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Abstract 

Creating autonomous long-lived agent that can robustly function in a complex object-

based environment has been a persistent goal in the field of artificial intelligence. 

Learning the appropriate functional categories of objects is one of the keys to achieve this 

goal, and is the theme of this thesis.  

We formulate the research problem as finding efficient value function approximation 

algorithms, where the input to the function is an object-based state representation, and 

output of the function is the utility value of that input state. The challenges arise from the 

requirements of efficient learning, and incremental learning of complex nonlinear value 

functions, whose input consists of diverse objects in high dimensional feature space. Our 

solutions are based on three key principles. The first is that the value function 

representation can usefully exploit the compositional structure of object-based 

environments, where the state representations consist of independent objects with their 

own perceptual features and functional properties. The second is that hierarchical 

symbolic category representations, inspired by human cognitive models, can help achieve 

efficient learning. The third is that the object categorization criteria must be consistent 

and coherent with the target utility value function. We provide two implementations 

based on these key principles, with evaluations both based on functionality and on 

cognitive plausibility. 

Traditionally, category learning and value function approximation are studied as separate 

problems. The thesis presents a unique synthesis of the two. On one hand, it provides 

efficient value function approximation algorithms that can take advantage of compact 

representational basis adaptively generated by hierarchical category learning. On the 

other hand, it provides a utility based category learning model that offers new 

computational insights to human category learning behaviors.  
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Chapter 1  
 

Introduction 

Manipulating objects is a significant part of our everyday life, and object category 

learning is believed to be an important cognitive capability for general human 

intelligence. In cognitive psychology, the study of category learning has been a 

prominent area. Many theories and cognitive models of category learning have been 

developed, including: rule-based theories (Rouder & Ratcliff, 2006), exemplar theories 

(Medin & Schaffer, 1978), and the prototype theory (Rosch, 1978). 

Creating autonomous and robust agents with the capability of adapting to novel complex 

environments has been a persistent goal for the artificial intelligence (AI) community. 

Object category learning is one of the keys to achieve this goal. As pointed out by Russell 

& Norvig (2009), “although interactions with the world takes place at the level of 

individual objects, much reasoning takes part at the level of categories”. 

In the machine learning field, various forms of category learning problems have been 

formulated, and a variety of learning paradigms, techniques and algorithms have been 

developed. One of the most straight-forward formulations is the direct supervised 

classification problem, where the desired outputs are symbolic labels explicitly provided 

to the learner. In many real-world applications, the class labels are not directly available. 

In such situations, latent class models (Clog, 1995) or unsupervised clustering algorithms 

(Jolion et al., 1991; Frigui & Krishnapuram, 1997) are applicable. 

However, object category learning in the context of a long-lived, online learning agent 

has been a relatively unexplored area. In such environments, the agent must learn to deal 

with diverse types of objects, incrementally form new categories without externally 
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provided category labels, and must response quickly to the external environment. Such 

problems involve multiple challenges that have traditionally been tackled separately from 

different perspectives, with different assumptions, techniques, methodologies and 

evaluation frameworks.  

In the scenario of reactive online learning agent, the tasks are often studied under the 

reinforcement learning (RL) framework (Sutton & Barto, 1998). Traditional 

reinforcement learning techniques have focused on control problems and relied on 

general propositional state representations. Relational reinforcement learning (RRL) 

(Džeroski et al., 2001) uses more expressive object-based relational representations, 

which are shown to have advantages over traditional propositional representations for 

object-based environments (Duik et al., 2008; Walsh, 2010). Figure 1.1 listed several 

examples of traditional control problems and object-based environments, which have 

been studied within the RL framework. However, the work on RRL has emphasized 

 

Figure 1.1: Examples of RL domains. 

The top 4 are traditional control problems, and the bottom 4 are in object-based environments. 

Taxi Pitfall Infinite Mario
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learning action models, such as the effect of colliding into a wall (in Taxi domain), or 

jumping over a monster (in Pitfall and Infinite Mario). These evaluation tasks often make 

simplifying assumptions about the diversity of objects and the origination of object 

categories. The requirement of forming new object categories is not addressed in those 

approaches. 

In the field of robotics, it is sometimes required that symbolic representation of objects is 

built up from grounded primitive sensory inputs. For example, when acting in an 

environment populated with objects, it is desirable that the agent can develop 

perceptually grounded ontology of objects (Modayil & Kuipers, 2007). However, the 

current immediate challenge in this area is about the spatial aspect, not the object aspect. 

For example, in typical robotics tasks, the main challenges include: construct the maps 

(Durrant-Whyte & Bailey, 2006; Kuipers et al., 2004), perform path planning and motion 

planning to avoid and maneuver around obstacles, identify a target object and manipulate 

it with the right motor controls. The diversity and complexity of objects are usually 

limited. 

1.1 Challenge of Object Diversity 
The practical reason for the attention to spatial problems is that space is always the 

immediate challenge while object diversity is secondary. For example, in the taxi domain 

shown in Figure 1.1, the interacting objects include the walls, passengers and possibly 

other taxis. Navigation is a major component of the domain. Both Pitfall and Infinite 

Mario have a larger collection of objects such as various kinds of obstacles, enemies and 

treasure. However, the primary challenge is still about how to spatially navigate through 

the maze, get around obstacles and enemies while collecting as much treasure points as 

possible.  

In real-world complex environments, object diversity is much higher than normally 

presented in the aforementioned RL and robotics tasks. The challenge from object 

diversity will inevitably arise when we have more capable and long-lived agents that can 

interact with the complex environment in many ways. Imagine an agent trying to survive 

in the jungle, it must deal with hundreds or thousands of species that can be potentially 
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encountered, including things like trees, fruits, flowers, mushrooms and animals. Fruits 

and mushrooms are either poisonous or not. They may have very different appearances, 

such as their color, odor, shape and texture. Furthermore, two objects that look similar 

may be functionally different, such as a venomous snake and a harmless snake. On the 

other hand, some objects may have very different perceptual features, while they are 

functionally the same from the agent’s perspective, such as a whitefish and a blackfish. 

The challenge can be decomposed at two levels. At the first level, an agent can interact 

with the environment in many ways, which translate to different dimensions of 

functionality and semantics. For example, the agent can choose to eat an apple, play with 

the apple, or throw the apple at its enemy. The agent must be able to organize category 

knowledge with respect to these different dimensions. The second level is that within the 

same functional purpose, different objects can be associated with very different outcomes 

upon the agent’s actions. Therefore, the agent must also be able to organize a 

discriminative categorization system among diverse objects with regard to each 

functional dimension. In such complex environments, it is impractical, if not impossible, 

to predefine all the functional categories of objects and provide them to the agent. It is 

inevitable that a long-lived agent is required to incrementally form categorical 

representations of objects based on their functional properties which are obtained through 

experiences interacting with the objects. 

The research presented in this thesis focuses on exploring techniques of category 

formation in object-based environments with two defining characteristics. One is the 

emphasis on the challenge of object diversity. The other is the learning of functionally 

meaningful categories that are relevant to the agent’s decision making, as opposed to 

category learning purely based on perceptual features. The following section will first set 

up a concrete example of object diversity. 

1.2 Example Task of Object Diversity 
A concrete example of a hunting scenario is presented in the following paragraphs, which 

not only intuitively grounds the problem, but also captures the essential characteristics of 

object-based environments. This hunting scenario is used to develop more detailed 
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understanding of requirements, challenges and assumptions about the problem. 

Variations of this scenario serve as the evaluation tasks throughout the thesis. 

In Figure 1.2, the agent, whose icon is a caveman, faces the decision of choosing the right 

weapon for the right prey. There is a certain degree of diversity in both weapons and prey. 

There are 8 prey and 6 weapons - in reality the numbers could be much larger. The 

perceptual features of each objects result in even higher diversity, because functionally 

equivalent objects can have perceptually distinctive variations, such as a black rabbit 

versus a white rabbit. We assume that the agent has no prior knowledge about the 

interactions between weapons and prey, and must learn to predict the outcome based on 

its experiences. The outcome of a weapon-prey pair depends on the functional properties 

of both objects, such as the range and power of a weapon or the size and robustness of a 

prey. In this example, memorizing the results for each of the 48 combinations is 

inefficient. An observation is that human can create hierarchical category abstractions, 

which can help achieve efficient generalizations.  

 

Figure 1.2: An example of object diversity in the hunting task.  

The agent must make decisions regarding diverse types of objects. 

ranged
polearm
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large small

4-leg bird fish
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Figure 1.3 shows an instantiation of the interaction function and the related decision 

making problem. The interaction outcome function in this domain is represented in the 

two-dimensional table. A dark cell means the corresponding weapon is good for hunting 

the prey and the agent will receive a reward of +1 if it chooses the action ‘hunt’. A white 

cell means the corresponding weapon is bad for hunting the prey, and the agent will 

receive a reward of -1 if it chooses the action ‘hunt’. The agent can always choose the 

default action ‘avoid’, which will give a 0 reward.  The figure illustrates the functional 

categories of the objects (represented by the hierarchies for the rows and columns) and 

the outcomes. The mapping from perceptual features to the hierarchical categories is not 

shown. We assume the agent has a fixed set of feature detectors, and more detailed 

assumptions about the perceptual features are discussed in later chapters. 

The above example, although simple, demonstrates the essential characteristics of the 

problem: the input to the function lies in a high dimensional space (many perceptual 

features for prey and weapon), and the underlying interaction function cannot be 

 

Figure 1.3: Instantiation of the interaction function in the hunting domain. 
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represented by simple forms (non-linear function). On the other hand, the goal is to 

achieve efficient learning. Learning of a complex non-linear function in high dimensional 

space is a challenging problem in general. However, there are certain forms of 

regularities in such problems which make efficient learning possible. Our hypothesis is 

that hierarchical categorization, as shown in Figure 1.2 and Figure 1.3, is the key to 

achieve efficient learning. 

1.3 Overview of Chapters 
In Chapter 2, we define our research problem. We identify and analyze the challenges 

and assumptions in the problem, and introduce the design of our general approach, which 

leads to specific implementations in the following chapters. As an initial step, Chapter 3 

presents a learning system that integrates a unsupervised hierarchical clustering algorithm 

with the sparse coarse coding based value function approximation algorithm in the Soar 

cognitive architecture (Nason & Laird, 2005; Laird, 2008). In Chapter 4, we show that 

the learning system presented in Chapter 3 provides computational insights to human 

category learning by qualitatively modeling several prominent human category learning 

phenomena. In Chapter 5, we introduce a new algorithm in a principled statistical 

optimization framework to address a major limitation in the previous learning system. 

We evaluate the new algorithm with systematically generated synthetic data. Chapter 6 

summarizes the contributions and discusses future directions. 
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Chapter 2  
 

Research Problem Definition and 
 Design of General Approach 

2.1 Research Problem Definition 
We define our research problem as finding efficient value function approximation 

algorithms for decision making in object-based domains, where the state representation 

(input to the value function) consists of objects. Our algorithms can be used as value 

function approximators for a reinforcement learning (RL) agent (Sutton & Barto, 1998). 

Unlike existing work on value function approximation in RL that focus on the 

convergence issue (Maei et al., 2009), we focus on the structural characteristics of object-

based environments to design efficient generalization algorithms. We also assume the 

agent is long-lived, and therefore must scale with high degree of object diversity in a 

complex environment. Our approach utilizes hierarchical categorization inspired by the 

observation of naturally occurring hierarchies in human category learning (Mervis and 

Rosch, 1981). 

In the following sections, we first elaborate on the requirements of efficient value 

function approximation. Then we discuss and analyze the specific challenges and 

assumptions in the research problem. Finally, we describe our general approach, which 

leads to specific implementations to be discussed in later chapters. 

2.2 Requirements of Efficient Learning 
In the hunting example, in order to better survive, the agent needs to generalize its 

experience to novel situations. For example, having learned how to hunt a whitefish with 
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a spear, the agent should be able to successfully hunt a blackfish without going through 

the same trial-and-error learning procedures again, which would be costly to the agent’s 

survival. On the other hand, incorporating a piece of new experience into its current 

knowledge base should not incur too much computational cost. For example, it is not 

acceptable to have a learning algorithm where the computational cost of processing a new 

training sample grows linearly with the total number of samples in the agent’s knowledge 

base. The above two requirements address two aspects of efficiency in learning: sample 

efficiency and computational efficiency. 

Sample efficiency concerns the relation between the number of training samples and 

accuracy of the algorithm. Traditionally, learning algorithms are evaluated by asymptotic 

performance – the degree of accuracy that can be achieved given enough training samples. 

In online learning problems, the intermediate learning curves are even more important 

than the asymptotic performance, because every decision is important to the agent’s 

survival. 

Computational efficiency concerns the computational cost of incorporating each new 

training sample into the agent’s existing knowledge. For most optimization problems, the 

learning algorithm has to re-evaluate every training instance in order to find the true 

optimal solution whenever a new training sample is incorporated. Such algorithms, which 

do not consider incremental updates, are called batch algorithms. Batch algorithms are 

unacceptable for a long-lived learning agent, which can potentially collect large amount 

of experiences. Therefore, we need an online learning algorithm that incurs a fixed, or at 

least a very slowly growing, computational cost for incorporating a new training sample. 

Such an online algorithm can usually be constructed as an approximation algorithm that 

is based on the same optimization criteria, but is not guaranteed to find the global optimal 

solution. Although online algorithms exist for many optimization problems, it can be a 

technical challenge to find a good one. 

2.3 Challenges  
The challenges arise from the combination of the efficient learning requirements 

discussed above and the environmental complexity which will be discussed in the 
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following paragraphs. In an object-based environment, there are two major components 

in the environment model. One is the distribution of different objects in the feature space, 

and the other is the interaction dynamics among objects. 

2.3.1  Object Diversity  
The jungle survival example and the hunting tasks in Chapter 1 are intuitively grounded 

examples about the challenge of object diversity. More formally, object diversity is 

characterized by the distribution of object instances in the feature space. In our target 

environments, we expect the feature space has rather high dimensions and the instances 

are randomly distributed across the entire feature space. We will give more precise 

characterization of object diversity when we evaluate our algorithms in later chapters. At 

this point, an intuitive understanding should suffice. 

High degree of diversity undoubtedly corresponds to large amounts of information to be 

learned and poses a challenge to the agent. In natural environments, high degree of object 

diversity is a pervasive phenomenon: from living organisms to manmade objects, and 

natural objects. The law of increased entropy implies that disorganization, randomness 

and chaos in the universe tend to increase. As a consequence, objects in the physical 

world end up in very diverse states.  For living organisms, in the light of evolution by 

means of natural selection, new species have evolved to fill the various environmental 

niches. The tendency for diversity and complexity to increase in evolutionary systems is 

recently proposed as the “Biology’s first law”, or “zero force evolutionary law” (ZFEL) 

(McShea & Brandon, 2010). It is argued that ZFEL complements the principle of natural 

selection – the force that helps make order out of chaos. 

