
Hierarchical Functional Category Learning
for Efficient Value Function Approximation in

Object-Based Environments

by

Yongjia Wang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2011

Doctoral Committee:

Professor John E. Laird, Chair
Professor Satinder Singh Baveja
Professor Benjamin Kuipers
Professor Richard L. Lewis
Associate Professor Thad A. Polk

Copyright © Yongjia Wang

All rights reserved
2011

ii

Dedication

This work is dedicated to my wife Yue (Joy), and daughter QiQi (Iris)

iii

Acknowledgments

First of all, I would like to thank my advisor John Laird. John is instrumental in helping

me turn abstract ideas into concrete research plans and always encourages me to explore

different approaches. Meanwhile, his knowledge and advice has helped me avoid many

potentially time consuming distractions. No matter how frustrated I was, I always feel

reassured and enlightened after every meeting with John. He has also guided me to

realize the importance of turning research work into well written technical documents.

Writing paper with John is a pleasant learning experience, as he always provides

thorough feedbacks, which is especially valuable to improve my academic writing skill.

I would like to thank my dissertation committee members. Their influence is beyond

steering my dissertation into the right direction. When I first entered the CSE program,

Satinder Singh taught the introductory and advanced AI classes that grabbed my initial

interests and led me to the AI track. Thad Polk is an excellent teacher. His computational

cognitive modeling class (Psych 644) provided the inspirations that shaped my research

path. Rick Lewis advised me, after my thesis proposal, to focus on the most interesting

direction of utility driven category learning, which turned out to be a critical decision.

The conversations with Ben Kuipers’ have reminded me to always think about my

research in the bigger context, and to increase the impact of my research on a broader

community.

I would like to thank Fan Meng, who was my advisor in the Bioinformatics program. The

experience in his team provided solid foundations for my transition to the computational

science. I would also like to thank H. V. Jagadish, who is the key person that led me to

the CSE program. In addition, being the GSI for Jag’s database class is one of the most

valuable experiences in my graduate life.

iv

I would like to thank the CSE faculty, staff and fellow graduate students, who altogether

cultivated this rewarding academic environment. I am especially thankful to the students

in the Soar group – Andy, Bob, Joseph, Nate, Nick, Sam, Scott, Shelly, and everyone else

who has shared the same office with me.

Finally, and most importantly, I would like to thank my family. My wife, Yue, has

always supported me with tremendous love. I could not have gone this far without her

accompany. Her contagiously joyful personality brightens even the dullest days, which

fills me with the energy to get through difficult times. Our energetic daughter, Iris,

inherited her mother’s joyful nature, constantly brings laughter to the family. Spending

time with Iris, I rarely have the chance to feel stressful, even during the most stressful

time. I would also like to thank my parents and parent-in-laws for repeatedly reminding

me “are you done yet?”, and “when are you going to find a job?” directly or indirectly.

My father, who is an engineer, cultivated my early interest towards science and

technology. I am especially thankful to my mother, my mother-in-law and father-in-law

for helping us take care of Iris - I swear this is no easy job as it may sound.

v

Table of Contents

Dedication .. ii

Acknowledgement .. iii

List of Figures ... viii

List of Tables ... x

Abstract ... xi

Chapter 1: Introduction ... 1

1.1 Challenge of Object Diversity... 3

1.2 Example Task of Object Diversity .. 4

1.3 Overview of Chapters ... 7

Chapter 2: Research Problem Definition and Design of General Approach 8

2.1 Research Problem Definition .. 8

2.2 Requirements of Efficient Learning ... 8

2.3 Challenges ... 9

2.3.1 Object Diversity ... 10

2.3.2 Nonlinear Interaction Function .. 10

2.4 General Assumptions and Approach .. 11

2.4.1 Assumptions ... 12

2.4.2 General Design ... 12

2.4.3 Implementations and Evaluations .. 14

vi

Chapter 3: Combining Unsupervised Clustering and Sparse Coarse Coding 15

3.1 Background ... 15

3.2 Our Approach .. 16

3.2.1 Unsupervised Category Learning System .. 16

3.2.2 Sparse Coarse Coding System ... 22

3.2.3 Algorithm Complexity Analysis .. 26

3.3 Evaluation ... 26

3.3.1 Evaluation Task ... 27

3.3.2 Empirical Results ... 29

3.4 Related Work .. 35

3.5 Discussion ... 36

3.6 Summary ... 37

Chapter 4: Modeling Human Functional Category Learning 38

4.1 Background ... 38

4.2 Related Work .. 40

4.2.1 Hierarchical Category Learning ... 40

4.2.2 Reinforcement Learning .. 40

4.3 Evaluation ... 41

4.3.1 Category Learning Speeds RL ... 41

4.3.2 RL Shapes Category Learning ... 42

4.4 Discussion ... 50

4.5 Summary ... 51

Chapter 5: Joint Optimization of Functional Categories and Value Function 52

5.1 Background ... 53

5.2 A Probabilistic Latent Class Model .. 54

vii

5.2.1 Prediction ... 56

5.2.2 Maximum Likelihood Optimization Criterion ... 56

5.2.3 Intuition of the Optimization Criterion .. 59

5.3 An Hierarchical Approximation Algorithm .. 64

5.3.1 Learning the Hierarchies .. 64

5.3.2 Prediction ... 67

5.4 Empirical Evaluation .. 68

5.4.1 Synthetic Data .. 68

5.4.2 Baselines .. 71

5.4.3 Results and Analysis .. 72

5.5 Compare with Other Approaches ... 82

5.6 Summary ... 85

Chapter 6: Conclusion .. 86

6.1 Discussion ... 86

6.2 Contributions .. 88

6.3 Future Directions .. 89

Bibliography .. 92

viii

List of Figures

Figure 1.1: Examples of RL domains. .. 2

Figure 1.2: An example of object diversity in the hunting task. ... 5

Figure 1.3: Instantiation of the interaction function in the hunting domain 6

Figure 2.1: Outline of the thesis. ... 13

Figure 3.1: The overall learning architecture. ... 17

Figure 3.2: An example categorization hierarchy with detailed data structure. 19

Figure 3.3: Local restructuring operators in the space of hierarchies. 20

Figure 3.4: Illustration of sparse coarse coding. ... 23

Figure 3.5: Schematic representation of a hunting scenario. .. 27

Figure 3.6: Complex object interaction model of the hunting domain. 28

Figure 3.7: Distributions of the evaluation data.. 30

Figure 3.8: A visualized example of a hunting scenario. .. 31

Figure 3.9: Comparison with “No Categorization” by sample efficiency. 32

Figure 3.10: Comparison with “Flat Categorization” by sample efficiency. 33

Figure 3.11: Comparison with “Suboptimal Hierarchy” by sample efficiency. 34

Figure 4.1: Comparison of learning with and without hierarchical categorization. 42

Figure 4.2: Coarse coding lattice and dominant categories. ... 43

Figure 4.3: Illustration of basic-level effect. ... 45

Figure 4.4: Illustration of context effect. .. 47

Figure 4.5: Dynamics of domination rates. ... 48

Figure 4.6: Illustration of expert effect. .. 49

Figure 5.1: Latent class model of the environment... 55

Figure 5.2: Comparison of different classifiers using the XOR function. 61

ix

Figure 5.3: Comparison of different classifiers using a noisy linearly separable function.

... 62

Figure 5.4: Comparison of different classifiers using a noisy XOR function. 63

Figure 5.5: Hierarchical representation of the value function. ... 65

Figure 5.6: Demonstration of the incremental learning algorithm. 66

Figure 5.7: An example of synthetic data generation and visualization. 69

Figure 5.8: Comparison of learning performance for hierarchies with 3 levels. 73

Figure 5.9: Comparison of learning performance for hierarchies with 5 levels. 75

Figure 5.10: Comparison of learning performance with reduced regularity. 77

Figure 5.11: Comparison of learning performance with reduced regularity. 79

Figure 5.12: Comparison of learning performance with reduced regularity. 81

x

List of Tables

Table 5.1: Comparison of the three classifiers .. 63

Table 5.2: Parameters for data distribution ... 68

xi

Abstract

Creating autonomous long-lived agent that can robustly function in a complex object-

based environment has been a persistent goal in the field of artificial intelligence.

Learning the appropriate functional categories of objects is one of the keys to achieve this

goal, and is the theme of this thesis.

We formulate the research problem as finding efficient value function approximation

algorithms, where the input to the function is an object-based state representation, and

output of the function is the utility value of that input state. The challenges arise from the

requirements of efficient learning, and incremental learning of complex nonlinear value

functions, whose input consists of diverse objects in high dimensional feature space. Our

solutions are based on three key principles. The first is that the value function

representation can usefully exploit the compositional structure of object-based

environments, where the state representations consist of independent objects with their

own perceptual features and functional properties. The second is that hierarchical

symbolic category representations, inspired by human cognitive models, can help achieve

efficient learning. The third is that the object categorization criteria must be consistent

and coherent with the target utility value function. We provide two implementations

based on these key principles, with evaluations both based on functionality and on

cognitive plausibility.

Traditionally, category learning and value function approximation are studied as separate

problems. The thesis presents a unique synthesis of the two. On one hand, it provides

efficient value function approximation algorithms that can take advantage of compact

representational basis adaptively generated by hierarchical category learning. On the

other hand, it provides a utility based category learning model that offers new

computational insights to human category learning behaviors.

1

Chapter 1

Introduction

Manipulating objects is a significant part of our everyday life, and object category

learning is believed to be an important cognitive capability for general human

intelligence. In cognitive psychology, the study of category learning has been a

prominent area. Many theories and cognitive models of category learning have been

developed, including: rule-based theories (Rouder & Ratcliff, 2006), exemplar theories

(Medin & Schaffer, 1978), and the prototype theory (Rosch, 1978).

Creating autonomous and robust agents with the capability of adapting to novel complex

environments has been a persistent goal for the artificial intelligence (AI) community.

Object category learning is one of the keys to achieve this goal. As pointed out by Russell

& Norvig (2009), “although interactions with the world takes place at the level of

individual objects, much reasoning takes part at the level of categories”.

In the machine learning field, various forms of category learning problems have been

formulated, and a variety of learning paradigms, techniques and algorithms have been

developed. One of the most straight-forward formulations is the direct supervised

classification problem, where the desired outputs are symbolic labels explicitly provided

to the learner. In many real-world applications, the class labels are not directly available.

In such situations, latent class models (Clog, 1995) or unsupervised clustering algorithms

(Jolion et al., 1991; Frigui & Krishnapuram, 1997) are applicable.

However, object category learning in the context of a long-lived, online learning agent

has been a relatively unexplored area. In such environments, the agent must learn to deal

with diverse types of objects, incrementally form new categories without externally

2

provided category labels, and must response quickly to the external environment. Such

problems involve multiple challenges that have traditionally been tackled separately from

different perspectives, with different assumptions, techniques, methodologies and

evaluation frameworks.

In the scenario of reactive online learning agent, the tasks are often studied under the

reinforcement learning (RL) framework (Sutton & Barto, 1998). Traditional

reinforcement learning techniques have focused on control problems and relied on

general propositional state representations. Relational reinforcement learning (RRL)

(Džeroski et al., 2001) uses more expressive object-based relational representations,

which are shown to have advantages over traditional propositional representations for

object-based environments (Duik et al., 2008; Walsh, 2010). Figure 1.1 listed several

examples of traditional control problems and object-based environments, which have

been studied within the RL framework. However, the work on RRL has emphasized

Figure 1.1: Examples of RL domains.

The top 4 are traditional control problems, and the bottom 4 are in object-based environments.

Taxi Pitfall Infinite Mario

Pole Balancing Mountain Car Helicopter Control Gripper

Object-based Environments

Traditional Control Problems

A
B C

A
B
C

Initial State Goal

Blocks World

3

learning action models, such as the effect of colliding into a wall (in Taxi domain), or

jumping over a monster (in Pitfall and Infinite Mario). These evaluation tasks often make

simplifying assumptions about the diversity of objects and the origination of object

categories. The requirement of forming new object categories is not addressed in those

approaches.

In the field of robotics, it is sometimes required that symbolic representation of objects is

built up from grounded primitive sensory inputs. For example, when acting in an

environment populated with objects, it is desirable that the agent can develop

perceptually grounded ontology of objects (Modayil & Kuipers, 2007). However, the

current immediate challenge in this area is about the spatial aspect, not the object aspect.

For example, in typical robotics tasks, the main challenges include: construct the maps

(Durrant-Whyte & Bailey, 2006; Kuipers et al., 2004), perform path planning and motion

planning to avoid and maneuver around obstacles, identify a target object and manipulate

it with the right motor controls. The diversity and complexity of objects are usually

limited.

1.1 Challenge of Object Diversity
The practical reason for the attention to spatial problems is that space is always the

immediate challenge while object diversity is secondary. For example, in the taxi domain

shown in Figure 1.1, the interacting objects include the walls, passengers and possibly

other taxis. Navigation is a major component of the domain. Both Pitfall and Infinite

Mario have a larger collection of objects such as various kinds of obstacles, enemies and

treasure. However, the primary challenge is still about how to spatially navigate through

the maze, get around obstacles and enemies while collecting as much treasure points as

possible.

In real-world complex environments, object diversity is much higher than normally

presented in the aforementioned RL and robotics tasks. The challenge from object

diversity will inevitably arise when we have more capable and long-lived agents that can

interact with the complex environment in many ways. Imagine an agent trying to survive

in the jungle, it must deal with hundreds or thousands of species that can be potentially

4

encountered, including things like trees, fruits, flowers, mushrooms and animals. Fruits

and mushrooms are either poisonous or not. They may have very different appearances,

such as their color, odor, shape and texture. Furthermore, two objects that look similar

may be functionally different, such as a venomous snake and a harmless snake. On the

other hand, some objects may have very different perceptual features, while they are

functionally the same from the agent’s perspective, such as a whitefish and a blackfish.

