification to the object and the user that made the change. <date> should
be in YYYYMMDD format. This command may appear more than once in a
documentation block.

The optional [Comment] parameter may span multiple lines and contain arbitrary HTML
as well as @ref commands.

[refnum] is an optional first parameter which must take the form of an integer enclosed
in square brackets. When present at file scope, this creates a general modification note
that other @modified commands in the file can reference. When it appears at any other
scope, then <user>, <date>, and <project> are inherited from the file @modified
command with the same [refnum] and are not required. Only a comment is necessary.
Using this mechanism, several changes throughout a file may be grouped together.

Here is an example of this usage:

At file scope…

##!
@file

@modified [1] ray 20030127 MyProject
Made several related changes...

At production scope…

##!
@production

@modified [1] More details for change [1]

At another production scope…

##!
@production

@modified [1] Even more details for change [1]

Note that in the production scopes, the user, date and project are omitted when referring
to a more general modification. Also, using change references in this manner allows the
generation of reports where a change and all affected objects can be grouped together in a
single location.

The name and date fields could probably be automatically filled in by CVS keyword
substitutions, but this may cause unwanted conflicts, so care should be taken.

@devnote [Comments]
Developer-centric notes. These can be enabled/disabled in the generated documentation
depending upon the target audience. [Comments] may be arbitrary HTML possibly
spanning multiple lines and containing @ref commands.

@todo [Comments]
All instances of the @todo command are collected together to form a todo list in the
generated documentation. [Comments] may be arbitrary HTML possibly spanning
multiple lines and containing @ref commands.

File-scope Commands
The following commands may appear in the documentation block for a file.

@file [<name>]
Required. Indicates that this documentation block documents a file. <name> indicates
the name of the file being documented. If <name> is omitted, then the name of the
current file is used. This command must be the first command in the block.

@project <name> [<name> …]
A list of projects to which this file belongs.

@kernel <version> [Comment]
Indicates compatibility (syntactic and semantic) with a particular version of the Soar
kernel. This command may appear more than once in a documentation block to indicate
compatibility with multiple kernels.

@problem-space <problem-space name> [<problem-space name> …]
Indicates the default problem-spaces used by productions in this file if they don’t specify
one. This command may appear more than once in a documentation block.

@operator <operator name> [<operator name> …]
Indicates the default operators used by productions in this file if they don’t specify one.
This command may appear more than once in a documentation block.

@type <type>
Default value for @type command at production scope.

Production-scope Commands
The following commands may appear in the documentation block for a production.

@production <name>
Indicates that this documentation block documents the named production. This command
is optional if the block is immediately followed by the production it documents. If used
this command must be the first in the block.

@kernel <version> [Comment]
Indicates compatibility (syntactic and semantic) with a particular version of the Soar
kernel. This command may appear more than once in a documentation block to indicate
compatibility with multiple kernels.

If this command is omitted, then the production inherits the @kernel commands used in
the file-scope documentation block.

@problem-space <problem-space name> [<problem-space name> …]
Indicates a list of problem-spaces with which this production is associated. This
command may appear more than once in a documentation block.

If this command is omitted, then the production inherits the @problem-space commands
used in the file-scope documentation block.

@operator <operator name> [<operator name> …]
Indicates a list of operators with which this production is associated. This command may
appear more than once in a documentation block.

If this command is omitted, then the production inherits the @operator commands used
in the file-scope documentation block.

@type <type>
Indicates the purpose of the production. The suggested values for the <type> parameter
are:

<type> Description
elaboration
state-elaboration
operator-elaboration
proposal
application
termination In Soar 7 there are productions which terminate an

operator by asserting a reconsider preference (@).
selection These productions specify operator preferences.
persistent These productions are o-supported elaborations (tests that

an operator exists, but doesn't test the name of the
operator).

suggest-proposal

If this command is omitted then its value is inherited from the @type command at file
scope if one exists.

Hint: SoarDoc does not enforce this list of production types so you are free to invent your
own and SoarDoc will happily display them as well as use them in the “Productions by
type” index.

Problem-Space-scope Commands

@problem-space <name>
Required. Name of the problem-space. This command must be the first command in the
block.

@operator <name>
Name of the parent operator in the goal hierarchy. If omitted then the parent operator is
taken to be the operator with the same name as the problem-space.

Operator-scope Commands

@operator <name>
Required. Name of the operator. This command must be the first command in the block.

@problem-space <name> [<name> …]
List of problem-space names in which this operator may be selected, i.e. its parents in the
goal hierarchy.

Main Page Commands

@mainpage <title>
Required. Title used for the mainpage.

Group Commands

@group <name> [group title]
Define a group. The name of the group must not exist yet. This command must be the
first command in the block.

Structural Commands

@ref type:<anchor name>
Refer to another documentation object

The type modifier allows a particular named object to be specified. Here is an example
that references a production:

Please see @ref prod:name*of*production

for more info.

This will production a hyperlink to the documentation for production
name*of*production.

type Description
file A link to file documentation
prod A link to production documentation
ps A link to problem-space documentation
op A link to operator documentation

group A link to group documentation

@start-no-soardoc and @end-no-soardoc
Used in pairs around sections of code that should be ignored by SoarDoc

Trouble-Shooting
Here are problems that may arise while using SoarDoc:

Where I expect to see datamap graphs, I see gibberish like:

 digraph G { node [label="\N"]; graph [bb="0,0,0,0"]; ...

You are using an old version of dot that doesn't support output of client-side
image maps (dot option -Tcmap). Get the latest version from
http://www.research.att.com/sw/tools/graphviz/.

I'm running autodoc mode, but I can't find the generated soardoc.soar file?

Output is always written to the directory indicated by the OutputDirectory
parameter which defaults to ‘html’. To quickly run in autodoc mode, outputting
to the current directory without modifying your config file try:

$soardoc -C OutputFormat='autodoc' -C OutputDirectory='.'

I have generated a datamap with dmgen and set all of the related config options
(XmlDatamap, etc) but no problem-spaces or operators show up in my generated
docs.

The reason you can't see them in SoarDoc's output is that none of them are
documented in the code. The quickest way to get them documented is:

$ soardoc -C OutputFormat='autodoc' -C OutputDirectory='.' -C
UseExistingComments=1

This command will produce a soardoc.soar file in the current directory with stub
documentation blocks for all of your problem-spaces and operators. After this,
run soardoc again normally and the datamap information should appear in the
output.

I'm overriding configuration parameters on the command line with –C and SoarDoc
complains?

If you’re running SoarDoc on Linux, overridden config parameters must be
enclosed in double quotes. See the Overriding Configuration Parameters section
for more information.