2.3.2  Nonlinear Interaction Function 
One way to specify the dynamics of a complex environment is by defining condition-

action like rules. Each rule corresponds to an event, such as a successful hunting. The 

rule can be viewed as a function. The input to the function is the condition for the event 

to happen. For example, using a crossbow to hunt a deer is the condition for a successful 

hunting. The output of the function is the effect of the event. For example, the effect of a 

successful hunting is receiving +1 reward. We refer to such event functions in object-
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based environment as the interaction function to reflect its object-based nature. In a 

complex object-based environment, the interaction function can exhibits high degree of 

nonlinearity as illustrated by the example in Figure 1.3. This is because events, such as 

the successfulness of hunting, are determined by complex underlying physics. In such 

situations, piecewise approximation is a natural solution. There are a variety of piecewise 

function approximation techniques used in similar situations, which involve partitioning 

the input space into smaller regions (pieces, slices), and using simple function forms to 

approximation the value within each region. One example is the Cerebellar Model 

Articulation Controller (CMAC), which has been used as a sparse coarse coded value 

function approximator in reinforcement learning problems (Sutton, 1996). Another 

example, used in very different domains, is the finite difference method and the related 

finite element method (Johnson, 1987). Unlike CMAC, they do not use overlapping cells, 

and are more suited to approximate smooth functions in lower dimensional space. 

However, all piecewise approximation methods, if applied in their plain forms, are 

subject to the “curse of dimensionality” since the number of pieces grows exponentially 

with the number of input dimensions. In complex object-based environments, high 

dimensionality is expected because each object is described by a large number of features. 

Meanwhile, the intrinsic manifold of the data, or the true dimensionality of the data is 

expected to be high as explained in the previous section about object diversity. Therefore, 

to deal with the challenge of value function approximation in complex object-based 

environment, we must resort to additional structural assumptions, which are discussed in 

the next section. 

2.4 General Assumptions and Approach 
Given the above challenges, it is unlikely that there exist general solutions without 

applying additional constraints to the problem. Our strategy is to identify the general 

constraints in object-based environments, and then design efficient function 

approximation algorithms based on those general assumptions. 
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2.4.1  Assumptions 
The first assumption is about the compositional structure of object-based environments. 

Objects are independent entities, each having its own perceptual features and functional 

properties. The utility value of a state is determined by the functional properties of the 

objects and the relationships among the objects. This suggests that learning categories for 

individual objects is more effective than directly categorizing the entire composed state, 

because categories of objects can be reused in different situations. 

The second assumption is about the distribution characteristic of objects in natural 

environments. Instead of assuming that objects are uniformly distributed in the functional 

space, we assume there is a heterogeneous functional similarity structure among objects, 

such that object categorization for a specific purpose (such as prey or weapon) can be 

organized into a hierarchy as shown in Figure 1.2. Using hierarchical taxonomy to 

organize object categories has been a common practice for a long time, one of the most 

prominent examples being the Cyc project (Lenat & Guha, 1990). Tenenbaum et al. 

(2006) described a computational model that can discover structures like trees, rings, 

dominance hierarchies, and cliques, for a variety of physical, biological, and social 

domains. Among those structures, hierarchy is the optimal structure for organizing object 

categories. In addition to supporting efficient generalization, hierarchical data structures 

can also support efficient online learning algorithms. COBWEB (Fisher, 1987) is an 

incremental hierarchical clustering algorithm that has inspired this work. 

2.4.2  General Design 
The general solution, as suggested in Figure 1.2 and Figure 1.3, is to form hierarchical 

object categories based on functional similarities. The state representation consists of 

combinations of hierarchical categories from each composing object. Then piecewise 

approximation can be performed utilizing such combinatorial hierarchical partitions of 

the sample space. The detailed algorithms are presented in Chapter 3 and Chapter 5.  
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Figure 2.1 provides a high level outline of the thesis. The arrows represent logical 

dependencies. We first formulate and define our research problem: efficient value 

function approximation for long-lived agents in object-based environments. Then we 

identify specific challenges as well as general assumptions, which lead to the major 

design considerations in our general solutions. From Chapter 3 to Chapter 5, we present 

two different implementations, with evaluations both based on the algorithm’s 

functionality (sample efficiency), and on cognitive plausibility (match with human 

behavior). 

 

Figure 2.1: Outline of the thesis. 
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2.4.3  Implementations and Evaluations 
Cognitive architectures such as Soar, have been serving as a framework for building 

robust, long-lived, online learning and reactive agents (Laird, 2008). Recent extensions to 

Soar enhance its capabilities in sub-symbolic realms such as reinforcement learning 

(Nason & Laird, 2005), episodic learning (Nuxoll & Laird, 2007), and spatial reasoning 

(Lathrop & Laird, 2009; Wintermute, 2010). One major motivation of the current work is 

to further extend the category learning capability of Soar to deal with the challenge of 

object diversity which is common for a long-lived agent in complex natural environments. 

Therefore, some of the initial implementations, which are discussed in Chapter 3 and 

Chapter 4, are integrated with the existing Soar system. However, the second algorithm 

presented in Chapter 5 is implemented independent of Soar, because the research does 

not need to be constrained by the details of Soar other than respecting the most important 

constraints of a general cognitive agent, namely incremental learning and scalability.  

Due to the uniqueness of our approach, we cannot find proper evaluation tasks and data 

sets from existing sources. Therefore, we use new artificial domains and synthetic data to 

evaluate our algorithms. For the evaluation criteria, our major goal is to achieve better 

functionality. On the other hand, being able to match with human category learning 

behavior is also a desirable outcome. In Chapter 4, we present such an evaluation using 

the first algorithm (Chapter 3). The second algorithm (Chapter 5) is only evaluated by 

functionality. Matching with human behavior using the second algorithm is discussed as 

a future direction in Chapter 6. 
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Chapter 3  
 

Combining Unsupervised Clustering and 
Sparse Coarse Coding 

In the previous chapter, we formulate our research problem as finding efficient value 

function approximation algorithms in object-based domains. We discussed the challenges 

and proposed the general approach of combining hierarchical categorization with 

piecewise approximation. In this chapter, we provide an implementation of such a 

learning system, which consists of a category learning system for hierarchical 

categorization, and a sparse coarse coding system for piecewise function approximation.  

3.1  Background 
Coarse coding is a popular general approach to achieve value function approximation for 

reinforcement learning agents. Coarse coding approximators generally involve a linear 

combination of coarse grained basis functions. Some examples are CMAC (Sutton, 1996), 

adaptive tile coding (Whiteson et al., 2007), and kd-tree Q Learning (Vollbrecht, 2000).  

For object-based environments, relational representations are considered to be the most 

natural choice of state representation. The two components in a relational representation 

are objects, and the relationships among objects. In this thesis, we focus on the object 

aspect and assume a state representation that consists of an ordered set of component 

objects, with each object represented by its own feature vector. The set of objects are 

ordered because each of them is assumed to take a different role in the represented 

situation. For example, in the hunting task, weapon and prey are two distinctive roles. 

The state representation is composed of two object categories, one for prey, one for 

weapon. In an object-based environment, objects are independent entities with intrinsic 
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functional properties, and the utility value of a state is directly determined by the objects 

and their roles. Therefore, our approach of representing the state as combinations of 

object categories not only reduces the dimension via categorization, but also respects the 

compositional structure of the environment. 

3.2 Our Approach 
Figure 3.1 shows the overall architecture of our implementation. The original prototype 

system was implemented in Soar and uses the existing architectural mechanisms, 

including Soar-RL (Nason & Laird, 2005) and production rule based knowledge 

encoding. The system first transforms each input object into symbolic hierarchical 

categories via a hierarchical clustering algorithm (the bottom half in Figure 3.1). The 

symbolic hierarchical categories are used as representational basis to form coarse coding 

basis functions (the top half). Finally, the combinatorial hierarchical basis functions are 

linearly combined to approximate the value as in other coarse coding algorithms. The 

coefficients of each basis function correspond to the weighted connections from the top 

layer to the output as shown in the top of the figure. These weights are adjusted based on 

the desired output value. Regarding the overall structure, from the input and output layers, 

there are two intermediate representational layers and three processing steps (outlined on 

the left of Figure 3.1). In the following section, we present the details of the process in 

two sections: the category learning system, which learns the mapping from input to the 

representational basis, and the sparse coarse coding system, which performs piecewise 

function approximation. 

3.2.1  Category Learning System 
The category learning system maps raw input features into symbolic categories for each 

individual object. It has two modes: learning mode and recognition mode. The learning 

mode corresponds to the process of category formation. When adding a new instance to 

the system, either a new symbolic category is created or existing categories are modified. 

In the recognition mode, an input object is mapped to an existing category in the 

hierarchy based on its features. 
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3.2.1.1 Category Formation 

For category formation, we use an unsupervised hierarchical clustering algorithm. It is 

unsupervised because the categorizations are determined solely by the input features and 

there is no pre-specified category label. In this framework, prior knowledge can be 

injected to select a subset of features to bias the clustering. The hierarchical clustering 

algorithm is adapted from COBWEB (Fisher, 1987) and CLASSIT (Gennari et al., 1989), 

which recursively partition the training samples to build up a hierarchy based on the 

optimization criteria listed in Equations 3. 

Equation 3.1 (1) defines the partition utility optimization objective, which gives higher 

scores for categories with high within-group resemblance and prefers fewer number of 

categories. This is achieved by using the sum of category utilities penalized by the 

number of categories n. Category utility is defined in Equation 3.1 (2) which is the sum 

 

Figure 3.1: The overall learning architecture.  
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of feature utilities for that category. Feature utilities for nominal features and numeric 

features are defined in Equation 3.1 (3) and (4). For nominal feature, the utility is the sum 

of squared probabilities for each discrete value. For numeric features, in Equation 3.1 (4), 

σ0 is the standard deviation of the feature’s distribution across all training samples, and σi 

is the standard deviation within category i. 

Figure 3.2 illustrates an example of hierarchical categories for objects with three features: 

color (nominal), shape (nominal) and size (numeric). The statistics of each feature are 

listed with each category node. For a nominal feature, the frequencies of each discrete 

value are recorded. For a numeric feature, the mean and variance are recorded. Each 

category node is also visually depicted. The optimal hierarchy should maximize the 

partition utility from top down recursively. 

 

Equation 3.1: Definition of partition utility. 
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The incremental algorithm that searches for such optimal structure is based on greedy 

search in the space of hierarchical structures. The two primitive operators are split and 

merge, as illustrated in Figure 3.3.  The numbers in each hierarchy represent the unique 

identifiers of the categories. The entire search space can be viewed as a graph structure, 

with the vertices being distinctive hierarchical structures and the edges being split/merge 

operators. To evaluate the hierarchy after a merge or a split, the data structure shown in 

Figure 3.2 must be updated accordingly and the partition utility shown in Equation 3.1 (1) 

must be recalculated. A greedy algorithm can be used to search for the new optimal 

hierarchy in the neighborhood of the current structure whenever a new instance is 

integrated into the hierarchy. Details of the incremental learning algorithm and its 

complexity analysis can be found in the original COBWEB paper (Fisher, 1987).  

 

Figure 3.2: An example categorization hierarchy with detailed data structure. 
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3.2.1.2 Category Recognition 

As illustrated in Figure 3.1, in order to predict the utility value of an input state consisting 

of multiple objects, each object is first mapped to an existing symbolic category. This is 

achieved via the category recognition process. In our system, the category recognition 

process selects the category with the highest posterior probability given the input features. 

For example, if the prey is furry and has long ears, then rabbit is the category with the 

highest posterior probability. In the hunting example, recognition based on perceptual 

features is straightforward if the system is presented with good discriminative features 

such as whether the prey has wings or scale skin, the shape of tail, ear and size, etc. In 

more general situations, there can be multiple categories with close posterior probabilities. 

Our system uses the winner-takes-all principle – only the category with the highest 

probability is selected as the output. Such a recognition process is recursively applied at 

each level of the hierarchy, and the final output is the path of categories at different levels 

of abstraction, as illustrated in Figure 3.1. 

 

Figure 3.3: Local restructuring operators in the space of hierarchies.  
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Equations 3.2 describe how the posterior probabilities are calculated. Equation 3.2 (1) 

states that P(Ci|I), the posterior probability that the instance belongs to category i given 

the observed feature vector I, is proportional to the product of P(I|Ci) and P(Ci), where 

P(I|Ci) is the conditional probability of the observed feature vector I, and P(Ci) is the 

prior probability of that category. Equation 3.2 (2) calculates P(I|Ci) by taking the 

product of P(Ij|Ci), the conditional probability of each individual feature Ij, assuming the 

distribution of individual features are independent. Equation 3.2 (3) is the conditional 

probability of an individual nominal (symbolic) feature under category i. Equation 3.2 (4) 

is the conditional probability for a numerical feature based on the assumption that the 

distribution being Gaussian. The recognition algorithm descends the category hierarchy 

and chooses the category with the highest posterior probability. 

 

Equation 3.2: Category recognition. 
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3.2.2  Sparse Coarse Coding System 
As illustrated in Figure 3.1, after mapping each object to its symbolic categories, the state 

representation consists of an ordered set of hierarchical categories. The sparse coarse 

coding system composes the categories to form a set of coarse coding basis functions. 

Figure 3.4 shows a concrete situation for a specific input based on the hunting task 

example in Figure 3.1 from the previous chapter. 

In Figure 3.4a, the state space is represented as a 2D grid after mapping objects with raw 

features into their symbolic hierarchical categories, which are output from the category 

learning system, and serve as the inputs to the coarse coding system. The specific 

example is hunting a deer with a crossbow, and the activated categories are highlighted. 

The coarse coding system approximates the value function in the now transformed and 

reduced state space. In the Figure 3.4b, the coarse coding system consists of 16 grids in a 

4 by 4 lattice structure. Each grid represents a partition of the state space at a specific 

level of resolution according to the levels of the two composing hierarchies. The levels 

are indicated by the numbers associated with each grid. For example, G(1,2) means the 

partition grid consists of prey categories at level 1 and weapon categories at level 2. The 

black dots spatially represent the input instance, and the grey areas represent the more 

general regions covered by the activated coarse coding basis. The region with the dotted 

border in 7 of the grids on the lower and right sides of the lattice means there are no more 

specific rules generated for those regions because it has already reached the leaf level of 

the categorization hierarchies. The utility value for a state is approximated by the sum of 

multiple activated basis functions, which are simultaneously updated by the learning 

algorithm.  
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Figure 3.4: Illustration of sparse coarse coding.  