The challenge can be decomposed at two levels. At the first level, an agent can interact

with the environment in many ways, which translate to different dimensions of

functionality and semantics. For example, the agent can choose to eat an apple, play with

the apple, or throw the apple at its enemy. The agent must be able to organize category

knowledge with respect to these different dimensions. The second level is that within the

same functional purpose, different objects can be associated with very different outcomes

upon the agent’s actions. Therefore, the agent must also be able to organize a

discriminative categorization system among diverse objects with regard to each

functional dimension. In such complex environments, it is impractical, if not impossible,

to predefine all the functional categories of objects and provide them to the agent. It is

inevitable that a long-lived agent is required to incrementally form categorical

representations of objects based on their functional properties which are obtained through

experiences interacting with the objects.

The research presented in this thesis focuses on exploring techniques of category

formation in object-based environments with two defining characteristics. One is the

emphasis on the challenge of object diversity. The other is the learning of functionally

meaningful categories that are relevant to the agent’s decision making, as opposed to

category learning purely based on perceptual features. The following section will first set

up a concrete example of object diversity.

1.2 Example Task of Object Diversity
A concrete example of a hunting scenario is presented in the following paragraphs, which

not only intuitively grounds the problem, but also captures the essential characteristics of

object-based environments. This hunting scenario is used to develop more detailed

5

understanding of requirements, challenges and assumptions about the problem.

Variations of this scenario serve as the evaluation tasks throughout the thesis.

In Figure 1.2, the agent, whose icon is a caveman, faces the decision of choosing the right

weapon for the right prey. There is a certain degree of diversity in both weapons and prey.

There are 8 prey and 6 weapons - in reality the numbers could be much larger. The

perceptual features of each objects result in even higher diversity, because functionally

equivalent objects can have perceptually distinctive variations, such as a black rabbit

versus a white rabbit. We assume that the agent has no prior knowledge about the

interactions between weapons and prey, and must learn to predict the outcome based on

its experiences. The outcome of a weapon-prey pair depends on the functional properties

of both objects, such as the range and power of a weapon or the size and robustness of a

prey. In this example, memorizing the results for each of the 48 combinations is

inefficient. An observation is that human can create hierarchical category abstractions,

which can help achieve efficient generalizations.

Figure 1.2: An example of object diversity in the hunting task.

The agent must make decisions regarding diverse types of objects.

ranged
polearm

bow

large small

4-leg bird fish

Prey

Weapons

Agent

6

Figure 1.3 shows an instantiation of the interaction function and the related decision

making problem. The interaction outcome function in this domain is represented in the

two-dimensional table. A dark cell means the corresponding weapon is good for hunting

the prey and the agent will receive a reward of +1 if it chooses the action ‘hunt’. A white

cell means the corresponding weapon is bad for hunting the prey, and the agent will

receive a reward of -1 if it chooses the action ‘hunt’. The agent can always choose the

default action ‘avoid’, which will give a 0 reward. The figure illustrates the functional

categories of the objects (represented by the hierarchies for the rows and columns) and

the outcomes. The mapping from perceptual features to the hierarchical categories is not

shown. We assume the agent has a fixed set of feature detectors, and more detailed

assumptions about the perceptual features are discussed in later chapters.

The above example, although simple, demonstrates the essential characteristics of the

problem: the input to the function lies in a high dimensional space (many perceptual

features for prey and weapon), and the underlying interaction function cannot be

Figure 1.3: Instantiation of the interaction function in the hunting domain.

7

represented by simple forms (non-linear function). On the other hand, the goal is to

achieve efficient learning. Learning of a complex non-linear function in high dimensional

space is a challenging problem in general. However, there are certain forms of

regularities in such problems which make efficient learning possible. Our hypothesis is

that hierarchical categorization, as shown in Figure 1.2 and Figure 1.3, is the key to

achieve efficient learning.

1.3 Overview of Chapters
In Chapter 2, we define our research problem. We identify and analyze the challenges

and assumptions in the problem, and introduce the design of our general approach, which

leads to specific implementations in the following chapters. As an initial step, Chapter 3

presents a learning system that integrates a unsupervised hierarchical clustering algorithm

with the sparse coarse coding based value function approximation algorithm in the Soar

cognitive architecture (Nason & Laird, 2005; Laird, 2008). In Chapter 4, we show that

the learning system presented in Chapter 3 provides computational insights to human

category learning by qualitatively modeling several prominent human category learning

phenomena. In Chapter 5, we introduce a new algorithm in a principled statistical

optimization framework to address a major limitation in the previous learning system.

We evaluate the new algorithm with systematically generated synthetic data. Chapter 6

summarizes the contributions and discusses future directions.

8

Chapter 2

Research Problem Definition and
 Design of General Approach

2.1 Research Problem Definition
We define our research problem as finding efficient value function approximation

algorithms for decision making in object-based domains, where the state representation

(input to the value function) consists of objects. Our algorithms can be used as value

function approximators for a reinforcement learning (RL) agent (Sutton & Barto, 1998).

Unlike existing work on value function approximation in RL that focus on the

convergence issue (Maei et al., 2009), we focus on the structural characteristics of object-

based environments to design efficient generalization algorithms. We also assume the

agent is long-lived, and therefore must scale with high degree of object diversity in a

complex environment. Our approach utilizes hierarchical categorization inspired by the

observation of naturally occurring hierarchies in human category learning (Mervis and

Rosch, 1981).

In the following sections, we first elaborate on the requirements of efficient value

function approximation. Then we discuss and analyze the specific challenges and

assumptions in the research problem. Finally, we describe our general approach, which

leads to specific implementations to be discussed in later chapters.

2.2 Requirements of Efficient Learning
In the hunting example, in order to better survive, the agent needs to generalize its

experience to novel situations. For example, having learned how to hunt a whitefish with

9

a spear, the agent should be able to successfully hunt a blackfish without going through

the same trial-and-error learning procedures again, which would be costly to the agent’s

survival. On the other hand, incorporating a piece of new experience into its current

knowledge base should not incur too much computational cost. For example, it is not

acceptable to have a learning algorithm where the computational cost of processing a new

training sample grows linearly with the total number of samples in the agent’s knowledge

base. The above two requirements address two aspects of efficiency in learning: sample

efficiency and computational efficiency.

Sample efficiency concerns the relation between the number of training samples and

accuracy of the algorithm. Traditionally, learning algorithms are evaluated by asymptotic

performance – the degree of accuracy that can be achieved given enough training samples.

In online learning problems, the intermediate learning curves are even more important

than the asymptotic performance, because every decision is important to the agent’s

survival.

Computational efficiency concerns the computational cost of incorporating each new

training sample into the agent’s existing knowledge. For most optimization problems, the

learning algorithm has to re-evaluate every training instance in order to find the true

optimal solution whenever a new training sample is incorporated. Such algorithms, which

do not consider incremental updates, are called batch algorithms. Batch algorithms are

unacceptable for a long-lived learning agent, which can potentially collect large amount

of experiences. Therefore, we need an online learning algorithm that incurs a fixed, or at

least a very slowly growing, computational cost for incorporating a new training sample.

Such an online algorithm can usually be constructed as an approximation algorithm that

is based on the same optimization criteria, but is not guaranteed to find the global optimal

solution. Although online algorithms exist for many optimization problems, it can be a

technical challenge to find a good one.

2.3 Challenges
The challenges arise from the combination of the efficient learning requirements

discussed above and the environmental complexity which will be discussed in the

10

following paragraphs. In an object-based environment, there are two major components

in the environment model. One is the distribution of different objects in the feature space,

and the other is the interaction dynamics among objects.

2.3.1 Object Diversity
The jungle survival example and the hunting tasks in Chapter 1 are intuitively grounded

examples about the challenge of object diversity. More formally, object diversity is

characterized by the distribution of object instances in the feature space. In our target

environments, we expect the feature space has rather high dimensions and the instances

are randomly distributed across the entire feature space. We will give more precise

characterization of object diversity when we evaluate our algorithms in later chapters. At

this point, an intuitive understanding should suffice.

High degree of diversity undoubtedly corresponds to large amounts of information to be

learned and poses a challenge to the agent. In natural environments, high degree of object

diversity is a pervasive phenomenon: from living organisms to manmade objects, and

natural objects. The law of increased entropy implies that disorganization, randomness

and chaos in the universe tend to increase. As a consequence, objects in the physical

world end up in very diverse states. For living organisms, in the light of evolution by

means of natural selection, new species have evolved to fill the various environmental

niches. The tendency for diversity and complexity to increase in evolutionary systems is

recently proposed as the “Biology’s first law”, or “zero force evolutionary law” (ZFEL)

(McShea & Brandon, 2010). It is argued that ZFEL complements the principle of natural

selection – the force that helps make order out of chaos.

2.3.2 Nonlinear Interaction Function
One way to specify the dynamics of a complex environment is by defining condition-

action like rules. Each rule corresponds to an event, such as a successful hunting. The

rule can be viewed as a function. The input to the function is the condition for the event

to happen. For example, using a crossbow to hunt a deer is the condition for a successful

hunting. The output of the function is the effect of the event. For example, the effect of a

successful hunting is receiving +1 reward. We refer to such event functions in object-

11

based environment as the interaction function to reflect its object-based nature. In a

complex object-based environment, the interaction function can exhibits high degree of

nonlinearity as illustrated by the example in Figure 1.3. This is because events, such as

the successfulness of hunting, are determined by complex underlying physics. In such

situations, piecewise approximation is a natural solution. There are a variety of piecewise

function approximation techniques used in similar situations, which involve partitioning

the input space into smaller regions (pieces, slices), and using simple function forms to

approximation the value within each region. One example is the Cerebellar Model

Articulation Controller (CMAC), which has been used as a sparse coarse coded value

function approximator in reinforcement learning problems (Sutton, 1996). Another

example, used in very different domains, is the finite difference method and the related

finite element method (Johnson, 1987). Unlike CMAC, they do not use overlapping cells,

and are more suited to approximate smooth functions in lower dimensional space.

However, all piecewise approximation methods, if applied in their plain forms, are

subject to the “curse of dimensionality” since the number of pieces grows exponentially

with the number of input dimensions. In complex object-based environments, high

dimensionality is expected because each object is described by a large number of features.

Meanwhile, the intrinsic manifold of the data, or the true dimensionality of the data is

expected to be high as explained in the previous section about object diversity. Therefore,

to deal with the challenge of value function approximation in complex object-based

environment, we must resort to additional structural assumptions, which are discussed in

the next section.

2.4 General Assumptions and Approach
Given the above challenges, it is unlikely that there exist general solutions without

applying additional constraints to the problem. Our strategy is to identify the general

constraints in object-based environments, and then design efficient function

approximation algorithms based on those general assumptions.

12

2.4.1 Assumptions
The first assumption is about the compositional structure of object-based environments.

Objects are independent entities, each having its own perceptual features and functional

properties. The utility value of a state is determined by the functional properties of the

objects and the relationships among the objects. This suggests that learning categories for

individual objects is more effective than directly categorizing the entire composed state,

because categories of objects can be reused in different situations.

The second assumption is about the distribution characteristic of objects in natural

environments. Instead of assuming that objects are uniformly distributed in the functional

space, we assume there is a heterogeneous functional similarity structure among objects,

such that object categorization for a specific purpose (such as prey or weapon) can be

organized into a hierarchy as shown in Figure 1.2. Using hierarchical taxonomy to

organize object categories has been a common practice for a long time, one of the most

prominent examples being the Cyc project (Lenat & Guha, 1990). Tenenbaum et al.

(2006) described a computational model that can discover structures like trees, rings,

dominance hierarchies, and cliques, for a variety of physical, biological, and social

domains. Among those structures, hierarchy is the optimal structure for organizing object

categories. In addition to supporting efficient generalization, hierarchical data structures

can also support efficient online learning algorithms. COBWEB (Fisher, 1987) is an

incremental hierarchical clustering algorithm that has inspired this work.

2.4.2 General Design
The general solution, as suggested in Figure 1.2 and Figure 1.3, is to form hierarchical

object categories based on functional similarities. The state representation consists of

combinations of hierarchical categories from each composing object. Then piecewise

approximation can be performed utilizing such combinatorial hierarchical partitions of

the sample space. The detailed algorithms are presented in Chapter 3 and Chapter 5.

13

Figure 2.1 provides a high level outline of the thesis. The arrows represent logical

dependencies. We first formulate and define our research problem: efficient value

function approximation for long-lived agents in object-based environments. Then we

identify specific challenges as well as general assumptions, which lead to the major

design considerations in our general solutions. From Chapter 3 to Chapter 5, we present

two different implementations, with evaluations both based on the algorithm’s

functionality (sample efficiency), and on cognitive plausibility (match with human

behavior).

Figure 2.1: Outline of the thesis.

General Assumptions:
Independent objects
Hierarchical category
Compositional structure

Challenges:
Object diversity
Complex interactions
Efficient learning

Research Problem Definition:
Long-lived agent
Object-based environments
Efficient function approximation

Design of General Solution:
Incremental learning
Piecewise approximation
Hierarchical generalization

Implementations Evaluation Tasks Evaluation Criteria

Chapter 3
Hierarchical clustering

with sparse coarse coding
Artificial hunting task

Functionality
(sample efficiency)

Chapter 4 Cognitive plausibility
(match human behavior)

Chapter 5 Probabilistic latent
hierarchical class model

Systematically generated
synthetic data

Functionality
(sample efficiency)

14

2.4.3 Implementations and Evaluations
Cognitive architectures such as Soar, have been serving as a framework for building

robust, long-lived, online learning and reactive agents (Laird, 2008). Recent extensions to

Soar enhance its capabilities in sub-symbolic realms such as reinforcement learning

(Nason & Laird, 2005), episodic learning (Nuxoll & Laird, 2007), and spatial reasoning

(Lathrop & Laird, 2009; Wintermute, 2010). One major motivation of the current work is

to further extend the category learning capability of Soar to deal with the challenge of

object diversity which is common for a long-lived agent in complex natural environments.

