
dmgen User’s Manual

Dave Ray
ray@soartech.com
June 27, 2003

Introduction
The purpose of the Soar Datamap Generator (dmgen) is to generate a datamap through
static analysis of Soar productions. The generated datamap can be used to better
understand the structure of a Soar system, especially when used in conjunction with
SoarDoc.

It should be noted that Visual Soar has a similar datamap generation facility. However,
this implementation relies heavily on the analyzed code already being in Visual Soar
format, which is a severe limitation for large systems such as TacAir-Soar that were
developed prior to the creation of Visual Soar. dmgen can be applied to almost any Soar
system without modifications to the source code.

See Sample Processing at the end of this document for an example of how dmgen works.

Requirements
dmgen requires an installation of Soar and its accompanying version of Tcl/Tk. It has
been tested with Soar versions 7.3 and 8.3 on both Linux and Windows. The binary
distribution of dmgen is compatible with Tcl version 8.0 and 8.3.

Identifiying Problem-Spaces
dmgen identifies problem-spaces by searching for particular tests on states. For TacAir-
Soar, this test is ^problem-space.name. For Visual Soar generated code, the test is
simply ^name.

This difference is held in the ProblemSpaceSpec configuration parameter. In your config
file set ProblemSpaceSpec as follows:

Set ProblemSpaceSpec "problem-space name"

for TAS-style systems, or:

Set ProblemSpaceSpec "name"

for Visual Soar style systems.

The default value is "name"

From a Tcl shell, you can set this config parameter, or any other, as follows:

DmGenCfg::Set ProblemSpaceSpec "problem-space name"

To get the value of a config parameter:

set v [DmGenCfg::Get ProblemSpaceSpec]

Running from the Command-Line
In order to generate a datamap for your code, dmgen needs a Tcl/Soar file that, when
executed by Tcl, will load the productions for it. Fortunately, many Soar systems already
have this file in the form of source.soar or load.soar. It is specified with the InputFile
config parameter. The default value for InputFile is source.soar.

dmgen also needs to know the path to the Soar library (i.e. /Soar-8.3/library).
This can be set with the SOAR_LIBRARY environment variable, or with the
SoarLibraryPath config parameter. It is important that the Tcl version you are running
dmgen with is the same version used by the Soar library. If they are not the same, the Tcl
interpreter will crash when it tries to load the Soar library.

Assuming your source.soar file is in the current directory and SOAR_LIBRARY is set,
here is a basic invokation of dmgen:

$ tclsh /path/to/dmgen.tcl

or,

$ wish /path/to/dmgen.tcl

These examples assume that the Tcl bin directory is on the system path. Note that on
some systems, tclsh and wish include the Tcl version number, e.g. tclsh80 or wish83.

Using wish rather than tclsh will provide a simple Tk GUI for viewing the resulting
datamap.

The above commands will generate a set of XML files representing the generated
datamap in a new directory called 'xml'. This directory is suitable input for SoarDoc.

Calling dmgen from a Tcl Shell
dmgen can also be called from within an interactive Tcl shell such as the Soar TSI. This
can come in handy when external dependencies such as simulation interfaces make it
difficult to load your code straight from Tcl.

This is pretty straightforward, but definitely more work than calling dmgen from the
commad-line. Here are the basic steps:

Set up library paths...assumes that path to soar-x.x/library is in

the SOAR_LIBRARY environment variable. These are only necessary
if you're running in a plain-old TCL console. A Soar agent window
should be ready to go.
lappend auto_path $env(SOAR_LIBRARY)
Load Soar (if not already loaded)
package require Soar

Load productions here... or anywhere else. If you have an agent
window, your productions are probably already loaded.

Load the datamap generator
lappend auto_path "path/to/dmgen"
By adding dmgen to the auto_path, there is no need to source
dmgen.tcl. Tcl will automatically find procs as necessary

Generate a datamap, giving it a name. This will generate a datamap
using all loaded productions. This command takes an optional
second argument, a list of names of productions to process in case
you want to leave some out. dmgen provides a function,
GetSoarProductions, that will return a list of all loaded
productions.
set dm [GenerateDatamap "My datamap"]

Now a reference to the datamap is available through $dm. If Tk is available, a datamap
window will also appear with title "My datamap".

A Note on Performance
dmgen is implemented completely in Tcl, so it is very slow. Don't be surprised if it takes
several minutes to generate a datamap for a large system (e.g. ~6000 TacAir-Soar
productions on a 1.5 Ghz machine takes more than 15 minutes to generate a datamap). If
you're using tclsh, you should be able to see dmgen's log output directly on the console.
For wish or the TSI, it's not as easy to tell that anything is happening (since the console
isn’t updated until the interpreter is idle). Try looking at the log file (dmgenlog.txt); if it's
size is changing, then dmgen is still running. ☺

Configuration Options

Command-Line Options
Details of dmgen’s command-line options can be found by running dmgen with the –h
option. For example:

 $ tclsh /path/to/dmgen.tcl -h

Configuration File
dmgen is currently implemented in Tcl and for convenience uses Tcl to specify its
configuration file. When dmgen is run it loads default values for configuration options.
Next, it checks whether an alternate configuration file has been provided with the –f
command-line option. If so, the file is loaded. Otherwise dmgen looks for a file called

dmgenfile in the current directory and, if it exists, it is loaded. This behavior is similar to
that of Doxygen (doxyfile) or make (makefile).