The specific input is hunting deer with crossbow. (a) shows state space and activated categories. (b) 
shows the organization of coarse coding basis into a lattice. 
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We formally describe the overall algorithm below. To learn a target function, the system 

first maps the input objects into a vector of functional roles R, which represents the 

distinctive arguments in the input of the target function. The vector O represents the input 

objects binding with R, thus determining the ordered set of objects: 

𝑅 = (𝑟1, 𝑟2, … , 𝑟𝑛) 

𝑂 =  (𝑜1, 𝑜2, … , 𝑜𝑛) 

To give a more concrete example, assume the general target function is to predict the 

utility of hunting some prey with some weapon. The inputs are two objects: rabbit and 

bow. If the system has no prior knowledge about the detailed functional roles, then it may 

use a single functional role for all objects. According to our notation, input to the system 

will look like R=(generic-object, generic-object), O=(rabbit, bow). If we know that prey 

and weapon play distinctive functional roles, then the input will look like R=(prey, 

weapon), O=(rabbit, bow). If we know a more refined structure about the interaction 

model, for example, that there are two interaction components, one is about how to get 

close to the prey, the other is about how to choose the most effective weapon, then we 

may want to categorize the prey based on two different criteria. The input will look like 

R=(prey-sensing, prey-physical, weapon), and O=(rabbit, rabbit, bow). These different 

degrees of structural level prior knowledge can be conveniently encoded as rules in our 

system. After matching objects with functional roles, the category learning system 

incrementally builds a set of hierarchies H correspondingly: 

𝐻 = (ℎ1, ℎ2, … , ℎ𝑛) 

Let height(hi) denote the height of the hierarchy hi, and ki denote a cluster/node within the 

hierarchy. Let level(ki) denote the level of cluster ki in the hierarchy hi, with the root node  

level being 0. Cells, grids and their relations, shown in Figure 3.4, are defined as 

following: 

𝐶𝑒𝑙𝑙𝑠 = {𝐶𝐾, 𝐾 = (𝑘1, 𝑘2, … , 𝑘𝑛)|𝑘𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 ℎ𝑖} 

𝐺𝑟𝑖𝑑𝑠 = {𝐺𝐿, 𝐿 = (𝑙1, 𝑙2, . . . , 𝑙𝑛)|0 ≤ 𝑙𝑖 ≤ ℎ𝑒𝑖𝑔ℎ𝑡(ℎ𝑖)} 
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𝐶𝐾 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐺𝐿 ≡  ∀𝑖 ∈ [1, 𝑛], 𝑙𝑒𝑣𝑒𝑙(𝑘𝑖) = 𝑙𝑖 

𝐺𝐿1 ≺  𝐺𝐿2  ≡  ∀𝑖 ∈ [1, 𝑛], 𝑙1𝑖 ≤ 𝑙2𝑖 

More intuitively, each cell represents a rule in our RL system. A set of cells are 

composed into a grid that partitions the state space at a specific level of resolution. There 

is a lattice structure among the grids with the transitive relation coarser-than (≺ ) 

represented by the arrows in the figure. For example, G(1,1) is coarser than both G(1,2) and 

G(1,2). Both G(1,2) and G(2,1)  are coarser than G(2,2). But there is no such relation between 

G(1,2) and G(1,2). 

Then given the set of input objects, the activation of a cluster ki is denoted as a(ki): 

𝑎(𝑘𝑖) =  � 1 𝑖𝑓 𝑜𝑖 ∈  𝑘𝑖
 0 𝑖𝑓 𝑜𝑖 ∉  𝑘𝑖 

� 

In the above equation, the mapping from oi to ki is achieved via category recognition, and 

only a single path of clusters are activated for a particular input as shown in Figure 3.4. 

a(ki)=1 means an object in the current state, bound to the corresponding functional role, is 

an instance of the category represented by that cluster. The activation of a cell, a(CK), is 

defined as: 

𝑎(𝐶𝐾) =  �𝑎(𝑘𝑖)
𝑛

𝑖=1

 

a(CK)=1 means the rule (a cell corresponds to a rule) matches the current state and will be 

fired to participate in predicting and learning the target value. The weight, w(CK), from 

the cell to the output unit is represented as a numeric value associated with the rule in the 

RL system. The learning algorithm updates the weights according to the delta rule as in 

stochastic gradient descent methods. α is the learning rate, and t is the target value: 

𝑦 = �𝑤(𝐶𝐾)𝑎(𝐶𝐾)
𝐶𝐾

 

∆𝑤(𝐶𝐾) =  
𝛼

∑ 𝑎(𝐶𝐾)𝐶𝐾
(𝑡 − 𝑦)𝑎(𝐶𝐾) 
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The connection between the coarse-coding layer and the output unit is always sparse, 

since, for any input, only one cell from each grid in the lattice has non-zero activation. 

This is due to the competitive learning (winner-take-all principle) nature of the 

hierarchical clustering layer – only one cluster is activated at each level. 

3.2.3  Algorithm Complexity Analysis 
The time and space cost of our system are reasonably bounded under practical 

assumptions. As in COBWEB, processing in each hierarchy in our system takes O(logN) 

time, where N is the number of leaf nodes, for both predicting and assimilating a new 

instance, given bounded branching factor and fixed dimensions in input features. Rule 

matching in Soar is based on the Rete algorithm (Forgy, 1982), which has constant time 

cost given bounded changes in working memory. The remaining time cost is determined 

by the number of grids in the lattice, which is: 

|𝐺𝑟𝑖𝑑𝑠| = �ℎ𝑒𝑖𝑔ℎ𝑡(ℎ𝑖)
𝑛

𝑖=1

 

For example, in Figure 3.4, there are two hierarchies, each having a height of four, and 

therefore the number of grids is sixteen. Since there always exists some level beyond 

which functional differences are too small to be meaningful, we can assume an 

effectively small and fixed height by keeping a limited number of leaf nodes for each 

hierarchy. Furthermore, based on the observation that the cardinality of object interaction 

is usually small, we can also assume that the number of functional roles in a target 

function is bounded by a small constant, and therefore the time cost of each update and 

prediction is practically constant. The space cost for each hierarchy is O(N). The space 

cost for the coarse coding lattice is O(N|R|) where |R| is the number of functional roles in 

the target function. Given the above assumption about a bounded number of leaf nodes 

and a fixed small number of functional roles, the space cost is also constant. 

3.3 Evaluation 
There are no existing benchmark tasks that reflect the challenge of object diversity that 

we are pursuing. Therefore, we created a new artificial domain based on the hunting 
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scenario to evaluate our system. In addition to hierarchical categories of objects, we 

added obstacles that interact with the weapons and animals, and introduced uncertainties 

in the execution of actions to make the task more complex. 

3.3.1  Evaluation Task 
The domain is a simulated environment with discrete time and a discrete location grid. 

The agent is equipped with different types of ranged weapons. To attack a prey, the agent 

must choose an appropriate weapon and distance from which to attack. The efficacy of a 

weapon depends on the functional properties of the weapon and the prey, as well as the 

distance to the prey. Moreover, the prey may detect the agent and become alerted before 

the attack action, which significantly reduces the success rate of hunting. In order to get 

close enough to the prey without alerting it, the agent can approach the prey from behind 

static obstacles. The probability of successfully moving towards the prey depends on the 

sensing capabilities of the prey and the types of obstacles between the prey and agent. 

This domain captures the characteristics and challenges that we intend to address. First, 

there are multiple interacting objects and multiple types of interaction: the interaction 

between prey and weapons, and the interaction between prey and obstacles. Second, there 

is diversity for each object type: prey, obstacles, and weapons all have instances with 

diverse functional properties.  

 

Figure 3.5: Schematic representation of a hunting scenario. 
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Figure 3.5 shows a scenario, where the prey (P) is in the middle. There are two types of 

static obstacles: bush (b) and rock (r), which can coexist in the same cell (b, r). For 

simplicity, the agent can only approach the prey from eight different directions, as 

represented by the dashed lines. The first number associated with a path indicates bush 

distance to the prey and the second number indicates rock distance. 0 indicates that the 

object is absent or out of effective range. There is no additive effect from multiple 

occurrences of the same obstacle type, so if there are two bushes at both distance 1 and 2, 

the effect is the same as if there is one bush at distance 1. 

Figure 3.6 shows the model of interaction between objects in the domain. Grey boxes 

represent physical objects, white boxes with solid lines represent abstract quantities, 

white boxes with dotted lines represent stochastic events with probabilistic outcomes. 

Large dashed boxes highlight local interactions among objects. Prey have different 

sensing properties which affect how likely it can sense the agent when blocked by a bush 

or rock, as highlighted by the “Prey Obstacle Interaction” box. The prey also has physical 

properties that affect how easily it can be shot and fatally wounded, as highlighted by the 

“Prey Weapon Interaction” box. Finally, distance to the prey affects both types of 

interactions. In the task, the agent must choose a weapon, an attacking path and a 

 

Figure 3.6: Complex object interaction model of the hunting domain. 
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shooting distance. If the hunting is successful, the agent receives a positive reward. 

The functional properties of a prey and weapon are represented as continuous numbers in 

our environment model. We assume the agent can measure and internally represent these 

quantities as numeric features. Prey sensing properties consist of sensitivity to bush and 

sensitivity to rock. Prey physical properties consist of health and size. Weapon properties 

consist of power and accuracy. The probabilistic outcomes are determined by the 

numeric values of related features. For example, the probability of successfully 

approaching behind a rock is higher if the prey has higher sensitivity to bush. The 

probability of fatally wounding a prey is higher if the weapon has higher power or the 

prey has lower health. More details will be presented in the next section. 

We call the above numeric features functional features, as they represent an object’s 

perceivable functional properties that have intrinsic meanings to the agent. For many 

functional features, the values are “expensive” to obtain in nature because they have to be 

tested out by actual interactions with the object. There are other non-functional 

perceptual features (not shown in the figure) of prey that are more easily perceivable, 

such as visual, smell, and sound features, and they can be correlated with certain 

functional features. These perceptual features are useful for the agent to predict the 

functional features when they are not directly available. For example, the agent cannot 

directly observe a prey’s sensing properties before choosing the action, and has to make 

predictions based on correlated perceptual features such as the size and shape of eye, 

nose, and ear. 

3.3.2  Empirical Results 
As discussed in Chapter 2, the general requirements are computational efficiency and 

sample efficiency. Our empirical evaluation will focus on sample efficiency, i.e. how fast 

the performance improves with regard to the number of training samples. The 

computational complexity has been analyzed in section 3.2.3. 

3.3.2.1 Evaluation Data 
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The evaluation task used here is one specific configuration of the hunting domain based 

on some realistic considerations on the distribution of objects in the feature space, as well 

as the interaction model among objects. For example, prey with larger sizes tend to have 

higher health. Prey with lower sensitivity to bush tend to have higher sensitivity to rock. 

Weapons with higher power tend to have lower accuracy. The distribution of data has a 

2-level hierarchical clustering structure as shown in Figure 3.7 for each categorization 

criterion.  

 

Figure 3.7: Distributions of the evaluation data. 
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The value of the state is determined by the probability of successfully hunting the prey. 

The general interaction model has been described in Figure 3.6. A specific scenario is 

visualized in Figure 3.8. The outcome in the simulation is computed by a complex 

function involving the interactions among several objects: weapon, prey, and obstacles. 

For example, to determine the probability of “not alerting the prey” (P1 in Figure 3.8), 

the numeric factor is the sum of bush-sensitivity and rock-sensitivity. If there is no bush 

or rock obstacles between the agent and the prey, then the corresponding factor is 0. The 

combined numeric value is transformed by a logistic function (represented as f in Figure 

3.8) into the range of [0, 1] to represent the probability. Intuitively, when there are 

obstacles, and the prey is sensitive to the obstacles, the agent is more likely to 

successfully approach the prey. The distance factor negatively affects this probability 

since, for every step, there is some probability that the prey is alerted, so that the 

probabilities of not altering the prey form a geometric series indexed by the number of 

steps the agent has made within the detection range of the prey. To determine the 

probability of “shot on target” (P2 in Figure 3.8), the combined numeric factor is weapon 

 

Figure 3.8: A visualized example of a hunting scenario.  
It shows the details about how the outcome is generated in the simulation. The function f is a 
logistic function. 

Distance: 3
Obstacles: bush at 1, rock at 2
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Weapon:

size health
1 2

accuracy power
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Stochastic Environment:
1. Not alert the prey: 
2. Shot on target: 
3. Fatally wound the prey : 
4. Get reward:

P1=f(distance, obstacles, sensitivities(prey))
P2=f(distance, accuracy(weapon), size(prey))
P3=f(distance,  power(weapon), health(prey))
P=P1 × P2 × P3
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accuracy + prey size – distance, with the sign reflecting the positive or negative influence 

by the corresponding factor. Similarly, for “fatally wound the prey” (P3 in Figure 3.8), 

the combined factor is weapon power – prey health – distance. 

The coarse coding structure used for this task is similar to that shown in Figure 3.4, 

except that there are three category hierarchies, two for prey and one for weapon as 

shown in Figure 3.7. We use fixed hierarchical categories as input to the coarse coding 

system. Such structures were learned by the category formation process, and do not 

change during the value function learning. Learning rate of the algorithm is set at 0.3. 

Performance is evaluated by sample efficiency, measure by the improvement in 

performance with regard to the number of training episodes. Each trial involves 

incrementally training the agent and recording the average of 100 independent testing 

episodes at different points of training. The final results shown in the plots are the 

average of 100 such independent trials 

3.3.2.2 Comparison with No Categorization 

In Figure 3.9, we compare the learning performance of an agent using hierarchical 

categorization of objects with a baseline agent that uses the raw functional features 

without categorization. When there are only 9 unique instances, one from each prototype 

as shown in Figure 3.7, a 2-level 3-branch structure is sufficient, and the baseline agent is 

equivalent to only using the gird G(2,2,2), as explained in the section about sparse coarse 

coding. The results demonstrate that hierarchical categorization leads to faster learning 

because the coarser grids capture shared information and aid generalization. When there 

 

Figure 3.9: Comparison with “No Categorization” by sample efficiency. 

Success rate is the ratio of successfully hunting the prey. 
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are more subtypes under each of the 9 prototypes for each hierarchy, the performance of 

“hierarchical categorization” will not be affected because it utilizes all the general 

categories, while the baseline will be worse. 

3.3.2.3 Comparison with Fixed-resolution Generalization 

An advantage of using a hierarchy compared to flat categorization, such as the output 

from a k-means clustering algorithm, is the flexibility of representing categorical 

boundaries at different resolution levels, without forcing the system to make 

categorization decisions that are either over-general or over-specific. The next 

experiment tests whether such flexibility is naturally incorporated into our coding scheme 

for value function approximation. Figure 3.10 compares using hierarchical categorization 

to a baseline using single-level flat categorizations. In the baseline, the number of 

categories is set to 3 so that it is equivalent to only using grid G(1,1,1). Since such 

categorization does not capture the more subtle differences within each general category, 

it cannot improve performance beyond a certain point. We can choose to make a finer-

grained flat categorization, which will lead to better asymptotic performance. However, 

that will inevitably lead to a worse improvement rate in the initial stage. In the extreme 

case, it will be the same as the performance generated by “no categorization” shown in 

Figure 3.9. In conclusion, using hierarchical categorization in our value function 

approximation scheme, reconciles the tradeoff between over-general and over-specific 

categorizations. 

 

Figure 3.10: Comparison with “Flat Categorization” by sample efficiency. 