Therefore, some of the initial implementations, which are discussed in Chapter 3 and

Chapter 4, are integrated with the existing Soar system. However, the second algorithm

presented in Chapter 5 is implemented independent of Soar, because the research does

not need to be constrained by the details of Soar other than respecting the most important

constraints of a general cognitive agent, namely incremental learning and scalability.

Due to the uniqueness of our approach, we cannot find proper evaluation tasks and data

sets from existing sources. Therefore, we use new artificial domains and synthetic data to

evaluate our algorithms. For the evaluation criteria, our major goal is to achieve better

functionality. On the other hand, being able to match with human category learning

behavior is also a desirable outcome. In Chapter 4, we present such an evaluation using

the first algorithm (Chapter 3). The second algorithm (Chapter 5) is only evaluated by

functionality. Matching with human behavior using the second algorithm is discussed as

a future direction in Chapter 6.

15

Chapter 3

Combining Unsupervised Clustering and
Sparse Coarse Coding

In the previous chapter, we formulate our research problem as finding efficient value

function approximation algorithms in object-based domains. We discussed the challenges

and proposed the general approach of combining hierarchical categorization with

piecewise approximation. In this chapter, we provide an implementation of such a

learning system, which consists of a category learning system for hierarchical

categorization, and a sparse coarse coding system for piecewise function approximation.

3.1 Background
Coarse coding is a popular general approach to achieve value function approximation for

reinforcement learning agents. Coarse coding approximators generally involve a linear

combination of coarse grained basis functions. Some examples are CMAC (Sutton, 1996),

adaptive tile coding (Whiteson et al., 2007), and kd-tree Q Learning (Vollbrecht, 2000).

For object-based environments, relational representations are considered to be the most

natural choice of state representation. The two components in a relational representation

are objects, and the relationships among objects. In this thesis, we focus on the object

aspect and assume a state representation that consists of an ordered set of component

objects, with each object represented by its own feature vector. The set of objects are

ordered because each of them is assumed to take a different role in the represented

situation. For example, in the hunting task, weapon and prey are two distinctive roles.

The state representation is composed of two object categories, one for prey, one for

weapon. In an object-based environment, objects are independent entities with intrinsic

16

functional properties, and the utility value of a state is directly determined by the objects

and their roles. Therefore, our approach of representing the state as combinations of

object categories not only reduces the dimension via categorization, but also respects the

compositional structure of the environment.

3.2 Our Approach
Figure 3.1 shows the overall architecture of our implementation. The original prototype

system was implemented in Soar and uses the existing architectural mechanisms,

including Soar-RL (Nason & Laird, 2005) and production rule based knowledge

encoding. The system first transforms each input object into symbolic hierarchical

categories via a hierarchical clustering algorithm (the bottom half in Figure 3.1). The

symbolic hierarchical categories are used as representational basis to form coarse coding

basis functions (the top half). Finally, the combinatorial hierarchical basis functions are

linearly combined to approximate the value as in other coarse coding algorithms. The

coefficients of each basis function correspond to the weighted connections from the top

layer to the output as shown in the top of the figure. These weights are adjusted based on

the desired output value. Regarding the overall structure, from the input and output layers,

there are two intermediate representational layers and three processing steps (outlined on

the left of Figure 3.1). In the following section, we present the details of the process in

two sections: the category learning system, which learns the mapping from input to the

representational basis, and the sparse coarse coding system, which performs piecewise

function approximation.

3.2.1 Category Learning System
The category learning system maps raw input features into symbolic categories for each

individual object. It has two modes: learning mode and recognition mode. The learning

mode corresponds to the process of category formation. When adding a new instance to

the system, either a new symbolic category is created or existing categories are modified.

In the recognition mode, an input object is mapped to an existing category in the

hierarchy based on its features.

17

3.2.1.1 Category Formation

For category formation, we use an unsupervised hierarchical clustering algorithm. It is

unsupervised because the categorizations are determined solely by the input features and

there is no pre-specified category label. In this framework, prior knowledge can be

injected to select a subset of features to bias the clustering. The hierarchical clustering

algorithm is adapted from COBWEB (Fisher, 1987) and CLASSIT (Gennari et al., 1989),

which recursively partition the training samples to build up a hierarchy based on the

optimization criteria listed in Equations 3.

Equation 3.1 (1) defines the partition utility optimization objective, which gives higher

scores for categories with high within-group resemblance and prefers fewer number of

categories. This is achieved by using the sum of category utilities penalized by the

number of categories n. Category utility is defined in Equation 3.1 (2) which is the sum

Figure 3.1: The overall learning architecture.

X

utility

AdjustableWeights

Rule Based Composition

Prey Weapon

Prey features Weapon features

Input buffer

Soar-RL

Representational Basis

Input

Sparse Coarse Coding

Hierarchical
Clustering

Output

18

of feature utilities for that category. Feature utilities for nominal features and numeric

features are defined in Equation 3.1 (3) and (4). For nominal feature, the utility is the sum

of squared probabilities for each discrete value. For numeric features, in Equation 3.1 (4),

σ0 is the standard deviation of the feature’s distribution across all training samples, and σi

is the standard deviation within category i.

Figure 3.2 illustrates an example of hierarchical categories for objects with three features:

color (nominal), shape (nominal) and size (numeric). The statistics of each feature are

listed with each category node. For a nominal feature, the frequencies of each discrete

value are recorded. For a numeric feature, the mean and variance are recorded. Each

category node is also visually depicted. The optimal hierarchy should maximize the

partition utility from top down recursively.

Equation 3.1: Definition of partition utility.

1

2

0

() ()

()

() ()

()

 is the value of the feature

1

1

n

i i
i

i
j

k
k

k

i

P C CategoryUtility C
PartitionUtility

PENALTY n

CategoryUtility C FeatureUtility j

NominalFeatureUtility P v

where v kth

NumericFeatureUtility

where

σ
σ

==

=

=

=
+

∑

∑

∑



0

 is the feature's standard deviation under category i
 is the feature's overall standard deviation

iσ
σ

(1)

(2)

(3)

(4)

19

The incremental algorithm that searches for such optimal structure is based on greedy

search in the space of hierarchical structures. The two primitive operators are split and

merge, as illustrated in Figure 3.3. The numbers in each hierarchy represent the unique

identifiers of the categories. The entire search space can be viewed as a graph structure,

with the vertices being distinctive hierarchical structures and the edges being split/merge

operators. To evaluate the hierarchy after a merge or a split, the data structure shown in

Figure 3.2 must be updated accordingly and the partition utility shown in Equation 3.1 (1)

must be recalculated. A greedy algorithm can be used to search for the new optimal

hierarchy in the neighborhood of the current structure whenever a new instance is

integrated into the hierarchy. Details of the incremental learning algorithm and its

complexity analysis can be found in the original COBWEB paper (Fisher, 1987).

Figure 3.2: An example categorization hierarchy with detailed data structure.

color
red

shape
square

1 1

size
6
1

color
green

shape
square

1 1

size
10
1

color
green

shape
circle

1 1

size
9
1

color
blue

shape
square

1 1

size
15
1

color
blue

shape
circle

1 1

size
17
1

color
green

shape
circle

2 1

size
9.5
2

square
1

sd=.7

color
blue

shape
circle

2 1

size
16
2

square
1

sd=1.4

color
green

shape
circle

2 1

size
7.5
4

square
3

sd=2.4

red
2

color
green

shape
circle

2 2

size
10.3

6
square

4
sd=4.8

red
2

blue
2

color
red

shape
square

2 2

size
5.5
2

sd=.7

color
red

shape
square

1 1

size
5
1

20

3.2.1.2 Category Recognition

As illustrated in Figure 3.1, in order to predict the utility value of an input state consisting

of multiple objects, each object is first mapped to an existing symbolic category. This is

achieved via the category recognition process. In our system, the category recognition

process selects the category with the highest posterior probability given the input features.

For example, if the prey is furry and has long ears, then rabbit is the category with the

highest posterior probability. In the hunting example, recognition based on perceptual

features is straightforward if the system is presented with good discriminative features

such as whether the prey has wings or scale skin, the shape of tail, ear and size, etc. In

more general situations, there can be multiple categories with close posterior probabilities.

Our system uses the winner-takes-all principle – only the category with the highest

probability is selected as the output. Such a recognition process is recursively applied at

each level of the hierarchy, and the final output is the path of categories at different levels

of abstraction, as illustrated in Figure 3.1.

Figure 3.3: Local restructuring operators in the space of hierarchies.

1

2 5 6

3 4

1

3 5 64

1

2

5 63 4

7

split

merge

21

Equations 3.2 describe how the posterior probabilities are calculated. Equation 3.2 (1)

states that P(Ci|I), the posterior probability that the instance belongs to category i given

the observed feature vector I, is proportional to the product of P(I|Ci) and P(Ci), where

P(I|Ci) is the conditional probability of the observed feature vector I, and P(Ci) is the

prior probability of that category. Equation 3.2 (2) calculates P(I|Ci) by taking the

product of P(Ij|Ci), the conditional probability of each individual feature Ij, assuming the

distribution of individual features are independent. Equation 3.2 (3) is the conditional

probability of an individual nominal (symbolic) feature under category i. Equation 3.2 (4)

is the conditional probability for a numerical feature based on the assumption that the

distribution being Gaussian. The recognition algorithm descends the category hierarchy

and chooses the category with the highest posterior probability.

Equation 3.2: Category recognition.

(|) (|) ()

 is the input feature vector
 is the category

(|) (|)

 is the value of the feature in the input

()
(|)

() is t

i i i

i

i j i
j

j

i j
j i

ij

i j

P C I P I C P C
where
I
C ith

P I C P I C

where I jth

frequency I
P I C

n
where
frequency I

∝

=

=

∏



2

22

he count of the discrete value within category

 is the total count of the nominal feature within category

()1(|) exp
22

 is the mean of numeric feature

j

ij

j ij
j i

ijij

ij

I i
n j i

I
P I C

where
j

µ
σπσ

µ

 −
= −  

 

within cateogry

 is the standard deviation of numeric feature within category ij

i
j iσ

(1)

(2)

(3)

(4)

22

3.2.2 Sparse Coarse Coding System
As illustrated in Figure 3.1, after mapping each object to its symbolic categories, the state

representation consists of an ordered set of hierarchical categories. The sparse coarse

coding system composes the categories to form a set of coarse coding basis functions.

Figure 3.4 shows a concrete situation for a specific input based on the hunting task

example in Figure 3.1 from the previous chapter.

In Figure 3.4a, the state space is represented as a 2D grid after mapping objects with raw

features into their symbolic hierarchical categories, which are output from the category

learning system, and serve as the inputs to the coarse coding system. The specific

example is hunting a deer with a crossbow, and the activated categories are highlighted.

The coarse coding system approximates the value function in the now transformed and

reduced state space. In the Figure 3.4b, the coarse coding system consists of 16 grids in a

4 by 4 lattice structure. Each grid represents a partition of the state space at a specific

level of resolution according to the levels of the two composing hierarchies. The levels

are indicated by the numbers associated with each grid. For example, G(1,2) means the

partition grid consists of prey categories at level 1 and weapon categories at level 2. The

black dots spatially represent the input instance, and the grey areas represent the more

general regions covered by the activated coarse coding basis. The region with the dotted

border in 7 of the grids on the lower and right sides of the lattice means there are no more

specific rules generated for those regions because it has already reached the leaf level of

the categorization hierarchies. The utility value for a state is approximated by the sum of

multiple activated basis functions, which are simultaneously updated by the learning

algorithm.

23

Figure 3.4: Illustration of sparse coarse coding.

The specific input is hunting deer with crossbow. (a) shows state space and activated categories. (b)
shows the organization of coarse coding basis into a lattice.

D
ee

r
G

oa
t

W
at

er
fo

w
l

Ra
bb

it
W

oo
dc

hu
ck

Fi
nc

h
W

hi
te

fis
h

Bl
ac

kf
is

h

La
rg

e
Sm

al
l

Four-leg
Bi

rd Fi
shPrey

Weapon

Projectile

Pole Arm

Bow
Slingshot
Blowgun

Spear
Trident

Longbow
Crossbow

G(0,0) G(1,0) G(2,0) G(3,0)

G(0,1) G(1,1) G(2,1) G(3,1)

G(0,2) G(1,2) G(2,2) G(3,2)

G(0,3) G(1,3) G(2,3) G(3,3)

Activated coarse
coding basis

Input state

Category Activated category

(a)

(b)

24

We formally describe the overall algorithm below. To learn a target function, the system

first maps the input objects into a vector of functional roles R, which represents the

distinctive arguments in the input of the target function. The vector O represents the input

objects binding with R, thus determining the ordered set of objects:

𝑅 = (𝑟1, 𝑟2, … , 𝑟𝑛)

𝑂 = (𝑜1, 𝑜2, … , 𝑜𝑛)

To give a more concrete example, assume the general target function is to predict the

utility of hunting some prey with some weapon. The inputs are two objects: rabbit and

bow. If the system has no prior knowledge about the detailed functional roles, then it may

use a single functional role for all objects. According to our notation, input to the system

will look like R=(generic-object, generic-object), O=(rabbit, bow). If we know that prey

and weapon play distinctive functional roles, then the input will look like R=(prey,

weapon), O=(rabbit, bow). If we know a more refined structure about the interaction

model, for example, that there are two interaction components, one is about how to get

close to the prey, the other is about how to choose the most effective weapon, then we

may want to categorize the prey based on two different criteria. The input will look like

R=(prey-sensing, prey-physical, weapon), and O=(rabbit, rabbit, bow). These different

degrees of structural level prior knowledge can be conveniently encoded as rules in our

system. After matching objects with functional roles, the category learning system

incrementally builds a set of hierarchies H correspondingly:

𝐻 = (ℎ1, ℎ2, … , ℎ𝑛)

Let height(hi) denote the height of the hierarchy hi, and ki denote a cluster/node within the

hierarchy. Let level(ki) denote the level of cluster ki in the hierarchy hi, with the root node

level being 0. Cells, grids and their relations, shown in Figure 3.4, are defined as

following:

𝐶𝑒𝑙𝑙𝑠 = {𝐶𝐾, 𝐾 = (𝑘1, 𝑘2, … , 𝑘𝑛)|𝑘𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 ℎ𝑖}

𝐺𝑟𝑖𝑑𝑠 = {𝐺𝐿, 𝐿 = (𝑙1, 𝑙2, . . . , 𝑙𝑛)|0 ≤ 𝑙𝑖 ≤ ℎ𝑒𝑖𝑔ℎ𝑡(ℎ𝑖)}

25

𝐶𝐾 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐺𝐿 ≡ ∀𝑖 ∈ [1, 𝑛], 𝑙𝑒𝑣𝑒𝑙(𝑘𝑖) = 𝑙𝑖

𝐺𝐿1 ≺ 𝐺𝐿2 ≡ ∀𝑖 ∈ [1, 𝑛], 𝑙1𝑖 ≤ 𝑙2𝑖

More intuitively, each cell represents a rule in our RL system. A set of cells are

composed into a grid that partitions the state space at a specific level of resolution. There

is a lattice structure among the grids with the transitive relation coarser-than (≺)

represented by the arrows in the figure. For example, G(1,1) is coarser than both G(1,2) and

G(1,2). Both G(1,2) and G(2,1) are coarser than G(2,2). But there is no such relation between

G(1,2) and G(1,2).