The –g command-line option will tell dmgen to print a default, well commented,
configuration file to standard output. Thus the following command could be used to
generate dmgenfile:

$ soardoc -g > soardocfile

When generated this file contains a complete list of configuration parameters with
descriptions and default values. The comments in this file are the documentation for all
of dmgen’s configuration parameters.

Config parameters can be overridden at the command-line using the -C option:

$ tclsh /path/to/dmgen.tcl -C InputFile load.soar

This command will run dmgen with the InputFile parameter set to load.soar.

Configuration options in the config file are set using the Set command:

 Set NameOfParameter Value

Note the capital “S” in Set. If Value is a string with any white space, it must be enclosed
in quotes.

Output Options
Besides a simple graphical display, dmgen can output a datamap in XML or HTML
format. XML output is suitable for use by SoarDoc. The HTML output is a very basic
browsable datamap. The output format is controlled by the OutputFormat config
parameter. The output directory is specified by OutputDirectory. The default values
are:

Set OutputFormat xml
Set OutputDirectory xml

Thus, by default, dmgen will generate an XML datamap in a directory called xml,
created in the current directory.

If OutputFormat is "none", then no output will be generated.

These output options are also available from the File menu of dmgen’s datamap window
if you’re using wish.

Programmatic Datamap Output
If you’re running dmgen from a Tcl shell or script, you can programmatically generate
XML or HTML output as follows:

Write $dm to XML
DmGenXmlOut::WriteXmlDatamap "destination/path" $dm

or,

Write $dm to HTML
DmGenHtmlOut::WriteHtmlDatamap "destination/path" $dm

Datamap Viewer
As described above, if Tk is available, a simple viewer/editor window will appear that
allows you to browse problem spaces and operators using the problem-space and operator
menus.

You can do basic editing of the generated datamap here. When you have modified an
attribute, it's name will be highlighted in the tree. To save changes, go back to the main
datamap window and choose File->Save Patches. The next time you generate the
datamap, you can do File->Load Patches to restore your changes. This functionality is
fairly untested, so be forewarned.

The File->Save To HTML/XML... menu items will write out the datamap.

Tcl API
When use from a Tcl shell or script, dmgen exposes several useful Tcl procedures and
methods:

GenerateDatamap [name] [productions]

Generates a datamap called name from a list of production names (productions).
If productions is omitted, then all loaded productions are processed. Returns a
handle to the datamap.

DmGenXmlOut::WriteXmlDatamap path datamap

Writes a datamap to a directory as a set of XML files. path is the target directory
for writing. datamap is a datamap handle returned from GenerateDatamap.

DmGenHtmlOut::WriteHtmlDatamap path datamap

Writes a datamap to a directory as a set of HTML files. path is the target
directory for writing. datamap is a datamap handle returned from
GenerateDatamap.

Trouble-Shooting
Here are problems/questions that may arise while using dmgen:

dmgen doesn’t identify any problem-spaces (besides top-ps or any-ps)

 This is almost always a case of ProblemSpaceSpec being set incorrectly.

dmgen seems to miss a problem-space or operator

It this isn’t caused by an incorrect ProblemSpaceSpec config parameter (see
above), the second most likely candidate is that there were errors while loading
productions. The most likely causes of this are:

• A production fails to load because it uses an unknown RHS function. In
this case you may have to run dmgen from a shell with the full simulation
interface available to your code.

• A production fails to load because SOAR_LIBRARY points to a version
of Soar that is incompatible with the source code. For example,
attempting to process TankSoar with Soar 7.3 will cause several
production to fail to load.

To find out what caused

Where does the top-ps problem-space come from?

top-ps comes from any attributes that are tested from the ^top-state attribute.
This behavior can be suppressed by setting the FillTopPs config parameter to 0.

Where does the any-ps problem-space come from?

Whenever a production does not test for a particular problem-space or operator,
dmgen will merge the attributes that that production references into a dummy
problem-space called any-ps. This is basically everything that dmgen could not
find a home for. This behavior can be suppressed by setting the FillAnyPs config
parameter to 0.

Sample Processing
Here is a sample of the processing that dmgen performs on a single production:

Problem Space: attack

• operator, Type: identifier
Links: fire-missile,

• problem-space, Type: identifier
o name, Type: string , Value(s): attack

• io, Type: identifier
o input-link, Type: identifier

� missiles, Type: int , Value(s): 0
� radar, Type: identifier

� tank, Type: identifier
� position, Type: string , Value(s): center

Operator: fire-missile

• actions, Type: string , Value(s): missile
• name, Type: string , Value(s): fire-missile

sp {attack*propose*fire-missile
 (state <s> ^problem-space.name attack
 ^io.input-link <il>)
 (<il> ^radar.tank.position center
 ^missiles > 0)
-->
 (<s> ^operator <o> +)
 (<o> ^name fire-missile)
 (<o> ^actions missile)
}

state problem-space name

io input-link radar tank position

missiles

operator name

actions

Production is parsed into a graph and partitioned.

Partitioned subgraphs are merged into a datamap,
from which an HTML document can be generated.

problem-space attack

operator fire-missile