Success rate is the ratio of successfully hunting the prey. 
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3.3.2.4 Comparison with Suboptimal Hierarchy 

To test if using prior knowledge in the form of functional roles and functional features 

can be beneficial, Figure 3.11 compares with a baseline using only a single functional 

role for prey with a monolithic category hierarchy based on all features of prey. The 

single hierarchy results in four levels with three branches at each level to represent all 81 

types of prey – combinations of 9 sensing types and 9 physical types shown in Figure 3.7. 

In Figure 3.11, the reason for poorer performance is because the single monolithic 

hierarchy does not reflect the true functional structure of the environment. The optimal 

structure requires two categorization hierarchies for prey, one based on sensing properties 

(bush-sensitivity and rock-sensitivity) and one based on physical strength (health and 

size). Our system supports encoding such useful structural domain knowledge via 

production rules. 

3.3.2.5 Summary of Results and Analysis 

Comparing all three figures, even using the monolithic hierarchy (lower line in Figure 

3.11) leads to faster initial learning than no categorization at all (lower line in Figure 3.9), 

as well as better asymptotic performance than flat categorization (lower line in Figure 

3.10). This is because the monolithic hierarchy still captures certain amount of functional 

similarity. With the help of pre-specified functional roles and functional features, the 

 

Figure 3.11: Comparison with “Suboptimal Hierarchy” by sample efficiency. 

Success rate is the ratio of successfully hunting the prey. 
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learned category hierarchies more faithfully reflect structural constraints and leads to 

better performance. 

3.4 Related Work 
Our learning system combines sparse coarse coding and hierarchical structure for value 

function approximation with object-based state representations. Like coarse coding based 

value function approximation, our approach relies on learning piecewise constant local 

basis functions. The advantage of using local function approximators, compared to a 

global function approximator such as the multilayer perceptron (MLP) or linear 

regressors (Bradtke & Barto, 1996), is better stability and convergence when used in TD 

learning. This is because global function approximators are designed to fit relatively 

smooth functions, with linear models being the extreme case. Although MLP is a 

universal function approximator, its performance degrades when there are increasingly 

more intensive interference among nearby regions in the input feature space. Interference 

is the negative side-effect of generalization and can be catastrophic for learning 

arbitrarily non-smooth functions (McClelland et al., 1995). Having sparser connections in 

MLP can reduce interference. However, French (1991) has noted that reducing overlap 

avoids catastrophic interference at the cost of a dramatic reduction in the exploitation of 

shared structure. Structured connections are required to balance the different needs.  

Our approach can be viewed as one approach to reconciling interference and 

generalization by combining competitive learning (clustering), hierarchical representation 

and sparse-coding in a multi-layer network, which can be further regulated by rule-based 

symbolic domain knowledge. Competitive learning via hierarchical clustering generates 

symbolic categories, which serve as primitive structures to restrict interferences within 

local regions. On the other hand, sparse-coding with a hierarchical representation results 

in an emerging lattice structure, which regulates generalization by keeping the necessary 

connectivity, and at the same time minimizing interferences among unrelated regions. 

Such faster and more stable learning inevitably shifts the cost to somewhere else:  

compared to a fully connected MLP, more units (cells) are required in our system to 

achieve higher resolutions in value function approximation, although we have shown it is 

not a practical concern. 
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There are other approaches to combining hierarchical structure with local approximators, 

such as in kd-Q-Learning (Vollbrecht, 2000) and adaptive tile-coding (Whiteson et al., 

2007). However, these approaches lack the regulating structures that exist in our 

approach because they are not designed for object-based state representations. 

Furthermore, these approaches face the “curse of dimensionality”. For environments 

involving objects, each object is represented by multi-dimensional features, and the total 

dimension of the feature space can easily become prohibitively expensive for learning if 

using unstructured state vectors that concatenate all the features. Our category learning 

system performs perceptual processing and dimension reduction: each hierarchy reduces 

the multi-dimensional subspace of corresponding functional features into a single 

dimension of hierarchical categories. Prior domain knowledge about functional roles and 

functional features helps to regulate such dimension reductions for object-based 

representations. 

3.5 Discussion 
In this chapter, we presented one specific implementation of our general approach. We 

focus on evaluating two novel features that are important for our system design. The first 

is to evaluate the successful integration of hierarchical representations in Soar-RL’s 

existing coarse coding value function approximation scheme. The second is to confirm 

the importance of supporting multiple functional roles and functional features, which is 

part of our extension to COBWEB. We did not empirically evaluate the effect of category 

learning, because comprehensive analysis has been done in research related to COBWEB.  

We created a complex domain that stresses the types of challenges we are trying to 

address. There are many parameters to configure in the evaluation environment, 

including the underlying distribution of data (Figure 3.7) as well as the model structure 

(Figure 3.6), and functions defining the probabilistic outcomes (Figure 3.8). The results 

are based on a particular setting of the parameters. In Chapter 5, we will systematically 

explore the space of data distribution in the evaluation. For example, when the 

distribution of data in the functional feature space has a more flat structure, the 

performance gains of using hierarchical structures will shrink. We can also increase the 
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object diversity, which will result in deeper hierarchies. However, these quantitative 

changes are not expected to qualitatively change our conclusions. 

Supporting the use of functional roles and functional features as a form of prior 

knowledge in our system can be practically useful with reasonable overhead. The 

observation is that only a relatively small set of functional roles and functional features 

are required to specify the general goals and basic needs of an agent. The benefit of 

providing such knowledge is that categorization more accurately reflects the functional 

similarities of objects without distractions from perceptual noise, and leads to significant 

improvement in RL.  

3.6 Summary 
We presented a novel, two-layer architecture for efficient value function approximation 

by integrating unsupervised hierarchical categorization with the existing RL system in 

Soar. Our system has two unique features. First, the value function approximation 

algorithm utilizes hierarchical structures to smoothly reconcile the tradeoff between over-

specific and over-general categorizations, so that learning can be quicker and more 

accurate at the same time. Second, our system supports the use of prior domain 

knowledge about functional roles and functional features of objects to regulate learning. 

These properties are valuable for autonomous learning agents in a novel, complex, 

object-based environment. The empirical results have confirmed our hypothesis.  

The major limitation of the learning system is that categorization relies on the set of 

functional features that are selected according to prior domain knowledge. Ideally, when 

such prior knowledge is not accurate, or unavailable, the agent should still be able to 

adaptively acquire functional categories based on the feedback from the environment, 

such as the reward value used to train the value function. In the next two chapters, we 

will address this issue from two different perspectives. 
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Chapter 4  
 

Modeling Human Functional Category 
Learning 

In the previous chapter, we showed that hierarchical categorization can be naturally 

integrated with a sparse coarse coding scheme for value function approximation. The 

algorithm automatically balances the transition from generalization to specialization. 

Meanwhile, it was also shown that the performance depends on how well the 

categorization hierarchy reflects the true functional relationship among objects. In the 

category learning system, categorization relies on a set of externally provided functional 

features, which begs the question how these functional features can be obtained 

beforehand and what should be done if they are not available to the system. In this 

chapter and the next, we will address this issue from two perspectives. In this chapter, we 

approach from a naturalistic perspective. We show that the learning system described in 

the previous chapter can adaptively select useful functional categories based on the 

feedback signal (reward value), even if the hierarchies are constrained by the 

predetermined feature set. Detailed analysis on the learning system reveals a 

computational model that can produce category learning behaviors qualitatively match 

with human. In the next chapter, we will approach from a functional perspective, which 

leads to a new algorithm formulated in a statistical optimization framework.  

4.1 Background 
We discussed category learning in the previous chapter from a purely functional 

perspective. There are many distinguishing characteristics of category learning in higher 

animals including human (Ashby & Maddox, 2005) and primates (Smith, 2010). The 

value of categorization is that it enables an individual to respond to a novel stimulus that 
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resembles previously experienced stimuli with known responses. In this chapter, in 

addition to reconfirming the functionality of category learning in the context of an RL 

agent, we investigate several interrelated human category learning phenomena. We will 

show that our system generates three emergent effects found in human category learning: 

they are basic level effect, context effect and expert effect.  

The basic-level effect is related to the notion of basic-level category as described by 

Rosch (1978). Consider the following two examples of abstraction hierarchies: furniture 

–> chair –> rocker –> cherry wood rocker, and machine –> vehicle –> car –> sedan –> 

Lincoln Town Car. The middle categories, chair and car, are basic categories, because 

they dominate both their subordinate and superordinate categories in terms how fast they 

can be recognized and how frequently they are used. It is generally believed that basic-

level categories emerge unconsciously based upon interactions with our world.  

The basic-level effect describes the phenomenon that categories at certain levels of 

abstraction dominate when there is no priming context. On the other hand, in certain task 

contexts, non-basic categories may become dominant. For example, in the context of 

considering what kind of cars to buy, the dominant categories are likely to be at the level 

of SUVs, sedans and wagons. In general, context effects may drive dominant categories 

to be either the subordinate or superordinate categories relative to the basic categories.  

Finally, the level of expertise may also influence the dominant categories. For example, a 

car expert may immediately recognize the car being a Lincoln Town Car; a person 

familiar with chairs (such as a carpenter) may immediately recognize the chair being a 

cherry wood rocker. More learning experiences always drag down the level of dominant 

categories, and we call this phenomenon the expert effect (or simply the learning effect).  

In summary, the traditional basic-level effect, context effect, and learning effects are all 

about category domination under different conditions. In this chapter, we develop a 

model of category domination based on the learning system introduced in the previous 

chapter, and analyze the three category learning effects using a concrete task. 
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4.2 Related Work 
Category learning models have been traditionally focused on the basic-level effect, and 

there has been lack of computationally explicit models to explain how related category 

learning phenomena emerge from learning in a specific functional context, where a 

cognitive agent has to interact with the world to achieve some goals.  

We have described our learning system in detail in the previous chapter. Our learning 

system consists of two components: a category learning system for hierarchical 

categorization, and a reinforcement learning system with sparse coarse coding value 

function approximation. In the following sections, we will briefly review works in human 

cognitive modeling that are related to our approach. 

4.2.1  Hierarchical Category Learning 
There is a long history of hierarchical category models that are inspired by human 

category learning. Quillian (1967) proposed the semantic network model, which can 

represent isa and par-of relationships among objects in a hierarchical structure. However, 

the semantic network model does not include a learning mechanism to build the structure. 

COBWEB (Fisher, 1987) is an algorithm that can incrementally form a hierarchical 

organization of categories. A previous version of the ICARUS cognitive architecture used 

a COBWEB-based system, called LABYRINTH for its declarative learning and memory 

(Langley et al., 1991). Ambros-Ingerson et al. (1990) described a neurologically inspired 

hierarchical clustering algorithm, and Granger (2006) has demonstrated the plausibility of 

using such hierarchical clustering algorithm as a principled computational instruction for 

human cognition. 

4.2.2  Reinforcement Learning 
Hierarchical category learning provides the necessary representational basis, however the 

representation itself is insufficient for functional category learning because it has no 

direct connection to how the learned categories can be used. Another learning process is 

required to connect the category representations with the agent’s intrinsic functional 

meanings. We consider reinforcement learning (RL) (Sutton & Barto 1998) as a 
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candidate mechanism to establish such connections via incremental trial-and-error 

learning with feedback. The formulation of reinforcement learning as trial-and-error 

learning traces back to behaviorist psychology (Thorndike, 1991). The general actor-

critic models of RL have been mapped to the basal ganglia structure in the brain (Barto, 

1995). RL has also been considered as a model for human skill learning (Fu & Anderson, 

2006). Cognitive architectures such as Soar (Laird, 2008) and ACT-R (Anderson et al., 

2004) both have a reinforcement learning mechanism. However, there has not been a 

computational model integrating category learning and RL in these cognitive 

architectures. 

4.3 Evaluation 
In this section, we will demonstrate how our learning system can qualitatively model 

several human category learning phenomenon and provides computational insights. In 

order to conveniently verify the qualitative match with human category learning behavior, 

we use the hunting task with the same data as shown in Figure 1.3 in Chapter 1. Different 

from Chapter 3, the task used here involves only pairs of prey and weapon objects, 

without the complications from obstacles and effects of shooting distance. The learning 

system used here is the same as in Chapter 3. We assume the hierarchies are fixed, and 

evaluate our learning system from two perspectives: how category learning affects RL 

and how RL affects category learning. 

4.3.1  Category Learning Speeds RL 
Hierarchical category learning can speed RL is one of the conclusions from Chapter 3, 

and we want to reconfirm it with the new task. Figure 4.1 compares the learning 

performance of using the hierarchical categorizations with a baseline that uses the leaf 

level nodes without generalization. This is the same comparison in Figure 3.9 in the 

previous chapter, although the task and data set are different. In this data set, there are 

two instances under each of the leaf nodes shown in Figure 1.3. For example, there are 

two instances of Goat that look different but have the same functional properties. 

Therefore, the size of the input space is: 16 (prey) times 12 (tools) equals 192. We 

evaluate the performance improvement during the course of learning. The agent is trained 
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with uniformly distributed random samples from the input space with replacement. The 

learning rate is set at 0.1. For a given amount of training episodes, we evaluate the rates 

of correct decisions it makes if it follows the policy derived from the current value 

function. The final results are average from 300 independent trials. The result shows that 

the model successfully integrates hierarchical categorization to speed RL.  

4.3.2  RL Shapes Category Learning 
The main purpose of this chapter is to show how reinforcement learning influences 

category learning and result in behaviors that qualitatively match with human category 

learning. Therefore, we first define a category domination model to extract functionally 

salient categories from the learning system. Then we map the behavior of our learning 

system to several human category learning phenomenon based on the dynamics of these 

salient categories. 

 

Figure 4.1: Comparison of learning with and without hierarchical categorization. 
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4.3.2.1 Category Domination Model 

The detail of sparse coarse coding in our RL system has been described in Chapter 3. 

Figure 4.2 shows the same lattice structure as in Figure 3.4. The black dots in each grid 

spatially represent the specific input: hunting a deer with a crossbow. The gray areas 

represent the generalization effects when the more general rules fire. In this case, the 

agent receives a reward of +1 and each of the 16 rules participates in prediction and 

updating. Since a general rule (a larger cell) receives more training samples than a more 

specific rule (a smaller cell), it converges to the target value faster. On the other hand, the 

smaller cell will tend to compensate for the value in the context of the larger cell. In 

general, for a given input, there are multiple rules firing simultaneously, each coming 

from a different grid. We define the dominant rule as the rule with the highest absolute 

 

Figure 4.2: Coarse coding lattice and dominant categories.  

The dominant rule and dominant categories are highlighted. 