Then given the set of input objects, the activation of a cluster ki is denoted as a(ki):

𝑎(𝑘𝑖) = � 1 𝑖𝑓 𝑜𝑖 ∈ 𝑘𝑖
 0 𝑖𝑓 𝑜𝑖 ∉ 𝑘𝑖

�

In the above equation, the mapping from oi to ki is achieved via category recognition, and

only a single path of clusters are activated for a particular input as shown in Figure 3.4.

a(ki)=1 means an object in the current state, bound to the corresponding functional role, is

an instance of the category represented by that cluster. The activation of a cell, a(CK), is

defined as:

𝑎(𝐶𝐾) = �𝑎(𝑘𝑖)
𝑛

𝑖=1

a(CK)=1 means the rule (a cell corresponds to a rule) matches the current state and will be

fired to participate in predicting and learning the target value. The weight, w(CK), from

the cell to the output unit is represented as a numeric value associated with the rule in the

RL system. The learning algorithm updates the weights according to the delta rule as in

stochastic gradient descent methods. α is the learning rate, and t is the target value:

𝑦 = �𝑤(𝐶𝐾)𝑎(𝐶𝐾)
𝐶𝐾

∆𝑤(𝐶𝐾) =
𝛼

∑ 𝑎(𝐶𝐾)𝐶𝐾
(𝑡 − 𝑦)𝑎(𝐶𝐾)

26

The connection between the coarse-coding layer and the output unit is always sparse,

since, for any input, only one cell from each grid in the lattice has non-zero activation.

This is due to the competitive learning (winner-take-all principle) nature of the

hierarchical clustering layer – only one cluster is activated at each level.

3.2.3 Algorithm Complexity Analysis
The time and space cost of our system are reasonably bounded under practical

assumptions. As in COBWEB, processing in each hierarchy in our system takes O(logN)

time, where N is the number of leaf nodes, for both predicting and assimilating a new

instance, given bounded branching factor and fixed dimensions in input features. Rule

matching in Soar is based on the Rete algorithm (Forgy, 1982), which has constant time

cost given bounded changes in working memory. The remaining time cost is determined

by the number of grids in the lattice, which is:

|𝐺𝑟𝑖𝑑𝑠| = �ℎ𝑒𝑖𝑔ℎ𝑡(ℎ𝑖)
𝑛

𝑖=1

For example, in Figure 3.4, there are two hierarchies, each having a height of four, and

therefore the number of grids is sixteen. Since there always exists some level beyond

which functional differences are too small to be meaningful, we can assume an

effectively small and fixed height by keeping a limited number of leaf nodes for each

hierarchy. Furthermore, based on the observation that the cardinality of object interaction

is usually small, we can also assume that the number of functional roles in a target

function is bounded by a small constant, and therefore the time cost of each update and

prediction is practically constant. The space cost for each hierarchy is O(N). The space

cost for the coarse coding lattice is O(N|R|) where |R| is the number of functional roles in

the target function. Given the above assumption about a bounded number of leaf nodes

and a fixed small number of functional roles, the space cost is also constant.

3.3 Evaluation
There are no existing benchmark tasks that reflect the challenge of object diversity that

we are pursuing. Therefore, we created a new artificial domain based on the hunting

27

scenario to evaluate our system. In addition to hierarchical categories of objects, we

added obstacles that interact with the weapons and animals, and introduced uncertainties

in the execution of actions to make the task more complex.

3.3.1 Evaluation Task
The domain is a simulated environment with discrete time and a discrete location grid.

The agent is equipped with different types of ranged weapons. To attack a prey, the agent

must choose an appropriate weapon and distance from which to attack. The efficacy of a

weapon depends on the functional properties of the weapon and the prey, as well as the

distance to the prey. Moreover, the prey may detect the agent and become alerted before

the attack action, which significantly reduces the success rate of hunting. In order to get

close enough to the prey without alerting it, the agent can approach the prey from behind

static obstacles. The probability of successfully moving towards the prey depends on the

sensing capabilities of the prey and the types of obstacles between the prey and agent.

This domain captures the characteristics and challenges that we intend to address. First,

there are multiple interacting objects and multiple types of interaction: the interaction

between prey and weapons, and the interaction between prey and obstacles. Second, there

is diversity for each object type: prey, obstacles, and weapons all have instances with

diverse functional properties.

Figure 3.5: Schematic representation of a hunting scenario.

P

r

b

b

rr

r

r

b,r

b

b b,rb,r

2,2

1,00,2

2,0

1,1 0,1 1,2

2,1

28

Figure 3.5 shows a scenario, where the prey (P) is in the middle. There are two types of

static obstacles: bush (b) and rock (r), which can coexist in the same cell (b, r). For

simplicity, the agent can only approach the prey from eight different directions, as

represented by the dashed lines. The first number associated with a path indicates bush

distance to the prey and the second number indicates rock distance. 0 indicates that the

object is absent or out of effective range. There is no additive effect from multiple

occurrences of the same obstacle type, so if there are two bushes at both distance 1 and 2,

the effect is the same as if there is one bush at distance 1.

Figure 3.6 shows the model of interaction between objects in the domain. Grey boxes

represent physical objects, white boxes with solid lines represent abstract quantities,

white boxes with dotted lines represent stochastic events with probabilistic outcomes.

Large dashed boxes highlight local interactions among objects. Prey have different

sensing properties which affect how likely it can sense the agent when blocked by a bush

or rock, as highlighted by the “Prey Obstacle Interaction” box. The prey also has physical

properties that affect how easily it can be shot and fatally wounded, as highlighted by the

“Prey Weapon Interaction” box. Finally, distance to the prey affects both types of

interactions. In the task, the agent must choose a weapon, an attacking path and a

Figure 3.6: Complex object interaction model of the hunting domain.

Attacking
Angle

Sensing
Properties

Weapon

P(Prey not alerted)

P(successful hunt)

Distance to
prey

Agent
decision

P(fatal)
Size

Health

Prey

Accuracy

Power

RewardPrey Obstacle
Interaction

Prey Weapon
Interaction

Physical
Properties

Bush on
Path

Rock on
Path

Sensitivity
to Bush

Sensitivity
to Rock

Agent

P(shot)

29

shooting distance. If the hunting is successful, the agent receives a positive reward.

The functional properties of a prey and weapon are represented as continuous numbers in

our environment model. We assume the agent can measure and internally represent these

quantities as numeric features. Prey sensing properties consist of sensitivity to bush and

sensitivity to rock. Prey physical properties consist of health and size. Weapon properties

consist of power and accuracy. The probabilistic outcomes are determined by the

numeric values of related features. For example, the probability of successfully

approaching behind a rock is higher if the prey has higher sensitivity to bush. The

probability of fatally wounding a prey is higher if the weapon has higher power or the

prey has lower health. More details will be presented in the next section.

We call the above numeric features functional features, as they represent an object’s

perceivable functional properties that have intrinsic meanings to the agent. For many

functional features, the values are “expensive” to obtain in nature because they have to be

tested out by actual interactions with the object. There are other non-functional

perceptual features (not shown in the figure) of prey that are more easily perceivable,

such as visual, smell, and sound features, and they can be correlated with certain

functional features. These perceptual features are useful for the agent to predict the

functional features when they are not directly available. For example, the agent cannot

directly observe a prey’s sensing properties before choosing the action, and has to make

predictions based on correlated perceptual features such as the size and shape of eye,

nose, and ear.

3.3.2 Empirical Results
As discussed in Chapter 2, the general requirements are computational efficiency and

sample efficiency. Our empirical evaluation will focus on sample efficiency, i.e. how fast

the performance improves with regard to the number of training samples. The

computational complexity has been analyzed in section 3.2.3.

3.3.2.1 Evaluation Data

30

The evaluation task used here is one specific configuration of the hunting domain based

on some realistic considerations on the distribution of objects in the feature space, as well

as the interaction model among objects. For example, prey with larger sizes tend to have

higher health. Prey with lower sensitivity to bush tend to have higher sensitivity to rock.

Weapons with higher power tend to have lower accuracy. The distribution of data has a

2-level hierarchical clustering structure as shown in Figure 3.7 for each categorization

criterion.

Figure 3.7: Distributions of the evaluation data.

Bush-sensitivity

Ro
ck

-s
en

sit
iv

ity

Size

He
al

th

Accuracy

Po
w

er

(a) Distribution of prey sensing properties (b) Distribution of prey physical properties

(c) Distribution of weapon properties

An instance in the feature space

Clusters of instances

31

The value of the state is determined by the probability of successfully hunting the prey.

The general interaction model has been described in Figure 3.6. A specific scenario is

visualized in Figure 3.8. The outcome in the simulation is computed by a complex

function involving the interactions among several objects: weapon, prey, and obstacles.

For example, to determine the probability of “not alerting the prey” (P1 in Figure 3.8),

the numeric factor is the sum of bush-sensitivity and rock-sensitivity. If there is no bush

or rock obstacles between the agent and the prey, then the corresponding factor is 0. The

combined numeric value is transformed by a logistic function (represented as f in Figure

3.8) into the range of [0, 1] to represent the probability. Intuitively, when there are

obstacles, and the prey is sensitive to the obstacles, the agent is more likely to

successfully approach the prey. The distance factor negatively affects this probability

since, for every step, there is some probability that the prey is alerted, so that the

probabilities of not altering the prey form a geometric series indexed by the number of

steps the agent has made within the detection range of the prey. To determine the

probability of “shot on target” (P2 in Figure 3.8), the combined numeric factor is weapon

Figure 3.8: A visualized example of a hunting scenario.
It shows the details about how the outcome is generated in the simulation. The function f is a
logistic function.

Distance: 3
Obstacles: bush at 1, rock at 2

Prey:

Weapon:

size health
1 2

accuracy power
5 2

bush-sensitivity rock-sensitivity
2 4

Stochastic Environment:
1. Not alert the prey:
2. Shot on target:
3. Fatally wound the prey :
4. Get reward:

P1=f(distance, obstacles, sensitivities(prey))
P2=f(distance, accuracy(weapon), size(prey))
P3=f(distance, power(weapon), health(prey))
P=P1 × P2 × P3

32

accuracy + prey size – distance, with the sign reflecting the positive or negative influence

by the corresponding factor. Similarly, for “fatally wound the prey” (P3 in Figure 3.8),

the combined factor is weapon power – prey health – distance.

The coarse coding structure used for this task is similar to that shown in Figure 3.4,

except that there are three category hierarchies, two for prey and one for weapon as

shown in Figure 3.7. We use fixed hierarchical categories as input to the coarse coding

system. Such structures were learned by the category formation process, and do not

change during the value function learning. Learning rate of the algorithm is set at 0.3.

Performance is evaluated by sample efficiency, measure by the improvement in

performance with regard to the number of training episodes. Each trial involves

incrementally training the agent and recording the average of 100 independent testing

episodes at different points of training. The final results shown in the plots are the

average of 100 such independent trials

3.3.2.2 Comparison with No Categorization

In Figure 3.9, we compare the learning performance of an agent using hierarchical

categorization of objects with a baseline agent that uses the raw functional features

without categorization. When there are only 9 unique instances, one from each prototype

as shown in Figure 3.7, a 2-level 3-branch structure is sufficient, and the baseline agent is

equivalent to only using the gird G(2,2,2), as explained in the section about sparse coarse

coding. The results demonstrate that hierarchical categorization leads to faster learning

because the coarser grids capture shared information and aid generalization. When there

Figure 3.9: Comparison with “No Categorization” by sample efficiency.

Success rate is the ratio of successfully hunting the prey.

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

Episodes

Su
cc

es
s

R
at

e

h ierarchical categorization
no categorization

33

are more subtypes under each of the 9 prototypes for each hierarchy, the performance of

“hierarchical categorization” will not be affected because it utilizes all the general

categories, while the baseline will be worse.

3.3.2.3 Comparison with Fixed-resolution Generalization

An advantage of using a hierarchy compared to flat categorization, such as the output

from a k-means clustering algorithm, is the flexibility of representing categorical

boundaries at different resolution levels, without forcing the system to make

categorization decisions that are either over-general or over-specific. The next

experiment tests whether such flexibility is naturally incorporated into our coding scheme

for value function approximation. Figure 3.10 compares using hierarchical categorization

to a baseline using single-level flat categorizations. In the baseline, the number of

categories is set to 3 so that it is equivalent to only using grid G(1,1,1). Since such

categorization does not capture the more subtle differences within each general category,

it cannot improve performance beyond a certain point. We can choose to make a finer-

grained flat categorization, which will lead to better asymptotic performance. However,

that will inevitably lead to a worse improvement rate in the initial stage. In the extreme

case, it will be the same as the performance generated by “no categorization” shown in

Figure 3.9. In conclusion, using hierarchical categorization in our value function

approximation scheme, reconciles the tradeoff between over-general and over-specific

categorizations.

Figure 3.10: Comparison with “Flat Categorization” by sample efficiency.

Success rate is the ratio of successfully hunting the prey.

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

Episodes

Su
cc

es
s

R
at

e

h ierarchical categorization
flat categorization

34

3.3.2.4 Comparison with Suboptimal Hierarchy

To test if using prior knowledge in the form of functional roles and functional features

can be beneficial, Figure 3.11 compares with a baseline using only a single functional

role for prey with a monolithic category hierarchy based on all features of prey. The

single hierarchy results in four levels with three branches at each level to represent all 81

types of prey – combinations of 9 sensing types and 9 physical types shown in Figure 3.7.

In Figure 3.11, the reason for poorer performance is because the single monolithic

hierarchy does not reflect the true functional structure of the environment. The optimal

structure requires two categorization hierarchies for prey, one based on sensing properties

(bush-sensitivity and rock-sensitivity) and one based on physical strength (health and

size). Our system supports encoding such useful structural domain knowledge via

production rules.

3.3.2.5 Summary of Results and Analysis

Comparing all three figures, even using the monolithic hierarchy (lower line in Figure

3.11) leads to faster initial learning than no categorization at all (lower line in Figure 3.9),

as well as better asymptotic performance than flat categorization (lower line in Figure

3.10). This is because the monolithic hierarchy still captures certain amount of functional

similarity. With the help of pre-specified functional roles and functional features, the

Figure 3.11: Comparison with “Suboptimal Hierarchy” by sample efficiency.

Success rate is the ratio of successfully hunting the prey.

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

Episodes

Su
cc

es
s

R
at

e

two prey hierarchies for different functional roles
single prey hierarchy based on all features

35

learned category hierarchies more faithfully reflect structural constraints and leads to

better performance.

3.4 Related Work
Our learning system combines sparse coarse coding and hierarchical structure for value

function approximation with object-based state representations. Like coarse coding based

value function approximation, our approach relies on learning piecewise constant local

basis functions. The advantage of using local function approximators, compared to a

global function approximator such as the multilayer perceptron (MLP) or linear

regressors (Bradtke & Barto, 1996), is better stability and convergence when used in TD

learning. This is because global function approximators are designed to fit relatively

smooth functions, with linear models being the extreme case. Although MLP is a

universal function approximator, its performance degrades when there are increasingly

more intensive interference among nearby regions in the input feature space. Interference

is the negative side-effect of generalization and can be catastrophic for learning

arbitrarily non-smooth functions (McClelland et al., 1995). Having sparser connections in

MLP can reduce interference. However, French (1991) has noted that reducing overlap

avoids catastrophic interference at the cost of a dramatic reduction in the exploitation of

shared structure. Structured connections are required to balance the different needs.

Our approach can be viewed as one approach to reconciling interference and

generalization by combining competitive learning (clustering), hierarchical representation

and sparse-coding in a multi-layer network, which can be further regulated by rule-based

symbolic domain knowledge. Competitive learning via hierarchical clustering generates

symbolic categories, which serve as primitive structures to restrict interferences within

local regions. On the other hand, sparse-coding with a hierarchical representation results

in an emerging lattice structure, which regulates generalization by keeping the necessary

connectivity, and at the same time minimizing interferences among unrelated regions.

Such faster and more stable learning inevitably shifts the cost to somewhere else:

compared to a fully connected MLP, more units (cells) are required in our system to

achieve higher resolutions in value function approximation, although we have shown it is

not a practical concern.

36

There are other approaches to combining hierarchical structure with local approximators,

such as in kd-Q-Learning (Vollbrecht, 2000) and adaptive tile-coding (Whiteson et al.,

2007). However, these approaches lack the regulating structures that exist in our

approach because they are not designed for object-based state representations.

Furthermore, these approaches face the “curse of dimensionality”. For environments

involving objects, each object is represented by multi-dimensional features, and the total

dimension of the feature space can easily become prohibitively expensive for learning if

using unstructured state vectors that concatenate all the features. Our category learning

system performs perceptual processing and dimension reduction: each hierarchy reduces

the multi-dimensional subspace of corresponding functional features into a single

dimension of hierarchical categories. Prior domain knowledge about functional roles and

functional features helps to regulate such dimension reductions for object-based

representations.

3.5 Discussion
In this chapter, we presented one specific implementation of our general approach. We

focus on evaluating two novel features that are important for our system design. The first

is to evaluate the successful integration of hierarchical representations in Soar-RL’s

existing coarse coding value function approximation scheme. The second is to confirm

the importance of supporting multiple functional roles and functional features, which is

part of our extension to COBWEB. We did not empirically evaluate the effect of category

learning, because comprehensive analysis has been done in research related to COBWEB.

We created a complex domain that stresses the types of challenges we are trying to

address. There are many parameters to configure in the evaluation environment,

including the underlying distribution of data (Figure 3.7) as well as the model structure

(Figure 3.6), and functions defining the probabilistic outcomes (Figure 3.8). The results

are based on a particular setting of the parameters. In Chapter 5, we will systematically

explore the space of data distribution in the evaluation. For example, when the

distribution of data in the functional feature space has a more flat structure, the

performance gains of using hierarchical structures will shrink. We can also increase the

37

object diversity, which will result in deeper hierarchies. However, these quantitative

changes are not expected to qualitatively change our conclusions.

Supporting the use of functional roles and functional features as a form of prior

knowledge in our system can be practically useful with reasonable overhead. The

observation is that only a relatively small set of functional roles and functional features

are required to specify the general goals and basic needs of an agent. The benefit of

providing such knowledge is that categorization more accurately reflects the functional

similarities of objects without distractions from perceptual noise, and leads to significant

improvement in RL.

3.6 Summary
We presented a novel, two-layer architecture for efficient value function approximation

by integrating unsupervised hierarchical categorization with the existing RL system in

Soar. Our system has two unique features. First, the value function approximation

algorithm utilizes hierarchical structures to smoothly reconcile the tradeoff between over-

specific and over-general categorizations, so that learning can be quicker and more

accurate at the same time. Second, our system supports the use of prior domain

knowledge about functional roles and functional features of objects to regulate learning.

These properties are valuable for autonomous learning agents in a novel, complex,

object-based environment. The empirical results have confirmed our hypothesis.

The major limitation of the learning system is that categorization relies on the set of

functional features that are selected according to prior domain knowledge. Ideally, when

such prior knowledge is not accurate, or unavailable, the agent should still be able to

adaptively acquire functional categories based on the feedback from the environment,

such as the reward value used to train the value function. In the next two chapters, we

will address this issue from two different perspectives.

38

Chapter 4

Modeling Human Functional Category
Learning

In the previous chapter, we showed that hierarchical categorization can be naturally

integrated with a sparse coarse coding scheme for value function approximation. The

algorithm automatically balances the transition from generalization to specialization.

Meanwhile, it was also shown that the performance depends on how well the

categorization hierarchy reflects the true functional relationship among objects. In the

category learning system, categorization relies on a set of externally provided functional

features, which begs the question how these functional features can be obtained

beforehand and what should be done if they are not available to the system. In this

chapter and the next, we will address this issue from two perspectives. In this chapter, we

approach from a naturalistic perspective. We show that the learning system described in

the previous chapter can adaptively select useful functional categories based on the

feedback signal (reward value), even if the hierarchies are constrained by the

predetermined feature set. Detailed analysis on the learning system reveals a

computational model that can produce category learning behaviors qualitatively match

with human. In the next chapter, we will approach from a functional perspective, which

leads to a new algorithm formulated in a statistical optimization framework.

4.1 Background
We discussed category learning in the previous chapter from a purely functional

perspective. There are many distinguishing characteristics of category learning in higher

animals including human (Ashby & Maddox, 2005) and primates (Smith, 2010). The

value of categorization is that it enables an individual to respond to a novel stimulus that

39

resembles previously experienced stimuli with known responses. In this chapter, in

addition to reconfirming the functionality of category learning in the context of an RL

agent, we investigate several interrelated human category learning phenomena. We will

show that our system generates three emergent effects found in human category learning:

they are basic level effect, context effect and expert effect.

The basic-level effect is related to the notion of basic-level category as described by

Rosch (1978). Consider the following two examples of abstraction hierarchies: furniture

–> chair –> rocker –> cherry wood rocker, and machine –> vehicle –> car –> sedan –>

Lincoln Town Car. The middle categories, chair and car, are basic categories, because

they dominate both their subordinate and superordinate categories in terms how fast they

can be recognized and how frequently they are used. It is generally believed that basic-

level categories emerge unconsciously based upon interactions with our world.

The basic-level effect describes the phenomenon that categories at certain levels of

abstraction dominate when there is no priming context. On the other hand, in certain task

contexts, non-basic categories may become dominant. For example, in the context of

considering what kind of cars to buy, the dominant categories are likely to be at the level

of SUVs, sedans and wagons. In general, context effects may drive dominant categories

to be either the subordinate or superordinate categories relative to the basic categories.

Finally, the level of expertise may also influence the dominant categories. For example, a

car expert may immediately recognize the car being a Lincoln Town Car; a person

familiar with chairs (such as a carpenter) may immediately recognize the chair being a

cherry wood rocker. More learning experiences always drag down the level of dominant

categories, and we call this phenomenon the expert effect (or simply the learning effect).

In summary, the traditional basic-level effect, context effect, and learning effects are all

about category domination under different conditions. In this chapter, we develop a

model of category domination based on the learning system introduced in the previous

chapter, and analyze the three category learning effects using a concrete task.

40

4.2 Related Work
Category learning models have been traditionally focused on the basic-level effect, and

there has been lack of computationally explicit models to explain how related category

learning phenomena emerge from learning in a specific functional context, where a

cognitive agent has to interact with the world to achieve some goals.

We have described our learning system in detail in the previous chapter. Our learning

system consists of two components: a category learning system for hierarchical

categorization, and a reinforcement learning system with sparse coarse coding value

function approximation. In the following sections, we will briefly review works in human

cognitive modeling that are related to our approach.

4.2.1 Hierarchical Category Learning
There is a long history of hierarchical category models that are inspired by human

category learning. Quillian (1967) proposed the semantic network model, which can

represent isa and par-of relationships among objects in a hierarchical structure. However,

the semantic network model does not include a learning mechanism to build the structure.

COBWEB (Fisher, 1987) is an algorithm that can incrementally form a hierarchical

organization of categories. A previous version of the ICARUS cognitive architecture used

a COBWEB-based system, called LABYRINTH for its declarative learning and memory

(Langley et al., 1991). Ambros-Ingerson et al. (1990) described a neurologically inspired

hierarchical clustering algorithm, and Granger (2006) has demonstrated the plausibility of

using such hierarchical clustering algorithm as a principled computational instruction for

human cognition.

4.2.2 Reinforcement Learning
Hierarchical category learning provides the necessary representational basis, however the

representation itself is insufficient for functional category learning because it has no

direct connection to how the learned categories can be used. Another learning process is

required to connect the category representations with the agent’s intrinsic functional

meanings. We consider reinforcement learning (RL) (Sutton & Barto 1998) as a

41

candidate mechanism to establish such connections via incremental trial-and-error

learning with feedback. The formulation of reinforcement learning as trial-and-error

learning traces back to behaviorist psychology (Thorndike, 1991). The general actor-

critic models of RL have been mapped to the basal ganglia structure in the brain (Barto,

1995). RL has also been considered as a model for human skill learning (Fu & Anderson,

2006). Cognitive architectures such as Soar (Laird, 2008) and ACT-R (Anderson et al.,

2004) both have a reinforcement learning mechanism. However, there has not been a

computational model integrating category learning and RL in these cognitive

architectures.

4.3 Evaluation
In this section, we will demonstrate how our learning system can qualitatively model

several human category learning phenomenon and provides computational insights. In

order to conveniently verify the qualitative match with human category learning behavior,

we use the hunting task with the same data as shown in Figure 1.3 in Chapter 1. Different

from Chapter 3, the task used here involves only pairs of prey and weapon objects,

without the complications from obstacles and effects of shooting distance. The learning

system used here is the same as in Chapter 3. We assume the hierarchies are fixed, and

evaluate our learning system from two perspectives: how category learning affects RL

and how RL affects category learning.

4.3.1 Category Learning Speeds RL
Hierarchical category learning can speed RL is one of the conclusions from Chapter 3,

and we want to reconfirm it with the new task. Figure 4.1 compares the learning

performance of using the hierarchical categorizations with a baseline that uses the leaf

level nodes without generalization. This is the same comparison in Figure 3.9 in the

previous chapter, although the task and data set are different. In this data set, there are

two instances under each of the leaf nodes shown in Figure 1.3. For example, there are

two instances of Goat that look different but have the same functional properties.

Therefore, the size of the input space is: 16 (prey) times 12 (tools) equals 192. We

evaluate the performance improvement during the course of learning. The agent is trained

42

with uniformly distributed random samples from the input space with replacement. The

learning rate is set at 0.1. For a given amount of training episodes, we evaluate the rates

of correct decisions it makes if it follows the policy derived from the current value

function. The final results are average from 300 independent trials. The result shows that

the model successfully integrates hierarchical categorization to speed RL.

4.3.2 RL Shapes Category Learning
The main purpose of this chapter is to show how reinforcement learning influences

category learning and result in behaviors that qualitatively match with human category

learning. Therefore, we first define a category domination model to extract functionally

salient categories from the learning system. Then we map the behavior of our learning

system to several human category learning phenomenon based on the dynamics of these

salient categories.

Figure 4.1: Comparison of learning with and without hierarchical categorization.

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Episodes

C
or

re
ct

 D
ec

is
io

n
R

at
e

Hierarchical Categorization
No Categorization

Training Episodes

43

4.3.2.1 Category Domination Model

The detail of sparse coarse coding in our RL system has been described in Chapter 3.