D
ee

r
G

oa
t

W
at

er
fo

w
l

Ra
bb

it
W

oo
dc

hu
ck

Fi
nc

h
W

hi
te

fis
h

Bl
ac

kf
is

h

La
rg

e
Sm

al
l

Four-leg

Bi
rd Fi
shPrey 

Weapon

Projectile

Pole Arm

Bow
Slingshot
Blowgun

Spear
Trident

Longbow

Crossbow

G(0,0) G(1,0) G(2,0) G(3,0)

G(0,1) G(1,1) G(2,1) G(3,1)

G(0,2) G(1,2) G(2,2) G(3,2)

G(0,3) G(1,3) G(2,3) G(3,3)

Activated rule

Input state
Category Activated category

Category Dominant categoryDominant rule



 
 

44 
 
 

value, or equivalently the winning cell with largest magnitude in its weight: 

𝑊𝑖𝑛𝑛𝑖𝑛𝑔𝐶𝑒𝑙𝑙 =  𝐴𝑟𝑔𝑀𝑎𝑥𝐶{‖𝑤(𝐶)‖} 

Correspondingly, we define the dominant categories as the categories associated with the 

dominant rule. In the hunting task for a specific input, there are two dominant categories, 

one for prey and one for weapon. As highlighted in Figure 4.2, assume the rule testing 

Large (Four-leg animal) and Bow, the upper-left cell in grid G(2,2) is the dominant rule. It 

dominates all the rules that involve subtypes of Large Four-leg animal (Deer and Goat) 

or subtypes of Bow (Crossbow and Longbow) because those rules receive less training 

samples. It also dominates rules that involve more general categories, such as Projectile 

weapon and Four-leg Animal, because there are inconsistent updates for those rules that 

cancel out the updates. Consequently, the categories for Large Four-leg animal and Bow 

are the dominant categories in these particular situations. The general principle is that a 

rule simultaneously maximizing generality and consistency will dominate other rules. 

Intuitively, the associated dominant categories are more functionally salient than their 

superordinate and subordinate categories, since they are the sources contributing to most 

of the decisions made by the voting mechanism.  

4.3.2.2 Basic-level Effect 

We use the overall domination rates across all possible inputs as the measure of the 

context-free functional saliency of a category. We define basic level categories as those 

with the highest domination rates along a path. Figure 4.3a and 4.3b shows the 

domination rates of all the categories for prey and weapons after 1,000 training episodes. 

Since the ordering of inputs causes variations in the values/weights of the rules, we 

measure the mean domination rates across 300 independent learning trials, and the 

estimated standard errors for the means (not shown in the figure) are all less than 0.01. 

For example, the category for Small Four-leg animal dominates its superordinate and 

subordinate categories (including Prey, Four-leg animal, Rabbit and Woodchuck) in 

about 68% of all possible inputs. The category of Rabbit rarely dominates because its 

superordinate category perfectly captures the decision boundaries. 
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Figure 4.3: Illustration of basic-level effect.  

(a) Domination rates of prey categories.(b) Domination rates of weapon categories. (c) Basic level 
categories are highlighted in shaded boxes. 
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Figure 4.3c highlights the basic-level categories in the hierarchies for prey and weapons. 

It exhibits qualitatively the same pattern as human category learning - basic categories 

appear in the middle of an abstraction hierarchy. As explained earlier, a rule that 

maximizes frequency and consistency will dominate, and the corresponding categories 

are dominant categories. More abstract categories are experienced with higher frequency, 

while more specific categories have higher consistency. Therefore, the maximum will 

generally appear in the middle. Look at some specific examples in Figure 4.3c, although 

Bird has higher frequency than its subordinate categories, it has low consistency. Fish has 

higher frequency than its subordinate categories with the same level of consistency, and 

therefore is the dominant category.  

4.3.2.3 Context Effect 

The basic-level effect describes the property of overall domination rates across the 

distribution of samples. For a specific instance (context), non-basic-level categories (the 

ones not having the highest overall domination rates) may dominate. Figure 4.4 shows 

two examples of context effect, where the shaded boxes represent basic-level categories, 

the solid line boxes represent the dominant categories of weapon, and the dotted line 

boxes represent the prey categories serving as the context. Figure 4.4a shows that the sub-

basic-level category Spear and Trident dominates the basic level category Pole Arm when 

the prey (serving as the context) being hunted is Goat or Deer. Figure 4.4b shows that the 

superordinate category Projectile (weapon) dominates the three basic-level categories 

when the context is hunting Fish.  
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Figure 4.4: Illustration of context effect.  
(a) Dominant categories are more specific than the basic level category. (b) Dominant category is 
more general than the basic level categories. 
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4.3.2.4 Expert Effect 

The expert effect concerns the dynamic changes of dominant categories during learning. 

Figure 4.5 shows the dynamics of domination rates during learning 1,000 samples. Figure 

4.5a shows the dynamics of the domination rates for the 14 prey categories. Figure 4.5b 

and 4,5d are the same as Figure 4.3a, showing the domination rates after 1,000 training. 

Therefore, the heights of the bars in Figure 4.5b match with the heights of corresponding 

curves’ end point in Figure 4.5a. Similarly, Figure 4.5c and Figure 4.5d shows the 

domination dynamics for the 10 weapon categories. The trend is that the more general 

categories initially have higher domination rates because they cover more inputs and are 

trained with higher frequencies. More specific categories that have functional properties 

distinctive from other members under the same super-ordinate category have increasing 

domination rates as more and more experience is gained (such as the two subtypes of 

 

Figure 4.5: Dynamics of domination rates.  

(a) and (c) show the dynamics of domination rates during learning. (b) and (d) show the domination 
rates after 1,000 training samples. (a) and (b) are for prey categories. (c) and (d) are for weapon 
categories. 
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birds). Meanwhile, their superordinate categories become less and less dominant (such as 

the general category Prey, Four-leg animal, and Bird) because the inconsistency tends to 

cancel out multiple updates. On the other hand, a perceptual category that does not have 

any functional differences from other members under the same superordinate category 

does not arise as a functionally salient category (such as Rabbit, Woodchuck and the two 

subtypes of Fish). 

After more training samples, some of those sub-basic-level categories at 1,000 training 

episodes may gain more domination rates. In Figure 4.6, dashed line boxes represent 

basic level categories after receiving 1,000 training samples, and solid line boxes 

represent basic level categories after receiving 10,000 training samples. The figure shows 

that when the agent receives more training samples and becomes an expert hunter, the 

basic level categories for Large (Four-leg Animal), Bow and Pole Arm are further 

“pushed” down to more specific levels. 

 

Figure 4.6: Illustration of expert effect.  

Basic level categories are pushed down after more training. 



 
 

50 
 
 

4.4 Discussion 
Traditional cognitive theories of category learning include two competing views: the 

prototype view (Rosch, 1973) and the exemplar view (Medin & Schaffer, 1978). The 

prototype view is based on the principle of cognitive economy (Rosch, 1978) and is 

supported by the existence of abstract category representation, such as linguistic lexicons 

and visual imagery, such as the word dog, cat and visual depictions of prototypical dogs 

and cats. However, there has been a shift of favor from the prototype view towards the 

exemplar view because exemplar models provide superior empirical results in a variety of 

experimental settings (Nosofsky & Zaki, 2002). A practical concern about the prototype 

view is that a prototype will fail to retain certain information that might be important for 

future decision making. More recent models reconcile the two extreme forms and rely on 

representations at multiple abstraction levels (Vanpaemel & Storm, 2008; Love et al., 

2004). 

Our model is consistent with both the prototype and exemplar views. In addition, it 

explicitly models the learning process, and can deal with the more challenging situations 

where the input states involve multiple objects (such as prey and weapons). In terms of 

decision making, our model is more like exemplar based models, where the agent 

acquires information about specific inputs, and then makes generalizations to novel 

inputs based on perceptual similarity. In terms of category abstraction, our model agrees 

with prototype models. In particular, it predicts a similar trend as in the phenomenon of 

basic-level category (Rosch, 1978) where the most prominent categories reside in the 

middle of a categorization hierarchy.  

Furthermore, our model predicts that category domination is context specific. For 

example, in Figure 4.4a, Pole Arm is the dominant category if the specific context is 

hunting Fish (all subtypes of Pole Arms are good for fishing). In a different context, 

however, Spear and Trident will dominate if the specific context is hunting a Deer. Our 

model explicitly supports the hypothesis that the “context-free” basic level categories, as 

described by Rosch, are the overall effects acquired across multiple functional contexts. 

Since the everyday activities related to common objects are largely the same across 

individuals, the context-free basic-level categories appear to be consistent across different 
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cultures, as manifested by the consistency in common vocabularies from different natural 

language systems. 

Our model does not involve a dedicated process of selecting functionally meaningful 

categories. Selection is achieved as an emerging by-product of the RL process. Our 

model cannot explain certain types of category learning that rely on deliberate reasoning 

or higher degrees of abstractions such as analogy. Such deliberate categorization is better 

described by rule based category learning models (Rouder & Ratcliff, 2006), or 

analogical reasoning processes such as in the structure-mapping engine (SME) 

(Falkenhainer et al., 1989). 

4.5 Summary 
In this chapter, we present the first computational model that integrates hierarchical 

category learning and RL in a general cognitive architecture. The unique feature of this 

model is that it simultaneously captures how category learning affects behavior 

adaptation, and how behavior adaptation influences category learning in a functional 

context. Furthermore, our model supports the more challenging tasks involving multiple 

objects, which is common in object-based environment. We have shown that our learning 

system is able to adaptively discover functionally meaningful categories even it is 

constrained by fixed innate perceptual features for categorization. The behavior of the 

learning system qualitatively matches several related prominent human category learning 

phenomena: the basic level effect, the context effect and the expert effect. Although the 

Soar-RL model has been successfully applied to match animal behavior data (Wang & 

Laird, 2007), further empirical experiments are required to confirm its validity in our 

category learning model.  
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Chapter 5  
 

Joint Optimization of  
Functional Categories and Value Function 

In Chapter 3 and Chapter 4, we presented a learning algorithm that consists of two 

separate components: a hierarchical clustering component and a sparse coarse coding 

based value function approximation component. A major limitation of the algorithm is 

that the learned hierarchical categorization structure is constrained by a set of preselected 

features to reflect the intended categorization criteria. For example, in Chapter 3, prey are 

categorized by two criteria. One criterion is based on physical properties including two 

features: size and health. The other is based on sensing properties based on two features: 

bush-sensitivity and rock-sensitivity. In Chapter 4, although functionally salient 

categories are adaptively selected in the process of learning the value function, the 

hierarchical structure is still constrained by the fixed innate perceptual features, which 

limits the flexibility of the learning system. 

In this chapter, we present a new algorithm based on a probabilistic model with latent 

class variables. Consistent with our general approach, the algorithm combines piecewise 

approximation with hierarchical categorization. Different from the previous two-step 

algorithm, in this new algorithm, the hierarchical functional categories and utility value 

approximation are jointly optimized.  

In the following sections, we first revisit the background. Then we introduce the latent 

class model view for the problem of value function approximation in object-based 

environments, where the latent class variables are unobserved functional categories of the 

objects. Then we provide a hierarchical approximation learning algorithm with empirical 
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evaluations. Finally, we discuss alternative approaches at a more abstract level and draw 

conclusions. 

5.1 Background 
The general problem we are considering is to learn a function whose inputs consist of 

objects, and the output is either a numeric or a symbolic value. Since we make no 

assumption about the underlying form of the function, the most obvious approach is to 

partition the input space and approximate the values locally. The local approximator for 

each piece can be in a very simple form, such as a linear function or even a constant. 

Accordingly the approximator is called piecewise linear or piecewise constant. The 

general piecewise approximation approach has been widely applied in engineering 

problems where the underlying function’s form is complex. For example, finite element 

methods (Johnson, 1987), use such a technique for finding approximate solutions of 

partial differential equations.  

In our situation, the inputs to the function consist of objects which may have many 

perceptual features, while only a subset of them are relevant to the output value. For such 

problems in high dimensional space, the critical decision is about how to effectively 

partition the input space to achieve efficient learning, especially when training data is 

scarce during the initial learning stage. Furthermore, our hypothesis is that when certain 

regularities (which will be characterized and evaluated later) exist, hierarchically 

partitioning objects can achieve both sample efficiency, and supports computational 

efficiency in an incremental learning algorithm. As demonstrated in Chapter 3, the most 

effective way is to partition objects into functionally distinctive categories based on their 

intrinsic functional properties. However, we cannot generally assume the functional 

properties are directly observable to the agent as a set of functional features as in Chapter 

3. This presents a challenge to creating efficient learning algorithms because effective 

partitioning of the input space needs to be based on unobservable functional properties. 

Therefore, a different approach has to be taken. Instead of doing category learning and 

value function learning separately, the solution lies in combining category formation and 

value function approximation into a single structured optimization problem, assuming the 

perceptual features and the utility values are always observable. 
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In the following section, we first describe a structured probabilistic model of the problem, 

which attempts to capture unobservable functional properties via hidden discrete 

variables. We then formulate the value function approximation problem as an 

optimization problem based on the maximum likelihood framework. Then a hierarchical 

approximation approach is presented to achieve efficient incremental learning by utilizing 

a combinatorial hierarchical structure similar to the approach described in Chapter 3. 

Finally, a specific incremental learning implementation is presented and empirically 

evaluated with systematically generated synthetic data. The data probes varying degrees 

of object diversity as well as regularities that are expected to present in object-based 

natural environments. 

5.2 A Probabilistic Latent Class Model  
In object-based environments, objects are independent entities with their own perceptual 

features and intrinsic functional properties. Multiple objects can interact with each other 

to produce an outcome, which will be associated with a utility value (positive or 

negative). The goal is to learn the mapping from the objects’ perceptual features to the 

outcome utility value. A natural way to model this function is to represent each type of 

object as a finite number of functionally distinctive categories. For example, the number 

of functionally distinctive categories of prey can be very large, but there are a fixed 

number of categories, beyond which the functional distinctions are too small to be 

relevant for decision making. For instance, a tiger and an elephant are very different prey, 

while the distinction between an African elephant and an Asian elephant, or the 

distinction between an Amur tiger and a Bengal tiger is negligible. 

In Figure 5.1, the value function that maps prey and weapon to an outcome value is 

represented by a probabilistic graphic model with simple dependency structures. Hidden 

variables are represented as empty circles, and observable variables as filled circles. The 

distinctive functional categories for each type of object are represented by the discrete 

hidden class variables for weapon (c1) and prey (c2). Perceptual features are dependent on 

the class variable of the corresponding object. The output value depends on the 

combination of prey class and weapon class. 
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The three components of the probabilistic model are formally represented in equations 

(5.1) to (5.3). ci represents the category for object i, and c represents the set of categories 

for all objects. We use x to denote the perceptual features of the objects, which are the 

input variables to the value function. xi represents the perceptual features associated with 

object i. Finally, we use y to denote the output variable. The equations represent the 

probabilistic density function (PDF) of the distributions for these random variables. 

Equation (5.1) represents the background distribution of the categories for each object. 

Equation (5.2) represents the distribution of perceptual features for each object 

conditioned on the category. Equations (5.3) represents the distribution of output value 

conditioned on combinations of object categories. At this point, there is no assumption 

about specific functional forms of the PDFs. 

 

Figure 5.1: Latent class model of the environment.  

Filled nodes are observed quantities, and empty nodes are unobserved hidden variables. 

 

 

 

Feature 1 Feature n

………..

Weapon 
Category

Output

Weapon Category Prior

Feature 1 Feature n

………..