Figure 4.2 shows the same lattice structure as in Figure 3.4. The black dots in each grid

spatially represent the specific input: hunting a deer with a crossbow. The gray areas

represent the generalization effects when the more general rules fire. In this case, the

agent receives a reward of +1 and each of the 16 rules participates in prediction and

updating. Since a general rule (a larger cell) receives more training samples than a more

specific rule (a smaller cell), it converges to the target value faster. On the other hand, the

smaller cell will tend to compensate for the value in the context of the larger cell. In

general, for a given input, there are multiple rules firing simultaneously, each coming

from a different grid. We define the dominant rule as the rule with the highest absolute

Figure 4.2: Coarse coding lattice and dominant categories.

The dominant rule and dominant categories are highlighted.

D
ee

r
G

oa
t

W
at

er
fo

w
l

Ra
bb

it
W

oo
dc

hu
ck

Fi
nc

h
W

hi
te

fis
h

Bl
ac

kf
is

h

La
rg

e
Sm

al
l

Four-leg

Bi
rd Fi
shPrey

Weapon

Projectile

Pole Arm

Bow
Slingshot
Blowgun

Spear
Trident

Longbow

Crossbow

G(0,0) G(1,0) G(2,0) G(3,0)

G(0,1) G(1,1) G(2,1) G(3,1)

G(0,2) G(1,2) G(2,2) G(3,2)

G(0,3) G(1,3) G(2,3) G(3,3)

Activated rule

Input state
Category Activated category

Category Dominant categoryDominant rule

44

value, or equivalently the winning cell with largest magnitude in its weight:

𝑊𝑖𝑛𝑛𝑖𝑛𝑔𝐶𝑒𝑙𝑙 = 𝐴𝑟𝑔𝑀𝑎𝑥𝐶{‖𝑤(𝐶)‖}

Correspondingly, we define the dominant categories as the categories associated with the

dominant rule. In the hunting task for a specific input, there are two dominant categories,

one for prey and one for weapon. As highlighted in Figure 4.2, assume the rule testing

Large (Four-leg animal) and Bow, the upper-left cell in grid G(2,2) is the dominant rule. It

dominates all the rules that involve subtypes of Large Four-leg animal (Deer and Goat)

or subtypes of Bow (Crossbow and Longbow) because those rules receive less training

samples. It also dominates rules that involve more general categories, such as Projectile

weapon and Four-leg Animal, because there are inconsistent updates for those rules that

cancel out the updates. Consequently, the categories for Large Four-leg animal and Bow

are the dominant categories in these particular situations. The general principle is that a

rule simultaneously maximizing generality and consistency will dominate other rules.

Intuitively, the associated dominant categories are more functionally salient than their

superordinate and subordinate categories, since they are the sources contributing to most

of the decisions made by the voting mechanism.

4.3.2.2 Basic-level Effect

We use the overall domination rates across all possible inputs as the measure of the

context-free functional saliency of a category. We define basic level categories as those

with the highest domination rates along a path. Figure 4.3a and 4.3b shows the

domination rates of all the categories for prey and weapons after 1,000 training episodes.

Since the ordering of inputs causes variations in the values/weights of the rules, we

measure the mean domination rates across 300 independent learning trials, and the

estimated standard errors for the means (not shown in the figure) are all less than 0.01.

For example, the category for Small Four-leg animal dominates its superordinate and

subordinate categories (including Prey, Four-leg animal, Rabbit and Woodchuck) in

about 68% of all possible inputs. The category of Rabbit rarely dominates because its

superordinate category perfectly captures the decision boundaries.

45

Figure 4.3: Illustration of basic-level effect.

(a) Domination rates of prey categories.(b) Domination rates of weapon categories. (c) Basic level
categories are highlighted in shaded boxes.

(a)

(b)

(c)

Do
m

in
at

io
n

Ra
te

Do
m

in
at

io
n

Ra
te

46

Figure 4.3c highlights the basic-level categories in the hierarchies for prey and weapons.

It exhibits qualitatively the same pattern as human category learning - basic categories

appear in the middle of an abstraction hierarchy. As explained earlier, a rule that

maximizes frequency and consistency will dominate, and the corresponding categories

are dominant categories. More abstract categories are experienced with higher frequency,

while more specific categories have higher consistency. Therefore, the maximum will

generally appear in the middle. Look at some specific examples in Figure 4.3c, although

Bird has higher frequency than its subordinate categories, it has low consistency. Fish has

higher frequency than its subordinate categories with the same level of consistency, and

therefore is the dominant category.

4.3.2.3 Context Effect

The basic-level effect describes the property of overall domination rates across the

distribution of samples. For a specific instance (context), non-basic-level categories (the

ones not having the highest overall domination rates) may dominate. Figure 4.4 shows

two examples of context effect, where the shaded boxes represent basic-level categories,

the solid line boxes represent the dominant categories of weapon, and the dotted line

boxes represent the prey categories serving as the context. Figure 4.4a shows that the sub-

basic-level category Spear and Trident dominates the basic level category Pole Arm when

the prey (serving as the context) being hunted is Goat or Deer. Figure 4.4b shows that the

superordinate category Projectile (weapon) dominates the three basic-level categories

when the context is hunting Fish.

47

Figure 4.4: Illustration of context effect.
(a) Dominant categories are more specific than the basic level category. (b) Dominant category is
more general than the basic level categories.

(a)

(b)

48

4.3.2.4 Expert Effect

The expert effect concerns the dynamic changes of dominant categories during learning.

Figure 4.5 shows the dynamics of domination rates during learning 1,000 samples. Figure

4.5a shows the dynamics of the domination rates for the 14 prey categories. Figure 4.5b

and 4,5d are the same as Figure 4.3a, showing the domination rates after 1,000 training.

Therefore, the heights of the bars in Figure 4.5b match with the heights of corresponding

curves’ end point in Figure 4.5a. Similarly, Figure 4.5c and Figure 4.5d shows the

domination dynamics for the 10 weapon categories. The trend is that the more general

categories initially have higher domination rates because they cover more inputs and are

trained with higher frequencies. More specific categories that have functional properties

distinctive from other members under the same super-ordinate category have increasing

domination rates as more and more experience is gained (such as the two subtypes of

Figure 4.5: Dynamics of domination rates.

(a) and (c) show the dynamics of domination rates during learning. (b) and (d) show the domination
rates after 1,000 training samples. (a) and (b) are for prey categories. (c) and (d) are for weapon
categories.

Do
m

in
at

io
n

Ra
te

Training Samples

Training Samples

Do
m

in
at

io
n

Ra
te

(a) (b)

(c) (d)

49

birds). Meanwhile, their superordinate categories become less and less dominant (such as

the general category Prey, Four-leg animal, and Bird) because the inconsistency tends to

cancel out multiple updates. On the other hand, a perceptual category that does not have

any functional differences from other members under the same superordinate category

does not arise as a functionally salient category (such as Rabbit, Woodchuck and the two

subtypes of Fish).

After more training samples, some of those sub-basic-level categories at 1,000 training

episodes may gain more domination rates. In Figure 4.6, dashed line boxes represent

basic level categories after receiving 1,000 training samples, and solid line boxes

represent basic level categories after receiving 10,000 training samples. The figure shows

that when the agent receives more training samples and becomes an expert hunter, the

basic level categories for Large (Four-leg Animal), Bow and Pole Arm are further

“pushed” down to more specific levels.

Figure 4.6: Illustration of expert effect.

Basic level categories are pushed down after more training.

50

4.4 Discussion
Traditional cognitive theories of category learning include two competing views: the

prototype view (Rosch, 1973) and the exemplar view (Medin & Schaffer, 1978). The

prototype view is based on the principle of cognitive economy (Rosch, 1978) and is

supported by the existence of abstract category representation, such as linguistic lexicons

and visual imagery, such as the word dog, cat and visual depictions of prototypical dogs

and cats. However, there has been a shift of favor from the prototype view towards the

exemplar view because exemplar models provide superior empirical results in a variety of

experimental settings (Nosofsky & Zaki, 2002). A practical concern about the prototype

view is that a prototype will fail to retain certain information that might be important for

future decision making. More recent models reconcile the two extreme forms and rely on

representations at multiple abstraction levels (Vanpaemel & Storm, 2008; Love et al.,

2004).

Our model is consistent with both the prototype and exemplar views. In addition, it

explicitly models the learning process, and can deal with the more challenging situations

where the input states involve multiple objects (such as prey and weapons). In terms of

decision making, our model is more like exemplar based models, where the agent

acquires information about specific inputs, and then makes generalizations to novel

inputs based on perceptual similarity. In terms of category abstraction, our model agrees

with prototype models. In particular, it predicts a similar trend as in the phenomenon of

basic-level category (Rosch, 1978) where the most prominent categories reside in the

middle of a categorization hierarchy.

Furthermore, our model predicts that category domination is context specific. For

example, in Figure 4.4a, Pole Arm is the dominant category if the specific context is

hunting Fish (all subtypes of Pole Arms are good for fishing). In a different context,

however, Spear and Trident will dominate if the specific context is hunting a Deer. Our

model explicitly supports the hypothesis that the “context-free” basic level categories, as

described by Rosch, are the overall effects acquired across multiple functional contexts.

Since the everyday activities related to common objects are largely the same across

individuals, the context-free basic-level categories appear to be consistent across different

51

cultures, as manifested by the consistency in common vocabularies from different natural

language systems.

Our model does not involve a dedicated process of selecting functionally meaningful

categories. Selection is achieved as an emerging by-product of the RL process. Our

model cannot explain certain types of category learning that rely on deliberate reasoning

or higher degrees of abstractions such as analogy. Such deliberate categorization is better

described by rule based category learning models (Rouder & Ratcliff, 2006), or

analogical reasoning processes such as in the structure-mapping engine (SME)

(Falkenhainer et al., 1989).

4.5 Summary
In this chapter, we present the first computational model that integrates hierarchical

category learning and RL in a general cognitive architecture. The unique feature of this

model is that it simultaneously captures how category learning affects behavior

adaptation, and how behavior adaptation influences category learning in a functional

context. Furthermore, our model supports the more challenging tasks involving multiple

objects, which is common in object-based environment. We have shown that our learning

system is able to adaptively discover functionally meaningful categories even it is

constrained by fixed innate perceptual features for categorization. The behavior of the

learning system qualitatively matches several related prominent human category learning

phenomena: the basic level effect, the context effect and the expert effect. Although the

Soar-RL model has been successfully applied to match animal behavior data (Wang &

Laird, 2007), further empirical experiments are required to confirm its validity in our

category learning model.

52

Chapter 5

Joint Optimization of
Functional Categories and Value Function

In Chapter 3 and Chapter 4, we presented a learning algorithm that consists of two

separate components: a hierarchical clustering component and a sparse coarse coding

based value function approximation component. A major limitation of the algorithm is

that the learned hierarchical categorization structure is constrained by a set of preselected

features to reflect the intended categorization criteria. For example, in Chapter 3, prey are

categorized by two criteria. One criterion is based on physical properties including two

features: size and health. The other is based on sensing properties based on two features:

bush-sensitivity and rock-sensitivity. In Chapter 4, although functionally salient

categories are adaptively selected in the process of learning the value function, the

hierarchical structure is still constrained by the fixed innate perceptual features, which

limits the flexibility of the learning system.

In this chapter, we present a new algorithm based on a probabilistic model with latent

class variables. Consistent with our general approach, the algorithm combines piecewise

approximation with hierarchical categorization. Different from the previous two-step

algorithm, in this new algorithm, the hierarchical functional categories and utility value

approximation are jointly optimized.

In the following sections, we first revisit the background. Then we introduce the latent

class model view for the problem of value function approximation in object-based

environments, where the latent class variables are unobserved functional categories of the

objects. Then we provide a hierarchical approximation learning algorithm with empirical

53

evaluations. Finally, we discuss alternative approaches at a more abstract level and draw

conclusions.

5.1 Background
The general problem we are considering is to learn a function whose inputs consist of

objects, and the output is either a numeric or a symbolic value. Since we make no

assumption about the underlying form of the function, the most obvious approach is to

partition the input space and approximate the values locally. The local approximator for

each piece can be in a very simple form, such as a linear function or even a constant.

Accordingly the approximator is called piecewise linear or piecewise constant. The

general piecewise approximation approach has been widely applied in engineering

problems where the underlying function’s form is complex. For example, finite element

methods (Johnson, 1987), use such a technique for finding approximate solutions of

partial differential equations.

In our situation, the inputs to the function consist of objects which may have many

perceptual features, while only a subset of them are relevant to the output value. For such

problems in high dimensional space, the critical decision is about how to effectively

partition the input space to achieve efficient learning, especially when training data is

scarce during the initial learning stage. Furthermore, our hypothesis is that when certain

regularities (which will be characterized and evaluated later) exist, hierarchically

partitioning objects can achieve both sample efficiency, and supports computational

efficiency in an incremental learning algorithm. As demonstrated in Chapter 3, the most

effective way is to partition objects into functionally distinctive categories based on their

intrinsic functional properties. However, we cannot generally assume the functional

properties are directly observable to the agent as a set of functional features as in Chapter

3. This presents a challenge to creating efficient learning algorithms because effective

partitioning of the input space needs to be based on unobservable functional properties.

Therefore, a different approach has to be taken. Instead of doing category learning and

value function learning separately, the solution lies in combining category formation and

value function approximation into a single structured optimization problem, assuming the

perceptual features and the utility values are always observable.

54

In the following section, we first describe a structured probabilistic model of the problem,

which attempts to capture unobservable functional properties via hidden discrete

variables. We then formulate the value function approximation problem as an

optimization problem based on the maximum likelihood framework. Then a hierarchical

approximation approach is presented to achieve efficient incremental learning by utilizing

a combinatorial hierarchical structure similar to the approach described in Chapter 3.

Finally, a specific incremental learning implementation is presented and empirically

evaluated with systematically generated synthetic data. The data probes varying degrees

of object diversity as well as regularities that are expected to present in object-based

natural environments.