Prey 
Category

Prey Category Prior

x1 x2

c1
c2

y

{ }

[ ]2

( ) ( ) | [1, ]

( | ) { ( | ) | [1, ]}

( | ) { ( | , ..., )}

i

i i

1 m

P P c i m

P P c i m

P y P y c c c

= ∈

= ∈

=

c

x c x

c

(5.1)

(5.2)

(5.3)



 
 

56 
 
 

5.2.1  Prediction 
Equations (5.4) to (5.6) describe how the model predicts the output value when input 

perceptual features are provided. The category variable, ci, for each object is a discrete 

variable with finite values as discussed earlier. We further assume that the membership of 

a category is exclusive, i.e., an object must belong to one and only one of the finite 

discrete classes. According to the model, the categories are first determined based on the 

posterior probability of each category given perceptual features, as in equations (5.4) and 

(5.5). Once the categories are determined, the output can be predicted based on the 

conditional distribution associated with the combination of categories as in equation (5.3). 

The entire prediction process is represented by equation (5.6), which is a function of the 

three component distributions in equations (5.1) to (5.3). 

5.2.2  Maximum Likelihood Optimization Criterion 
The maximum likelihood principle states that the choice of parameters (Θ), of a 

probabilistic model that gives higher likelihood to the training data, is more likely to give 

higher prediction accuracy (assuming uniform priors). In this learning problem, since the 

key is to find the most effective partition of the input space via the hidden class variables, 

we map the parameter space to the sample partition/categorization space of the training 

data {x, y}. The partition space is defined by all the possible partition/categorization rules. 

A categorization rule is a function mapping each instance to corresponding categories. As 

represented by equation (5.7), with category assignment determined, the parameters of 

the three component distributions, as represented by equations (5.1) to (5.3), can be 

estimated, again by the maximum likelihood principle. In this problem of predicting y, 
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the objective is to maximize the likelihood of y conditioned on x for all training data. 

Under the assumption of independent training samples, the likelihood function of Θ can 

be obtained by multiplying the predicted probabilities of each output value (yn) given the 

input features (xn), as represented by equation (5.8). 

We next derive the likelihood function in equation (5.8) as a compact form of the 

probabilistic density functions (PDFs) of the three component distributions in equations 

(5.1) to (5.3). Getting the compact form is critical for implementing the incremental 

learning algorithm later, because it makes it possible to directly evaluate the likelihood 

function instead of examining all the training samples as in equation (5.8).  

In equation (5.9), we rewrite the logarithm of the likelihood function as the sum of the 

log likelihood over all possible values of y and predicted categories c weighted by their 

joint probabilities. For simplicity of later derivations without loss of generality, equation 

(5.9) assumes y is a discrete variable. We use the superscript yi to represent the ith value 

of y, and cj to represent the jth value of category c. If otherwise y is continuous, the sum 

over i in equation (5.9) will be replaced by an integration operator. Also for simplicity, 

we use c to denote the combination of all the objects’ classes, and use ĉ to denote the 

predicted classes which consists of classes with the highest posterior probabilities 

computed by equation (5.6). 
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We further derive the form of the first component in the last line of equation (5.9), which 

is the joint probability of y and predicted category ĉ. In equation (5.10), we use the 

notation cl -> cj to represent the event that an instance comes from the lth category, but is 

predicted as the jth category. This quantity, although not in a closed form, can be 

evaluated efficiently. For simple distribution forms, such as in a naïve Bayes model, this 

quantity can be computed exactly by enumerating all possible values of x. For arbitrary 

distribution forms, a Monte Carlo approach can always be used to do the estimations with 

bounded computational cost. Here, we also assume that the estimated probability density 

functions (PDFs) are good approximations of the true distributions. 

We combine equation (5.10) with (5.9), to get the final compact form in equation (5.11). 

We rewrite both P(y=yi|c=cl) and P(y=yi|ĉ=cj) as P(yi| cl) and P(yi| cj), since we assume 

the estimated probabilities and the true probabilities are the same. 
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5.2.3  Intuition of the Optimization Criterion 
Equation (5.11) shows that maximizing the likelihood function is equivalent to 

minimizing the sum of two components. The first is the total entropy of the output 

value’s conditional PDF weighted by the prior probability of corresponding discrete 

classes. The second is the estimated total “confusion rates”, P(cl -> cj), between pairs of 

the discrete classes weighted by the Kullback-Leibler divergence (KL divergence) 

(Kullback & Leibler, 1951) between the two corresponding PDFs. The first component 

about entropy is the same as in the standard Decision Tree (Quinlan, 1986) splitting 

criterion. The intuition is that a good functional classification should always separate 

instances with different output values. The second component about confusion rate 

weighted by KL divergence is new. This is because in contrast to a Decision Tree’s 
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deterministic splitting, our model uses probabilistic classifications as shown in equations 

(5.4) to (5.6). If the two classes has high confusion rates, there will be more errors in the 

predictions of the output value – especially when the confused pair has very different 

output values. This is not an assumption of a standard Decision Tree, which makes 

deterministic splits and assumes zero confusion rates.  

To gain further understanding of the intuition behind the optimization criteria represented 

by equation (5.11), we compare an algorithm using the optimization criterion in equation 

(5.11) to two baselines. One baseline is a simple Naïve Bayes model, and the other is a 

Decision Tree. We use toy data with binary input and output to evaluate the performance. 

The simple Naïve Bayes model directly classifies instances based on the output value 

(that is why it is called simple in addition to being Naïve Bayes), and therefore minimizes 

the first component about the output variable’s entropy to be zero (all the samples in the 

same class have the same output value). The Decision Tree is restricted to 

deterministically split each perceptual feature (therefore always guaranteeing zero 

estimated confusion rates), and among all possible splits, the one that minimizes the first 

entropy component is chosen. From the perspective of equation (5.11), a standard 

Decision Tree is a special case assuming a single-attribute sparse model without noise, 

which could be a poor choice in high dimensional and noisy environments. There are 

extensions of decision tree algorithms to allow for fuzzier splits (Yuan & Shaw, 1995) 

and multivariate splits (Brodley & Utgoff, 1995). We will not consider those specific 

algorithms here, because they are designed to learn a single hierarchical classification for 

the entire state feature vector. In order to learn the object-based compositional structure 

as shown in Figure 5.1, the algorithm must be able to simultaneously construct multiple 

category hierarchies, one for each object. Therefore, we design a new incremental 

learning algorithm, and the advantages of doing multivariate and fuzzy splitting are 

naturally included in our optimization criterion in equation (5.11). 

We compare the algorithms using three different data sets with binary input features and 

output values. The simple Naïve Bayes learner classifies the instances into two classes 

solely based on the output value. The Decision Tree splits the data into two classes using 

on the standard entropy based splitting criteria, and recursively splits until either all the 
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input features are the same (so that no further split is possible) or all the output values are 

the same within the partitions (so that there is no need to split). Our algorithm recursively 

groups the instances into two classes as in the Decision Tree, and it assumes independent 

feature distribution as in a naïve Bayes model. The performance is evaluated in terms of 

sample efficiency – improvement in prediction accuracy as the number of training 

instances grow. Prediction accuracy is evaluated by using 100 independent random 

samples to estimate the prediction accuracy at fixed intervals, until reaching 200 training 

samples. The final results are the average of 100 such independent runs. In this section, 

we only focus on the effect of the optimization criterion and omit the detailed procedure 

of our learning algorithm, which will be discussed in the next section. 

As shown in Figure 5.2, the first data set is drawn from an XOR function which is 

nonlinearly separable. The naïve Bayes classifier fails to learn the XOR function because 

it builds two naïve Bayes models, one for class a, and one for class b. The two models 

have the same aggregated feature distribution under the independent features assumption. 

Therefore, the naïve Bayes classifier is unable to discriminate the two classes. Initially, 

the naive Bayes classifier is able to make better than random predictions because it can 

 
Figure 5.2: Comparison of different classifiers using the XOR function.  
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correctly predict the output for some instances when the learner has only accumulated a 

few training samples. For example, when there is only one training instance, it can give 

correct prediction for ¼ of the situations (there are totally 4 unique samples). After more 

instances are accumulated for each class model, the performance degenerates to 

randomness. Both our algorithm and decision tree classifier avoid such situations by 

always keep highly discriminative partitions. 

The second data set is drawn from a linearly separable function with multiple noisy 

binary features as shown in Figure 5.3. There are two classes: class a consists of 10 noisy 

0s, and class b consists of 10 noisy 1s. For linear separable classes, naïve Bayes models 

can perfectly construct the decision boundary to discriminate the two classes from each 

other. For the decision tree classifier, however, its iterative feature splitting strategy 

becomes inefficient when the decision boundary lies in a hyper-plane spanning multiple 

feature dimensions. Our algorithm is not affected because it is not restricted to univariate 

boundaries. 

 

Figure 5.3: Comparison of different classifiers using a noisy linearly separable function. 
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Figure 5.4 shows the comparison on the third data set, which is drawn from a noisy XOR 

function that combines the characteristics from the previous two data sets. Our algorithm 

outperform both the decision tree classifier and the naïve Bayes classifier. 

The results are summarized in Table 5.1. The simple Naïve Bayes classifier is sensitive to 

nonlinearly separable classes, because it simply relies on the output labels without 

actively searching for discriminative boundaries. Both the decision tree classifier and our 

algorithm are robust against such situations by employing active searching in the 

classification space. However, the decision tree classifier is sensitive to noisy 

multivariate boundaries that span across multiple dimensions. Our algorithm consistently 

performs well in all situations. 

 

Figure 5.4: Comparison of different classifiers using a noisy XOR function. 

Table 5.1: Comparison of the three classifiers. 
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5.3 An Hierarchical Approximation Algorithm 
At the end of the previous section, we demonstrated the advantage of using our 

optimization criteria for classification: robust against nonlinear and multivariate noisy 

boundaries. To deal with the challenge of object diversity, the learning algorithm must 

scale with large number of classes. Consistent with our general approach of using 

hierarchical categorization, in this section, we develop an incremental learning algorithm 

with hierarchical approximation.  

5.3.1  Learning the Hierarchies 
As shown in equation (5.7), the parameter space Θ corresponds to the sample partition 

space. Exhaustively enumerating all possible sample partitions is NP-hard. The number 

of possible partitioning has the form of the Sterling number of the second kind (Sharp, 

1968), which grows exponentially with the number of samples.  

In order to find the optimal partition, not only tractably but also incrementally, we apply 

a divide-and-conquer strategy to hierarchically partition the samples. At each level of the 

hierarchy, not every possible partition is enumerated but only the mostly likely ones. An 

incremental approximation algorithm is possible by resorting to restricted local greedy 

search with a bounded computational cost. The structure of the hierarchical 

approximation algorithm is shown in Figure 5.5. 

Like all greedy algorithms, it assumes a certain degree of continuity in the model 

parameter (Θ) space regarding to the objective function, which is the conditional 

likelihood function in equation (5.11). For example, if the current sample partition is 

optimal with regard to the training samples received so far, after receiving the next 

training instance, the new optimal structure should be within a vicinity of the current 

sample partition. Good partitions can be efficiently explored by using a greedy local 

search that takes advantage of the hierarchical structure, which is similar to the algorithm 

in shown Figure 3.3. Like all greedy algorithms, it may result in local optimal 

(suboptimal) solutions. Therefore, it is important to empirically evaluate the algorithm. 

Next, we provide a particular implementation of the algorithm and empirically evaluate 

the algorithm’s performance with systematically generated synthetic data. 
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Figure 5.6 shows how the incremental algorithm updates the structure with a new training 

instance, where the function involves only a single category hierarchy. For multiple 

hierarchies, the algorithm descends the hierarchies simultaneously and the output 

distributions are associated with combinations of nodes in the hierarchy. The same 

general procedure can be used for more than two hierarchies. 

 

Figure 5.5: Hierarchical representation of the value function.  
The model is expected to have the underlying structure as shown in Figure 5.1. The output is 
conditioned on combinations of class pairs. 
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Figure 5.6: Demonstration of the incremental learning algorithm. 
(a)  shows the current functional category hierarchy. (b)-(e) illustrate the top-down incremental 
restructuring procedure. The situation is for one hierarchy. Generalizing to multiple hierarchies is 
straightforward. Dashed boxes represent the scope of local search for the optimal partition. 
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In Figure 5.6a, the current optimal partition is represented as a hierarchy, which has 

coarser (more aggregated) resolutions at the top and finer resolutions at the bottom. The 

algorithm can be configured to use more than two partitions at each level, although in 

Figure 5.6 it always uses two partitions. It can also be configured to use different number 

of levels for its local searching scope as represented by the dashed boxes. In Figure 5.6c, 

in order to find the optimal partitions, the algorithm must re-estimate the PDFs of the 

three component distributions represented by equations (5.1) to (5.3). The re-estimation is 

straightforward for simple forms such as independent feature multivariate Gaussian 

distribution and the Naïve Bayes model. The algorithm descends the hierarchy along the 

path that incorporates the new training instance. Since the computations are restricted 

locally and therefore bounded by some constant, the complexity of integrating a new 

instance is logarithm with regard to the total number of training instances. To control the 

optimality/computation tradeoff, allowing more levels of the hierarchy to be restructured 

in one step can increase optimality with more computational cost. Using heuristics in 

local search can potentially improve the tradeoff ratio (less computational cost without 

much sacrificing of optimality). 

In our implementation, we choose to use simple distribution forms for the three 

component distributions. More specifically, we use categorical distributions for the class 

prior distribution represented by equation (5.1), independent variable distribution (as in 

Naïve Bayes models) for perceptual features represented by equation (5.2), and Gaussian 

distribution for the output variable represented by equation (5.3). Given these distribution 

forms, the compact form of the likelihood function as shown in equation (5.11) can be 

directly evaluated and the update as required in Figure 5.6c can be efficiently performed. 

Other forms of distribution are possible as long as the above computations can be done 

efficiently. Exploring those options is beyond the scope of this thesis. 

5.3.2  Prediction 
As described in equations (5.4) to (5.6), each input object is first mapped to the most 

likely category in the corresponding hierarchy. Then the prediction is based on the 

aggregated information associated with the combination of categories. As the algorithm 

dynamically grows the hierarchies with new samples being incorporated, the predicted 
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output value will be based on the available aggregated information at the most specific 

level in the hierarchy. 

5.4 Empirical Evaluation 
To evaluate our algorithm, we need a data set from object-based domains. The input to 

the algorithm is a state representation consists of the feature vectors of multiple objects. 

The output of the algorithm is a number reflecting the utility value of the state, or a 

symbolic label reflecting the class of the state. In addition, the data must contain diverse 

functional categories.  We were unable to find an existing machine learning data set that 

matches all these criteria. Readily available data sets are either not about object-based 

domains, or do not consist of diverse enough functional categories. There are ontology 

systems (Lenat & Guha, 1990; Antoniou & van Harmelen, 2003) that do include diverse 

natural object categories. However, they do not include data for specific task contexts 

with the utility value of a state determined by multiple interacting objects.  