5.2 A Probabilistic Latent Class Model
In object-based environments, objects are independent entities with their own perceptual

features and intrinsic functional properties. Multiple objects can interact with each other

to produce an outcome, which will be associated with a utility value (positive or

negative). The goal is to learn the mapping from the objects’ perceptual features to the

outcome utility value. A natural way to model this function is to represent each type of

object as a finite number of functionally distinctive categories. For example, the number

of functionally distinctive categories of prey can be very large, but there are a fixed

number of categories, beyond which the functional distinctions are too small to be

relevant for decision making. For instance, a tiger and an elephant are very different prey,

while the distinction between an African elephant and an Asian elephant, or the

distinction between an Amur tiger and a Bengal tiger is negligible.

In Figure 5.1, the value function that maps prey and weapon to an outcome value is

represented by a probabilistic graphic model with simple dependency structures. Hidden

variables are represented as empty circles, and observable variables as filled circles. The

distinctive functional categories for each type of object are represented by the discrete

hidden class variables for weapon (c1) and prey (c2). Perceptual features are dependent on

the class variable of the corresponding object. The output value depends on the

combination of prey class and weapon class.

55

The three components of the probabilistic model are formally represented in equations

(5.1) to (5.3). ci represents the category for object i, and c represents the set of categories

for all objects. We use x to denote the perceptual features of the objects, which are the

input variables to the value function. xi represents the perceptual features associated with

object i. Finally, we use y to denote the output variable. The equations represent the

probabilistic density function (PDF) of the distributions for these random variables.

Equation (5.1) represents the background distribution of the categories for each object.

Equation (5.2) represents the distribution of perceptual features for each object

conditioned on the category. Equations (5.3) represents the distribution of output value

conditioned on combinations of object categories. At this point, there is no assumption

about specific functional forms of the PDFs.

Figure 5.1: Latent class model of the environment.

Filled nodes are observed quantities, and empty nodes are unobserved hidden variables.

Feature 1 Feature n

………..

Weapon
Category

Output

Weapon Category Prior

Feature 1 Feature n

………..

Prey
Category

Prey Category Prior

x1 x2

c1
c2

y

{ }

[]2

() () | [1,]

(|) { (|) | [1,]}

(|) { (| , ...,)}

i

i i

1 m

P P c i m

P P c i m

P y P y c c c

= ∈

= ∈

=

c

x c x

c

(5.1)

(5.2)

(5.3)

56

5.2.1 Prediction
Equations (5.4) to (5.6) describe how the model predicts the output value when input

perceptual features are provided. The category variable, ci, for each object is a discrete

variable with finite values as discussed earlier. We further assume that the membership of

a category is exclusive, i.e., an object must belong to one and only one of the finite

discrete classes. According to the model, the categories are first determined based on the

posterior probability of each category given perceptual features, as in equations (5.4) and

(5.5). Once the categories are determined, the output can be predicted based on the

conditional distribution associated with the combination of categories as in equation (5.3).

The entire prediction process is represented by equation (5.6), which is a function of the

three component distributions in equations (5.1) to (5.3).

5.2.2 Maximum Likelihood Optimization Criterion
The maximum likelihood principle states that the choice of parameters (Θ), of a

probabilistic model that gives higher likelihood to the training data, is more likely to give

higher prediction accuracy (assuming uniform priors). In this learning problem, since the

key is to find the most effective partition of the input space via the hidden class variables,

we map the parameter space to the sample partition/categorization space of the training

data {x, y}. The partition space is defined by all the possible partition/categorization rules.

A categorization rule is a function mapping each instance to corresponding categories. As

represented by equation (5.7), with category assignment determined, the parameters of

the three component distributions, as represented by equations (5.1) to (5.3), can be

estimated, again by the maximum likelihood principle. In this problem of predicting y,

1

(|) () (,) () (|) () (|)

(|) () (|)

(|) (| arg max (|)) (| arg max () (|))

M

i i i
i

c c

P c x P x P c x P c P x c P c P x c

P c x P c P x c

P y x P y c P c x P y c P c P x c

=

= = =

∝

= = = =

∏ (5.4)

(5.5)

(5.6)

57

the objective is to maximize the likelihood of y conditioned on x for all training data.

Under the assumption of independent training samples, the likelihood function of Θ can

be obtained by multiplying the predicted probabilities of each output value (yn) given the

input features (xn), as represented by equation (5.8).

We next derive the likelihood function in equation (5.8) as a compact form of the

probabilistic density functions (PDFs) of the three component distributions in equations

(5.1) to (5.3). Getting the compact form is critical for implementing the incremental

learning algorithm later, because it makes it possible to directly evaluate the likelihood

function instead of examining all the training samples as in equation (5.8).

In equation (5.9), we rewrite the logarithm of the likelihood function as the sum of the

log likelihood over all possible values of y and predicted categories c weighted by their

joint probabilities. For simplicity of later derivations without loss of generality, equation

(5.9) assumes y is a discrete variable. We use the superscript yi to represent the ith value

of y, and cj to represent the jth value of category c. If otherwise y is continuous, the sum

over i in equation (5.9) will be replaced by an integration operator. Also for simplicity,

we use c to denote the combination of all the objects’ classes, and use ĉ to denote the

predicted classes which consists of classes with the highest posterior probabilities

computed by equation (5.6).

{ }

1

:{ } (), (|), (|)

(| ,) (| ,)

n n

N

n n
n

f , y P P y P

L y P y
=

Θ = → ⇒

Θ = Θ∏

x c c c x c

x x

(5.7)

(5.8)

1 1

1

lg (| ,) lg (| ,) lg (| arg max (| ,))

1 1lim lg (| ,) lim lg (| arg max (| ,))

(, |) lg (| ,)

(,) lg (|)

N N

n n n n
cn n

N

n nN N cn

i j i j

i j

i j i j

i j

L x y P y x P y c P c x

L x y P y c P c x
N N

P y y c c P y y c c

P y y c c P y y c c

∧

= =

∧

→∞ →∞
=

∧ ∧

∧ ∧

Θ = Θ = = Θ

Θ = = Θ

= = = Θ = = Θ

= = = = =

∑ ∑

∑

∑∑

∑∑

(5.9)

58

We further derive the form of the first component in the last line of equation (5.9), which

is the joint probability of y and predicted category ĉ. In equation (5.10), we use the

notation cl -> cj to represent the event that an instance comes from the lth category, but is

predicted as the jth category. This quantity, although not in a closed form, can be

evaluated efficiently. For simple distribution forms, such as in a naïve Bayes model, this

quantity can be computed exactly by enumerating all possible values of x. For arbitrary

distribution forms, a Monte Carlo approach can always be used to do the estimations with

bounded computational cost. Here, we also assume that the estimated probability density

functions (PDFs) are good approximations of the true distributions.

We combine equation (5.10) with (5.9), to get the final compact form in equation (5.11).

We rewrite both P(y=yi|c=cl) and P(y=yi|ĉ=cj) as P(yi| cl) and P(yi| cj), since we assume

the estimated probabilities and the true probabilities are the same.

P(y = yi ,c
∧

= c j) = P(y = yi ,c
∧

= c j , x = xk ,c = cl)
l
∑

k
∑

= P(y = yi | c
∧

= c j , x = xk ,c = cl)
l
∑

k
∑

= P(c = cl)P(y = yi | c = cl)P(x = xk | c = cl)P(argmax
c

P(c | xk) = c j)
l
∑

k
∑

= P(y = yi | c = cl)P(c = cl)
l
∑ P(x = xk | c = cl)P(argmax

c
P(c | xk) = c j)

k
∑

= P(y = yi | c = cl)P(c = cl ,c
∧

= c j)
l
∑

= P(y = yi | c = cl)P(cl → c j)
l
∑

(5.10)

 () represents the probability that an instance from is predicted as l j l jwhere P c c c c→

59

5.2.3 Intuition of the Optimization Criterion
Equation (5.11) shows that maximizing the likelihood function is equivalent to

minimizing the sum of two components. The first is the total entropy of the output

value’s conditional PDF weighted by the prior probability of corresponding discrete

classes. The second is the estimated total “confusion rates”, P(cl -> cj), between pairs of

the discrete classes weighted by the Kullback-Leibler divergence (KL divergence)

(Kullback & Leibler, 1951) between the two corresponding PDFs. The first component

about entropy is the same as in the standard Decision Tree (Quinlan, 1986) splitting

criterion. The intuition is that a good functional classification should always separate

instances with different output values. The second component about confusion rate

weighted by KL divergence is new. This is because in contrast to a Decision Tree’s

()

1lim lg (| ,) (|) () lg (|)

() (|) lg (|)

() (|) lg (|) (|) lg (|) (|) lg (|)

(|)() (|) lg
(|

j

j

j

j

i l l i j

N i j l

l i l i j

l j i

l i l i j i l i l i l i l

l j i

i j
l i l

i
l j

L x y P y y c c P c c P y y c c
N

P c c P y c P y c

P c c P y c P y c P y c P y c P y c P y c

P y cP c c P y c
P y

∧

→∞
Θ = = = → = =

= →

= → − +

= →

∑∑∑

∑∑ ∑

∑∑ ∑

∑∑ (|) lg (|)
)

(|)() (|) lg (|) () (|) lg
(|)

() ((|)) () ((|) (|))

j j

j

i l i l
l

i

i l
l i l i l l i l

i j
l j i l j i

l l l l j
KL

l l j

P y c P y c
c

P y cP c c P y c P y c P c c P y c
P y c

P c E P y c P c c D P y c P y c

 
+ 

 

= → − →

= − − →

∑

∑∑ ∑ ∑∑ ∑

∑ ∑∑ 

(5.11)

,

,

() represents the entropy of distribution
(||) represents the Kullback-Leibler divergence from ditribution to

for Gaussian distribution with mean and standard deviation :

(

KL

where
E P P
D P Q P Q

N

E N

µ σ

µ σ

µ σ

1 1 2 2

2

2 2 2
1 2 1 2

, , 2 12
2

ln(2))
2

()(||) ln(/)
2KL

e

D N Nµ σ µ σ

π σ

µ µ σ σ σ σ
σ

=

− + −
= +

60

deterministic splitting, our model uses probabilistic classifications as shown in equations

(5.4) to (5.6). If the two classes has high confusion rates, there will be more errors in the

predictions of the output value – especially when the confused pair has very different

output values. This is not an assumption of a standard Decision Tree, which makes

deterministic splits and assumes zero confusion rates.

To gain further understanding of the intuition behind the optimization criteria represented

by equation (5.11), we compare an algorithm using the optimization criterion in equation

(5.11) to two baselines. One baseline is a simple Naïve Bayes model, and the other is a

Decision Tree. We use toy data with binary input and output to evaluate the performance.

The simple Naïve Bayes model directly classifies instances based on the output value

(that is why it is called simple in addition to being Naïve Bayes), and therefore minimizes

the first component about the output variable’s entropy to be zero (all the samples in the

same class have the same output value). The Decision Tree is restricted to

deterministically split each perceptual feature (therefore always guaranteeing zero

estimated confusion rates), and among all possible splits, the one that minimizes the first

entropy component is chosen. From the perspective of equation (5.11), a standard

Decision Tree is a special case assuming a single-attribute sparse model without noise,

which could be a poor choice in high dimensional and noisy environments. There are

extensions of decision tree algorithms to allow for fuzzier splits (Yuan & Shaw, 1995)

and multivariate splits (Brodley & Utgoff, 1995). We will not consider those specific

algorithms here, because they are designed to learn a single hierarchical classification for

the entire state feature vector. In order to learn the object-based compositional structure

as shown in Figure 5.1, the algorithm must be able to simultaneously construct multiple

category hierarchies, one for each object. Therefore, we design a new incremental

learning algorithm, and the advantages of doing multivariate and fuzzy splitting are

naturally included in our optimization criterion in equation (5.11).

We compare the algorithms using three different data sets with binary input features and

output values. The simple Naïve Bayes learner classifies the instances into two classes

solely based on the output value. The Decision Tree splits the data into two classes using

on the standard entropy based splitting criteria, and recursively splits until either all the

61

input features are the same (so that no further split is possible) or all the output values are

the same within the partitions (so that there is no need to split). Our algorithm recursively

groups the instances into two classes as in the Decision Tree, and it assumes independent

feature distribution as in a naïve Bayes model. The performance is evaluated in terms of

sample efficiency – improvement in prediction accuracy as the number of training

instances grow. Prediction accuracy is evaluated by using 100 independent random

samples to estimate the prediction accuracy at fixed intervals, until reaching 200 training

samples. The final results are the average of 100 such independent runs. In this section,

we only focus on the effect of the optimization criterion and omit the detailed procedure

of our learning algorithm, which will be discussed in the next section.

As shown in Figure 5.2, the first data set is drawn from an XOR function which is

nonlinearly separable. The naïve Bayes classifier fails to learn the XOR function because

it builds two naïve Bayes models, one for class a, and one for class b. The two models

have the same aggregated feature distribution under the independent features assumption.

Therefore, the naïve Bayes classifier is unable to discriminate the two classes. Initially,

the naive Bayes classifier is able to make better than random predictions because it can

Figure 5.2: Comparison of different classifiers using the XOR function.

0 0 a

b0 1

b1 0

1 1 a

2 binary features output labels

Training Samples

Pr
ed

ict
io

n
Ac

cu
ra

cy Hierarchical Discriminative Clustering

Decision Tree Classifier

Naïve Bayes Classifier

XOR function

62

correctly predict the output for some instances when the learner has only accumulated a

few training samples. For example, when there is only one training instance, it can give

correct prediction for ¼ of the situations (there are totally 4 unique samples). After more

instances are accumulated for each class model, the performance degenerates to

randomness. Both our algorithm and decision tree classifier avoid such situations by

always keep highly discriminative partitions.

The second data set is drawn from a linearly separable function with multiple noisy

binary features as shown in Figure 5.3. There are two classes: class a consists of 10 noisy

0s, and class b consists of 10 noisy 1s. For linear separable classes, naïve Bayes models

can perfectly construct the decision boundary to discriminate the two classes from each

other. For the decision tree classifier, however, its iterative feature splitting strategy

becomes inefficient when the decision boundary lies in a hyper-plane spanning multiple

feature dimensions. Our algorithm is not affected because it is not restricted to univariate

boundaries.