5.4.1  Synthetic Data 
We evaluate the algorithm under varying degrees of object diversity and regularity using 

systematically generated synthetic data. We decompose the distribution space into two 

components: the functional space and the perceptual feature space. In the functional 

space, functional diversity is about how many distinctive functional categories there are, 

and the regularity is about the existence of hierarchical distribution patterns. In the 

perceptual feature space, perceptual diversity is about how many perceptual features are 

available, and the regularity is about the existence of discriminative perceptual features. 

The parameters are summarized in Table 5.2.  

Table 5.2: Parameters for data distribution. 
 

 Functional space Perceptual feature space 

Structural diversity Total number of categories Total number of features 

Regularity Has hierarchical pattern Has discriminative features 

Random noise Gaussian noise in output value Error rate in each feature 
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5.4.1.1 Functional space 

First of all, we use a hierarchical random walk model to generate distribution patterns in 

the functional space, which can be configured to generate arbitrary patterns that are not 

necessarily hierarchical.  

Figure 5.7 shows the generating process for a value function involving two objects, each 

having 8 distinctive functional categories in a three-level hierarchy. At each level of the 

hierarchy, a random perturbation with certain magnitude (step size) is added to the output 

value for each grid representing a distinctive combination of categories. In Figure 5.7a, 

the step size at the first level is 6, which makes the difference among the four grids to be 

apart by 6. The assignment is randomly picked for each grid. In Figure 5.7b, further 

perturbations are introduced at the second level with step size 4 within each of the four 

grids of level one. Then the third level perturbation is introduced as shown in Figure 5.7c. 

The final output value of the function is shown in Figure 5.7d, and it is visualized using 

 
Figure 5.7: An example of synthetic data generation and visualization.  
The function consists of two objects. Each object has a 3-level category hierarchy. 
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the heatmap function in R (R Development Core Team, 2010) in Figure 5.7e where 

darker color indicates a smaller value. The column and row numbers in Figure 5.7d and 

5.7e are the identifiers for the object instances. The heatmap function uses the default 

hierarchical cluster algorithm, which is the hierarchical agglomerative clustering with 

complete-link method, to perform clustering independently for the columns and rows. It 

reorders the instances accordingly and normalizes the color gradients for each row. For 

example, row 7 column 6 has the highest value 36, and row 6 column 5 has a lower value 

32. However, the latter has a brighter value because the grey scale gradients are 

normalized row-wise.  

The process in Figure 5.7 generates the hierarchical structure for a particular set of 

parameters, and further random Gaussian noise can be added to each grid to generate 

instances of samples. In this simple example, due to a sequence of decreasing step sizes, 

an apparent hierarchical pattern in the output values can be observed in Figure 5.7e. 

5.4.1.2 Perceptual feature space 

Perceptual diversity is controlled by the total number of binary features for each object. 

For example, 3 binary features can produce 8 perceptually distinctive instances and 10 

binary features for 1,024 instances. Regarding the regularity, i.e., the relationship 

between perceptual features and functional categories, our basic assumption is that there 

exist good discriminative perceptual features to separate the underlying functional 

categories at each level of the functional hierarchy. For example, the two distinctive 

values of one binary feature can discriminate two categories, a combination of several 

binary features can discriminate multiple categories. If otherwise, no good discriminative 

features exist for some functionally distinctive categories, that part of variance will 

become intrinsic noise, and thus be unlearnable by any methods. Given the above “good 

features exist” assumption, the learning problem is to “select” the good features from the 

pool of all available features.  

Random noise can also be introduced to individual perceptual features. In the previous 

demonstration task as shown in Figure 5.2 to Figure 5.4, we already demonstrated how 

our model handles noise in the inputs. 
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5.4.2  Baselines 
We include two alternative algorithms to compare with our algorithm. One is a neural 

network; the other is a nearest neighbor algorithm. Both of them are general function 

approximators with no assumptions about the functional forms of the underlying data, 

and they can be trained incrementally. We also include two baselines based on the same 

hierarchical categorization algorithm, except that their hierarchies are obtained in ways 

different from the utility value based joint optimization criterion. 

2-layered Neural Network (a multilayer perceptron, MLP, with one hidden layer) 

baseline is trained with the standard back propagation algorithm (Rumelhart, 1986). The 

input units map to the input features of the objects, and there is a single output unit for 

the utility value. The network is fully connected. The number of hidden units and 

learning rate are chosen based on testing of pilot data. 

Nearest Neighbor baseline stores all training instances (learning is trivial). To predict 

the output, it picks the instance that best matches the input perceptual features. In the case 

of binary features, the matching score is the cardinality of matched features. If there is a 

tie, the prediction is based on the average of all the best matches.  

Unsupervised Hierarchies baseline uses hierarchical categories based on perceptual 

features and the unsupervised criterion as described in equation (3.1) in Chapter 3. It uses 

the same procedures to update and predict utility values, but without using the joint 

optimization criterion as described in equation (5.11). Since the distributions of synthetic 

data in the perceptual feature space do not have the same hierarchical patterns as in the 

functional space, the unsupervised hierarchical clustering algorithm, which solely relies 

on perceptual features, cannot construct the correct functional categorizations and is 

expected to have poor performance. 

Optimal Hierarchies baseline uses the true functional hierarchies that are used to 

generate the testing data. It uses the same update and prediction procedures, but with 

fixed optimal hierarchies. Thus, this baseline reflects the optimal learning that can 

possibly be achieved. 
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5.4.3  Results and Analysis 
We compare our algorithm, piecewise function approximation with joint optimization 

hierarchies, with the four baselines under different levels of object diversity and different 

degrees of regularity. The range of data is generated by the model in Figure 5.7, using 

different configurations of the parameters as shown in Table 5.2. The performance is 

evaluated by comparing the learning curves of mean squared error (MSE) in the 

prediction, up to 300 training samples. MSEs are evaluated by using 1000 random 

independent samples at fixed intervals during training. The final result is the average of 

100 independent runs. 

To begin with a simple case, we first evaluate the performance for target functions that 

have low functional diversity and high regularity. We choose the step sizes [6, 4, 2], 

which generates functional categories with a 3 level hierarchical structure as shown in 

Figure 5.7. Visualizations of three instantiated functions with the step sizes [6, 4, 2] are 

shown in Figure 5.8a. The evaluation is based on the average of learning curves for 100 

such functions, one for each independent trial. Note that the heatmap function does not 

necessarily recover the original functional hierarchies used to generate the data. For 

example, in the leftmost of Figure 5.8a, the true categorization at the first level for the 

rows should be {1, 2, 3, 4} and {5, 6, 7, 8}, while the heatmap function gives {1, 2, 5, 6, 

7, 8} and {3, 4}. This reflects the complexity in the distribution generated by multiple 

steps of random perturbations. 

Figure 5.8b to Figure 5.8d compare the performance under different perceptual diversity 

and output noise. Figure 5.8b uses 3 binary perceptual features, which is the minimum 

required to discriminate the 8 functional categories for each object. Nearest neighbor, 

unsupervised hierarchies and joint optimization hierarchies all achieve performance close 

to the optimal baseline. MLP learns much slower. In Figure 5.8c, the perceptual diversity 

is increased by introducing 7 random perceptual features to each object, therefore there 

are 1,024 perceptually distinctive instances and 8 functional distinctive categories for 

each object. In Figure 5.8d, functional diversity is further increased by introducing 

random Gaussian noise with standard deviation 3 to the output values of generated 

instances.  
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Figure 5.8: Comparison of learning performance for hierarchies with 3 levels.  
The conditions are: step sizes [6, 4, 2]. (a) visualization of distribution pattern in the functional state 
space. (b) 3 binary perceptual features (no irrelevant features); no noise in output value. (c) 10 
binary perceptual features (7 irrelevant features); no noise in output value. (d) 10 binary perceptual 
features (7 irrelevant features); Gaussian noise with standard deviation 3 in output value. 
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Figure 5.8 illustrates that for a given diversity and regularity in the underlying functional 

category hierarchies, how perceptual diversity and random noise in output affects the 

performance. The MLP baseline generally learns slower because it is designed to 

approximate smooth functions and is more globally constrained. In our data set, the target 

function is rather unsmooth especially at the lower levels, which causes significant 

interference among the learning units in MLP. In such situations, a winner-take-all 

learner with local approximation will generally perform better. The nearest neighbor 

algorithm baseline is a winner-take-all algorithm; however, it is sensitive to irrelevant 

features. On the other hand, the neural network can adaptively adjust the weights of 

features based on their relevance to the output value. That is why in Figure 5.8c, the 

neural network learns faster than nearest neighbor initially, but stops improving after 

certain point. It can be seen that when perceptual diversity increases as in Figure 5.8c, the 

nearest neighbor algorithm, along with the unsupervised hierarchies baseline, are the 

most affected due to sensitivity to irrelevant features. The performances are not 

differentiated very much by adding random noise in the output. In Figure 5.8d, we can 

see that all algorithms have a certain level of noise tolerance, because they are not 

affected as much as the optimal learning curve. 

In the following tests, we increase the degree of functional diversity by adding more 

perturbation steps, and vary the functional regularity by using different step sizes. For 

each regularity pattern, we perform the same set of comparison as shown in Figure 5.8. 

5.4.3.1 Increase functional diversity 

Figure 5.9a shows the visualization for three instantiations of functions that have a 5-

level hierarchical structure with step sizes being [10, 6, 4, 2, 1]. Therefore, there are 32 

distinctive functional categories for each object. Figure 5.9b to Figure 5.9d compare the 

performance under different levels of perceptual diversity and noise. Figure 5.9b uses 5 

perceptual features, which is the minimum required to discriminate the 5-level hierarchy 

(32 distinctive functional categories) for each object. In Figure 5.9c, the total number of 

perceptual features for each category is increased to 10 (5 irrelevant features). In Figure 

5.9d, Gaussian noise with standard deviation 3 is added the output values. The trends are 

the same as in Figure 5.8. 
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Figure 5.9: Comparison of learning performance for hierarchies with 5 levels.  
The conditions are: step sizes [10, 6, 4, 2, 1]. (a) visualization of distribution pattern in the functional 
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10 
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual 
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value. 
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5.4.3.2 Reduce functional regularity 

Both of the previous data sets have high regularity in the functional space, although with 

different degrees of diversity. Our algorithm (joint optimization hierarchies) consistently 

outperforms the other baselines because it can take advantage of such hierarchical 

distribution assumptions. In order to better understand the potential capability of our 

algorithm under more adversarial conditions, we perform the same set of testing using 

different patterns of step sizes that generate functions with less degrees of regularity.  

Figure 5.10a shows the visualization for functions with step sizes being [3, 6, 4, 2, 1], 

where the second step size is the largest. As a consequence, it exhibits a pattern with 

smaller regions of consistent value blocks compared to Figure 5.9a. 

Same as the previous settings, Figure 5.10b to Figure 5.10d compare the performance 

under different levels of perceptual diversity and noise. In Figure 5.10b, the relative 

performance is the same as in previous experiments. However, in Figure 5.10c, when 

irrelevant features are added to the input, our algorithm only performs on par with the 

nearest neighbor and MLP baselines. This is because the reduced regularity makes it 

more difficult to discover the true hierarchies. 
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Figure 5.10: Comparison of learning performance with reduced regularity.  

The conditions are: step sizes [3, 6, 4, 2, 1]. (a) visualization of distribution pattern in the functional 
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10 
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual 
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value. 
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Figure 5.11a shows the visualization for functions with step sizes being [6, 5, 4, 3, 2], 

where the consecutive step sizes are only different by 1. The hierarchical distribution 

pattern is less obvious comparing to previous data sets. 

Same as the previous settings, Figure 5.11b to Figure 5.11d compare the performance 

under different levels of perceptual diversity and noise. In Figure 5.11b, when there is no 

other types of noise, our algorithm is only marginally better than the MLP and nearest 

neighbor baselines. When different types of noise are added to the data in Figure 5.11c 

and Figure 5.11d, performances of the different algorithms are indistinguishable. 
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Figure 5.11: Comparison of learning performance with reduced regularity.  
The conditions are: step sizes [6, 5, 4, 3, 2]. (a) visualization of distribution pattern in the functional 
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10 
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual 
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value. 
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Figure 5.12a shows the visualization for functions with step sizes being [2, 2, 2, 2, 2]. 

The hierarchical pattern is reduced to almost randomness.  

Same as the previous settings, Figure 5.12b to Figure 5.12d compare the performance 

under different levels of perceptual diversity and noise. In this situation, the neural 

network algorithm (MLP baseline) becomes the best option in Figure 5.12c and Figure 

5.12d. This is because the neural network does not make any assumption about the 

distribution of the data, while for our algorithm, making the hierarchical assumption 

incurs an extra cost when the expected pattern is not presented in the data. However, the 

relative magnitude of the learnable information in the data is largely reduced, as revealed 

by the position of the optimal baseline. 
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Figure 5.12: Comparison of learning performance with reduced regularity. 
The conditions are: step sizes [2, 2, 2, 2, 2]. (a) visualization of distribution pattern in the functional 
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10 
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual 
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value. 
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5.4.3.3 Analysis 

Our algorithm is robust against increased functional diversity, but sensitive to reduced 

functional regularity. It consistently outperforms nearest neighbor and neural network 

with different degrees of object diversity when abundant regularity is present. When the 

regularity is low, the performance is indistinguishable from, or slightly worse than the 

nearest neighbor and the neural network baselines. From another perspective, the 

difference in performance can be attributed to the lack of regularization in the nearest 

neighbor and neural network baselines in the general sense (here regularization has the 

same meaning as constraints). For the nearest neighbor algorithm, the desirable 

regularization should help it only keep a small set of instances that focus on the relevant 

features, as opposed to keeping all instances and thus being distracted by irrelevant 

features. For the neural network algorithm, the desirable regularization should make the 

connection weights’ updates gradually progress towards more specific categories and 

prevent it from interfering with the general categories once learned. However, nearest 

neighbor and neural network algorithms do not have a natural way of the proper 

regularization for hierarchical distribution pattern. For example, the common 

regularization techniques for neural networks include: limiting the number of hidden 

units, constraining network connectivity, weight decay, early stopping, input/output 

transformation and weight sharing. These techniques are aimed at different situations, but 

none of them capture the hierarchical distribution pattern. On the other hand, the 

assumption about hierarchical distribution pattern is built-in with our algorithm, which 

will yield superior performance when such regularity is presented in the data.  

5.5 Compare with Other Approaches 
The latent hierarchical clustering model we have presented in this chapter is specifically 

designed for object-based environments. Our algorithm achieves nonlinear function 

approximation via piecewise approximation. It can adaptively choose the piecewise 

segment boundaries by learning hierarchically organized functional categories of the 

component objects. We briefly review other commonly used function approximation 

approaches. The purpose is to understand the key differences in the underlying 

assumptions of these alternatives.  
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Linear models are among the most commonly used approximators. Linear regression 

(Draper & Smith, 1998) models are used when the output value is numeric. For 

classification, there are linear discriminant analysis (LDA) (McLachlan, 2004), and the 

logistic regression model (Agresti, 2007). The major limitation of linear models is that 

the target function is restricted to be in linear form with a set of variables. These variables 

can be either a direct measure of raw features, or a transformed measurement via a link 

function as in the generalized linear model (GLM) framework (Nelder & Wedderburn, 

1972). The advantages of linear models are simplicity, interpretability, and efficient 

computability. However, the linear assumption limits the flexibility of the model.  

Support vector machines (SVM) are classifiers based on the maximum margin principle 

(Cortest & Vapnik, 1995). SVMs can be adapted to different tasks and domains by the 

appropriate choice of kernel functions (Schölkopf & Smola, 2001). For example, SVM 

using graph kernels has been successfully used to predict the function of proteins 

(Borgwardt et al., 2005), which are represented by graph structures. However, it is not 

clear how the combinatorial structure and hierarchical distribution pattern can be 

captured by kernel functions. 

Radial basis function (RBF) networks use linear combinations of radial basis functions 

to achieve nonlinear function interpolation. They are conceptually similar to k-nearest 

neighbor algorithms. The difference is the former keep a fixed number of basis functions 

and adaptively learn a set of weights, one for each basis function using least squares 

criterion. K-nearest neighbor algorithms can dynamically expand their instance base, and 

do not need to learn the weights (they will weigh equally the top k matches). RBF 

networks and k-nearest neighbor algorithms have been successfully used in various 

applications such as handwritten digit recognition (Lee, 1991). The performance of a 

RBF network relies on the set of manually selected basis functions. Since we do not 

assume there is sufficient prior knowledge to properly choose the basis functions in 

complex object-based environments, we use the nearest neighbor algorithm in our 

evaluation, which can serve as a special case representative of this class of algorithms. 

Multilayer perceptron (MLP) are feedforward neural networks with one or more 

hidden layers trained by the back-propagation algorithm (Rumelhart et al., 1986). A MLP 
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can approximate nonlinear functions by using nonlinear sigmoid activation functions 

(such as logistic function, or hyperbolic tangent function) in the hidden layer. Compared 

to linear regression models, the extra hidden layers in a neural network perform adaptive 

feature learning. A MLP with one hidden layer is included as one of the baselines in our 

evaluation. Using more hidden layers increases the MLP’s function approximation 

capacity, but generally slows down learning because of the increased parameter space. 

Although there are methods to improve the learning speed for deep neural networks 

(Hinton et al., 2006), we do not expect adding more layers can improve the MLP’s 

performance in learning functions with hierarchical distribution patterns. 

Convolutional neural networks are multilayer neural networks with constrained 

connections (LeCun et al., 1990). Their connection structures are designed to model 

images of objects by composing local invariant features at different scales (Lee et al., 

2009). From the perspective of function approximation, convolutional networks rely on 

similar principles such as latent representation and hierarchical structure to achieve 

efficient nonlinear function approximation. The key difference is that the hierarchy in 

convolutional neural networks are based on spatial decompositions (compositional 

hierarchy), while in our model, the hierarchy is based on sample partitions 

(discriminative hierarchy). For example, in a convolutional network, the hidden layers 

contain representations of local feature, each being a component of the object. The 

hidden layers in our model form categories of objects, with each category representing a 

subset of the sample population. It is possible to integrate a convolutional network as the 

perceptual processing layer as shown in the bottom of Figure 3.1, which can extract 

higher level features from pixels. 

Conditional random fields (CRFs) are discriminative probabilistic graphical models 

(Lafferty, 2001). In addition to the ability of modeling dependency structures, CRF 

models can have latent variables (Gunawardana et al., 2005), they can support kernels 

(Lafferty, 2004), and can be trained incrementally with stochastic gradient descent 

methods (Vishwanathan et al., 2006). These properties make CRFs powerful machine 

learning tools for models with highly interdependent variables, such as natural language 

processing problems (Sha & Pereira, 2003; Settles, 2004) and biological sequence 
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modeling (DeCaprio et al., 2007). However, it is not clear how CRF models can capture 

the distribution assumption of hierarchical categorization, which is essential for making 

efficient generalization in object based environment according to our general assumption.  

5.6 Summary 
One major limitation of the algorithm introduced in Chapter 3 is that hierarchical 

category learning and value function approximation are performed in separate learning 

components. As a consequence, the formation of categories does not depend on feedback 

from the value function learning process. This limits the performance of the system in 

domains where prior knowledge about the functional feature set is not accurate. 

The algorithm introduced in this chapter aims to address this limitation. In the new 

algorithm, hierarchical categorization and value function approximation are integrated 

into a single optimization step: internal categories are formed synchronously to optimize 

the performance of value function approximation. The algorithm effectively selects the 

functional features in the learning process.  

The important assumption designed into our learning algorithms is the existence of 

hierarchical structure in the distribution of the objects’ functional space. We created a 

parameterized data generation model that can produce data sets with different patterns of 

hierarchical distributions. The evaluation is based on systematically generated data set, 

ranging from simple data set with obvious hierarchy structures to more complex data set 

without observable patterns. Our algorithm consistently outperforms the baseline 

algorithms, and the difference margin is correlated with the degree of hierarchical pattern 

presented in the data set. 

We also briefly review other commonly used function approximation approaches. The 

advantage of our algorithm, comparing to the other alternatives, is that the assumption 

about the hierarchical category distribution pattern is built into the learning algorithm.  
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Chapter 6  
 

Conclusion 

Our research presents a synthesis of hierarchical category learning and value function 

approximation, which are traditionally formulated as separate machine learning problems. 

We first identify and analyze the challenges and assumptions for the problem of long-

lived learning agent in complex object-based environments. We provide novel 

implementations exploiting the distribution assumption of hierarchical categorization. 

Our work not only provides efficient value function approximation algorithms, but also 

offers computational insights to human category learning. 

6.1 Discussion 
The key to the success of our approach, compared to alternative value function 

approximation approaches, is using hierarchical categories as internal representations. 

The hierarchical structure not only supports flexible generalization to achieve sample 

efficiency, but also supports incremental learning algorithms to achieve computational 

efficiency. 

The existence of hierarchical distribution patterns in the functional space of objects, as 

illustrated in the evaluations of Chapter 3 and Chapter 5, is a critical assumption for our 

approach. Although it is not the intention of the thesis to prove the general existence of 

such patterns in natural environments, this is a reasonable assumption based on 

converging observations. Using hierarchies to organize natural objects has been a practice 

in AI systems (Quillian, 1967; Lenat & Guha, 1990), as well as a recurring theme in 

human cognitive models (Mervis & Rosch, 1981; Kemp & Tenebaum, 2006). The results 

in Chapter 4 also support such assumption. 
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Hierarchical structure has already been exploited in many machine learning algorithms. 

Hierarchical clustering algorithms are often used as data analysis tools for visualizing the 

general pattern of data distribution in high dimensional feature space. However, these are 

unsupervised learning algorithms, and do not directly support learning a value function. 

There are also supervised learning algorithms that leverage on hierarchical structures, 

such as kd-tree based value function approximation (Vollbrecht, 2000), adaptive tile 

coding (Whiteson, 2007) and the general decision tree algorithm (Quinlan, 1986). 

However, these algorithms hierarchically partition the entire state feature vector, which 

does not capture the compositional structure of object-based environments. As a 

consequence, it results in less efficient learning as shown in the 3rd comparison (Figure 

3.11) in Chapter 3.  

Our approach leverages on having prior knowledge built into the learning algorithm. 

According to the “no free lunch” theorems (Wolpert & Macready, 1997), there is no 

general-purpose universal optimization algorithm. One algorithm outperforms another 

because it is specialized to the specific problem under consideration, and there is 

generally a performance advantage in incorporating prior knowledge of the problem into 

the algorithm. In practice, what are the specific forms of prior knowledge, and how they 

can be injected into the algorithm, depend on technical details of the implementation. In 

our approach, we present two forms of prior knowledge. The hierarchical category 

structure can be considered as a very general form of prior knowledge, which is used 

across different tasks. Furthermore, in the first algorithm (Chapter 3), the hierarchical 

structure ca be controlled by selected functional feature sets, which are more specific 

prior knowledge and can be tuned for different tasks. 

The general advantage of using hierarchical representations for value function 

approximation is that the system can achieve both fast learning and accurate learning, 

which is otherwise a dilemma (section 3.3.2.3). Conceptually, the system first learns the 

value function at a coarser level, then progress down towards a higher resolution at more 

specific levels as more training samples are received. Intuitively, it appears to require 

local approximators be recursively processed at different resolution levels both for 

learning and prediction. This is the case for the second algorithm presented in Chapter 5. 



 
 

88 
 
 

In the first algorithm presented in Chapter 3, however, learning and predicting the value 

function is performed in a linear form of the coarse coding basis variables, where the 

coefficients are simultaneously updated. Linear models generally assume, or prefer, that 

the input variables are independent. A unique feature in our system is that the input 

variables to the linear approximator are coarse coding variables with a systematic 

dependent structure (Figure 3.4). The original motivation for this implementation is 

because a linear coarse coding learning mechanism has already been implemented in 

Soar-RL (Nason & Laird, 2005), and we only need to test how well does it perform when 

coarse coding variables have such dependency structures. The result is somewhat 

surprising: the same general linear mechanism achieves the desired general-to-specific 

learning utilizing the hierarchical structures. We have also use used the same mechanisms 

to faithfully replicate rat behavioral data in a maze environment without object-based 

representations (Wang & Laird, 2008). 

6.2 Contributions 
This section summarizes the major contributions. 

Efficient value function approximation algorithms. The unique feature of our 

approach is the integration of hierarchical category learning into the value function 

approximation algorithm. Hierarchical category learning forms symbolic categories, 

which are used as representational basis to approximate the value function. We developed 

two specific algorithms based on this general design. The first algorithm (Chapter 3), as 

the initial step, combines two separate learning algorithms: a hierarchical clustering 

algorithm adapted from COBWEB (Fisher, 1987), and a sparse coarse coding based 

function approximator implemented in Soar-RL (Nason & Laird, 2005). The second 

algorithm (Chapter 5) coherently integrates hierarchical categorization and value function 

approximation into a single joint optimization problem. Both algorithms achieve efficient 

learning of value functions, and scale well with object diversity.  

Computational model of human category learning. The observation of naturally 

occurring hierarchies in human category learning (Mervis and Rosch, 1981) is one major 
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source of inspiration for this research. In return, our research provides computational 

insights to human category learning (Chapter 4). 

Extend the capabilities of a general cognitive architecture. Soar is a general cognitive 

architecture, which has been serving as a framework for building robust, long-lived, 

interactive online learning agents (Laird, 2008). The learning system presented in 

Chapter 3 extends the category learning capability of Soar. Together with other recent 

extensions (Nason & Laird, 2005; Nuxoll & Laird, 2007; Lathrop & Laird, 2009; 

Wintermute, 2010), this work makes Soar a more powerful framework for creating 

intelligent agents with improved functionality. 

6.3 Future Directions 
We identify the following areas of work that can directly follow from this thesis. 

Combine prior knowledge with utility driven optimization. In the first algorithm 

(Chapter 3), the category hierarchy is controlled by prior knowledge in the form of 

preselected functional feature sets, and does not depend on the performance of value 

function learning. In the second algorithm (Chapter 5), which has greater flexibility, the 

hierarchical structures are jointly optimized with the utility value function. Nevertheless, 

there is still the advantage to incorporate prior knowledge especially during the initial 

learning stage when the training samples are insufficient for making useful inferences. It 

is technically straightforward to numerically combine the information from preselected 

functional feature sets with the optimization criteria in the second algorithm. However, 

how to appropriately balance the two factors is an empirical question, which must be 

explored with specific domains and tasks.  

Qualitatively model human category learning using the second algorithm. In Chapter 

4, we use the first algorithm (Chapter 3) to generate category learning behaviors that 

qualitatively match with human. The successful matching is not a coincidence of the 

specific implementation, but a general property of integrating hierarchical category 

learning with utility based value function approximation. The second algorithm in 

Chapter 5 follows the same general design. Therefore, we expect the same kind of 

qualitative category learning behaviors. In order to model the human category learning 
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behaviors, salient symbolic categories must be extracted from the system. We define a 

category domination model for the first algorithm in section 4.3.2. Similarly, we must 

define a salient category extraction criterion for the second algorithm. 

Integrate the second algorithm into the Soar cognitive architecture. The second 

algorithm (Chapter 5) is designed to achieve utility based category learning without 

relying on preselected functional feature sets. The implementation respects the general 

constraints of a cognitive agent, which are incremental learning and scalability with large 

knowledge base by using hierarchical structures. In order to achieve the ultimate goal of 

creating robust long-lived agent, it is desirable to integrate the algorithm into the Soar 

cognitive architecture, which has already been equipped with many useful capabilities. 

An initial integration is to directly include the second algorithm as an independent 

module for deliberately learning and predicting value functions, with an interface similar 

to other deliberate modules such as the semantic memory module (Derbinsky & Laird, 

2010) and the mental imagery module (Lathrop & Laird, 2009). In a more parsimony 

integration, the system should share this value function approximation module with the 

architectural RL mechanism. This may lead to modifying the existing Soar-RL 

implementation and require exploring new use cases with extensive empirical evaluations. 

Sequential decision making. Both the original motivation and evaluation tasks are 

closely related to the reinforcement learning problem, where an agent incrementally 

adjusts its behavior based on a numeric feedback (reward) from the environment. Among 

numerous topics in the field of reinforcement learning, our approach is a special case of 

value function approximation via state aggregation. More specifically, our state 

aggregation is achieved by hierarchical aggregation of individual objects. In addition to 

value function approximation, classic reinforcement learning problems involve sequential 

decision making in stochastic environments which are normally modeled as Markov 

Decision Processes (MDPs). In such models, the value functions in the context of the 

MDPs are incrementally estimated simultaneously with the value function approximation, 

which complicates the convergence of learning. Theoretic analysis about convergence 

with value function approximation has been a major area in the field of RL (Singh et al., 

1995; Maei et al., 2009). In this thesis, we make two simplifying assumptions to 
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eliminate such convergence concerns. First we assume the availability of stationary state 

values for training, and second, we assume that there is only a one shot decision to be 

made based on the value function. It is an important future work to empirically 

characterize the convergence properties of our value function approximation algorithm in 

sequential decision making tasks. 

Integration with spatial abstractions. Since this research focuses on object category 

learning, another simplifying assumption we have made is about the spatial aspect. Our 

algorithms form abstract symbolic categories for independent objects, without exploiting 

abstract spatial relations among objects. One important topic for future work is to 

integrate our hierarchical object categorization approach with spatial relationship 

abstraction approaches (Kuipers, 2000; Wintermute, 2010). This integration will enable 

more powerful generalization in spatial domains. For example, in the hunting task in 

Chapter 3, we only aggregate states having the same distance-to-prey. If there are more 

abstract spatial predicates such as “close”, “far”, and “very far” etc., it would be possible 

to aggregate more states together and achieve higher degree of generalization. 
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