Figure 5.3: Comparison of different classifiers using a noisy linearly separable function.

P(0)=0.8
P(1)=0.2

a….

b

10 independent random
binary features

P(0)=0.8
P(1)=0.2

P(0)=0.2
P(1)=0.8

P(0)=0.2
P(1)=0.8

….

Training Samples

Pr
ed

ict
io

n
Ac

cu
ra

cy

(10 noisy 0s)

Noisy linearly separable function

output labels

(10 noisy 1s)

Hierarchical Discriminative Clustering

Decision Tree Classifier

Naïve Bayes Classifier

63

Figure 5.4 shows the comparison on the third data set, which is drawn from a noisy XOR

function that combines the characteristics from the previous two data sets. Our algorithm

outperform both the decision tree classifier and the naïve Bayes classifier.

The results are summarized in Table 5.1. The simple Naïve Bayes classifier is sensitive to

nonlinearly separable classes, because it simply relies on the output labels without

actively searching for discriminative boundaries. Both the decision tree classifier and our

algorithm are robust against such situations by employing active searching in the

classification space. However, the decision tree classifier is sensitive to noisy

multivariate boundaries that span across multiple dimensions. Our algorithm consistently

performs well in all situations.

Figure 5.4: Comparison of different classifiers using a noisy XOR function.

Table 5.1: Comparison of the three classifiers.

Classifiers Nonlinear separable Multivariate noisy boundary

Simple Naïve Bayes sensitive robust

Decision Tree robust sensitive

Our Algorithm robust robust

Training Samples

Pr
ed

ict
io

n
Ac

cu
ra

cy 10 noisy 0s a

b

20 independent random
binary features

10 noisy 0s

10 noisy 0s 10 noisy 1s

10 noisy 1s 10 noisy 0s

10 noisy 1s 10 noisy 1s a

b

Noisy XOR Function

Hierarchical Discriminative Clustering

Decision Tree Classifier

Naïve Bayes Classifier

output labels

64

5.3 An Hierarchical Approximation Algorithm
At the end of the previous section, we demonstrated the advantage of using our

optimization criteria for classification: robust against nonlinear and multivariate noisy

boundaries. To deal with the challenge of object diversity, the learning algorithm must

scale with large number of classes. Consistent with our general approach of using

hierarchical categorization, in this section, we develop an incremental learning algorithm

with hierarchical approximation.

5.3.1 Learning the Hierarchies
As shown in equation (5.7), the parameter space Θ corresponds to the sample partition

space. Exhaustively enumerating all possible sample partitions is NP-hard. The number

of possible partitioning has the form of the Sterling number of the second kind (Sharp,

1968), which grows exponentially with the number of samples.

In order to find the optimal partition, not only tractably but also incrementally, we apply

a divide-and-conquer strategy to hierarchically partition the samples. At each level of the

hierarchy, not every possible partition is enumerated but only the mostly likely ones. An

incremental approximation algorithm is possible by resorting to restricted local greedy

search with a bounded computational cost. The structure of the hierarchical

approximation algorithm is shown in Figure 5.5.

Like all greedy algorithms, it assumes a certain degree of continuity in the model

parameter (Θ) space regarding to the objective function, which is the conditional

likelihood function in equation (5.11). For example, if the current sample partition is

optimal with regard to the training samples received so far, after receiving the next

training instance, the new optimal structure should be within a vicinity of the current

sample partition. Good partitions can be efficiently explored by using a greedy local

search that takes advantage of the hierarchical structure, which is similar to the algorithm

in shown Figure 3.3. Like all greedy algorithms, it may result in local optimal

(suboptimal) solutions. Therefore, it is important to empirically evaluate the algorithm.

Next, we provide a particular implementation of the algorithm and empirically evaluate

the algorithm’s performance with systematically generated synthetic data.

65

Figure 5.6 shows how the incremental algorithm updates the structure with a new training

instance, where the function involves only a single category hierarchy. For multiple

hierarchies, the algorithm descends the hierarchies simultaneously and the output

distributions are associated with combinations of nodes in the hierarchy. The same

general procedure can be used for more than two hierarchies.

Figure 5.5: Hierarchical representation of the value function.
The model is expected to have the underlying structure as shown in Figure 5.1. The output is
conditioned on combinations of class pairs.

Weapon Prey

(|)P y c

2 2(), (|)P c P x c1 1(), (|)P c P x c

66

Figure 5.6: Demonstration of the incremental learning algorithm.
(a) shows the current functional category hierarchy. (b)-(e) illustrate the top-down incremental
restructuring procedure. The situation is for one hierarchy. Generalizing to multiple hierarchies is
straightforward. Dashed boxes represent the scope of local search for the optimal partition.

High-resolution
representation

Coarse-resolution
representation

(a)

87654321

2-level local restructuring.

New input { , }yx

87532641

Partition 1

{ , }yx

Partition 2

Local combinatorial search in the sample partition space.
Re-compute by equation (5.11).
Choose the one maximizing the likelihood function.

(), (|), (|)P c P c P y cx

New input

87524 361

Create temporary nodes at intermediate levels.

{ , }yx

Continue optimizing for the next level.

3 4 5 6 7 8 9 101 2

{ , }yx

(b) (c)

(d) (e)

New input
New input

67

In Figure 5.6a, the current optimal partition is represented as a hierarchy, which has

coarser (more aggregated) resolutions at the top and finer resolutions at the bottom. The

algorithm can be configured to use more than two partitions at each level, although in

Figure 5.6 it always uses two partitions. It can also be configured to use different number

of levels for its local searching scope as represented by the dashed boxes. In Figure 5.6c,

in order to find the optimal partitions, the algorithm must re-estimate the PDFs of the

three component distributions represented by equations (5.1) to (5.3). The re-estimation is

straightforward for simple forms such as independent feature multivariate Gaussian

distribution and the Naïve Bayes model. The algorithm descends the hierarchy along the

path that incorporates the new training instance. Since the computations are restricted

locally and therefore bounded by some constant, the complexity of integrating a new

instance is logarithm with regard to the total number of training instances. To control the

optimality/computation tradeoff, allowing more levels of the hierarchy to be restructured

in one step can increase optimality with more computational cost. Using heuristics in

local search can potentially improve the tradeoff ratio (less computational cost without

much sacrificing of optimality).

In our implementation, we choose to use simple distribution forms for the three

component distributions. More specifically, we use categorical distributions for the class

prior distribution represented by equation (5.1), independent variable distribution (as in

Naïve Bayes models) for perceptual features represented by equation (5.2), and Gaussian

distribution for the output variable represented by equation (5.3). Given these distribution

forms, the compact form of the likelihood function as shown in equation (5.11) can be

directly evaluated and the update as required in Figure 5.6c can be efficiently performed.

Other forms of distribution are possible as long as the above computations can be done

efficiently. Exploring those options is beyond the scope of this thesis.

5.3.2 Prediction
As described in equations (5.4) to (5.6), each input object is first mapped to the most

likely category in the corresponding hierarchy. Then the prediction is based on the

aggregated information associated with the combination of categories. As the algorithm

dynamically grows the hierarchies with new samples being incorporated, the predicted

68

output value will be based on the available aggregated information at the most specific

level in the hierarchy.

5.4 Empirical Evaluation
To evaluate our algorithm, we need a data set from object-based domains. The input to

the algorithm is a state representation consists of the feature vectors of multiple objects.

The output of the algorithm is a number reflecting the utility value of the state, or a

symbolic label reflecting the class of the state. In addition, the data must contain diverse

functional categories. We were unable to find an existing machine learning data set that

matches all these criteria. Readily available data sets are either not about object-based

domains, or do not consist of diverse enough functional categories. There are ontology

systems (Lenat & Guha, 1990; Antoniou & van Harmelen, 2003) that do include diverse

natural object categories. However, they do not include data for specific task contexts

with the utility value of a state determined by multiple interacting objects.

5.4.1 Synthetic Data
We evaluate the algorithm under varying degrees of object diversity and regularity using

systematically generated synthetic data. We decompose the distribution space into two

components: the functional space and the perceptual feature space. In the functional

space, functional diversity is about how many distinctive functional categories there are,

and the regularity is about the existence of hierarchical distribution patterns. In the

perceptual feature space, perceptual diversity is about how many perceptual features are

available, and the regularity is about the existence of discriminative perceptual features.

The parameters are summarized in Table 5.2.

Table 5.2: Parameters for data distribution.

 Functional space Perceptual feature space

Structural diversity Total number of categories Total number of features

Regularity Has hierarchical pattern Has discriminative features

Random noise Gaussian noise in output value Error rate in each feature

69

5.4.1.1 Functional space

First of all, we use a hierarchical random walk model to generate distribution patterns in

the functional space, which can be configured to generate arbitrary patterns that are not

necessarily hierarchical.

Figure 5.7 shows the generating process for a value function involving two objects, each

having 8 distinctive functional categories in a three-level hierarchy. At each level of the

hierarchy, a random perturbation with certain magnitude (step size) is added to the output

value for each grid representing a distinctive combination of categories. In Figure 5.7a,

the step size at the first level is 6, which makes the difference among the four grids to be

apart by 6. The assignment is randomly picked for each grid. In Figure 5.7b, further

perturbations are introduced at the second level with step size 4 within each of the four

grids of level one. Then the third level perturbation is introduced as shown in Figure 5.7c.

The final output value of the function is shown in Figure 5.7d, and it is visualized using

Figure 5.7: An example of synthetic data generation and visualization.
The function consists of two objects. Each object has a 3-level category hierarchy.

18 22
1620

26 20
2422

16 14
1218

28 26
3024

8 10
126

16 14
1012

20 18
1416

24 20
1822

18 14
1216

14 8
1210

10 4
68

2 0
46

28 30
2632

24 22
2018

26 24
2822

34 36
3230

+12 +6

+0 +18

+4 +8

+12 +0

+12 +8

+0 +4

+0 +4

+12 +8

+8 +0

+12 +4

+2 +6
+0+4

+6 +0
+ 4+ 2

+ 4 + 2
+ 0+ 6

+ 4 + 2
+ 6+ 0

+2 + 4
+ 6+ 0

+ 6 + 4
+ 0+ 2

+ 6 + 4
+ 0+ 2

+ 6 + 2
+ 0+ 4

+ 6 + 2
+ 0+ 4

+ 6 + 0
+ 4+ 2

+ 6 + 0
+ 2+ 4

+ 2 + 0
+ 4+ 6

+ 2 + 4
+ 0+ 6

+ 6 + 4
+ 2+ 0

+ 4 + 2
+ 6+ 0

+ 4 + 6
+ 2+ 0

(a) Level 1, step size 6 (b) Level 2, step size 4 (c) Level 3, step size 2

(d) Final values (e) Heat map visualization

1
2

3
4

5
6

7
8

1 2 3 4 5 6 7 8

70

the heatmap function in R (R Development Core Team, 2010) in Figure 5.7e where

darker color indicates a smaller value. The column and row numbers in Figure 5.7d and

5.7e are the identifiers for the object instances. The heatmap function uses the default

hierarchical cluster algorithm, which is the hierarchical agglomerative clustering with

complete-link method, to perform clustering independently for the columns and rows. It

reorders the instances accordingly and normalizes the color gradients for each row. For

example, row 7 column 6 has the highest value 36, and row 6 column 5 has a lower value

32. However, the latter has a brighter value because the grey scale gradients are

normalized row-wise.

The process in Figure 5.7 generates the hierarchical structure for a particular set of

parameters, and further random Gaussian noise can be added to each grid to generate

instances of samples. In this simple example, due to a sequence of decreasing step sizes,

an apparent hierarchical pattern in the output values can be observed in Figure 5.7e.

5.4.1.2 Perceptual feature space

Perceptual diversity is controlled by the total number of binary features for each object.

For example, 3 binary features can produce 8 perceptually distinctive instances and 10

binary features for 1,024 instances. Regarding the regularity, i.e., the relationship

between perceptual features and functional categories, our basic assumption is that there

exist good discriminative perceptual features to separate the underlying functional

categories at each level of the functional hierarchy. For example, the two distinctive

values of one binary feature can discriminate two categories, a combination of several

binary features can discriminate multiple categories. If otherwise, no good discriminative

features exist for some functionally distinctive categories, that part of variance will

become intrinsic noise, and thus be unlearnable by any methods. Given the above “good

features exist” assumption, the learning problem is to “select” the good features from the

pool of all available features.

Random noise can also be introduced to individual perceptual features. In the previous

demonstration task as shown in Figure 5.2 to Figure 5.4, we already demonstrated how

our model handles noise in the inputs.

71

5.4.2 Baselines
We include two alternative algorithms to compare with our algorithm. One is a neural

network; the other is a nearest neighbor algorithm. Both of them are general function

approximators with no assumptions about the functional forms of the underlying data,

and they can be trained incrementally. We also include two baselines based on the same

hierarchical categorization algorithm, except that their hierarchies are obtained in ways

different from the utility value based joint optimization criterion.

2-layered Neural Network (a multilayer perceptron, MLP, with one hidden layer)

baseline is trained with the standard back propagation algorithm (Rumelhart, 1986). The

input units map to the input features of the objects, and there is a single output unit for

the utility value. The network is fully connected. The number of hidden units and

learning rate are chosen based on testing of pilot data.

Nearest Neighbor baseline stores all training instances (learning is trivial). To predict

the output, it picks the instance that best matches the input perceptual features. In the case

of binary features, the matching score is the cardinality of matched features. If there is a

tie, the prediction is based on the average of all the best matches.

Unsupervised Hierarchies baseline uses hierarchical categories based on perceptual

features and the unsupervised criterion as described in equation (3.1) in Chapter 3. It uses

the same procedures to update and predict utility values, but without using the joint

optimization criterion as described in equation (5.11). Since the distributions of synthetic

data in the perceptual feature space do not have the same hierarchical patterns as in the

functional space, the unsupervised hierarchical clustering algorithm, which solely relies

on perceptual features, cannot construct the correct functional categorizations and is

expected to have poor performance.

Optimal Hierarchies baseline uses the true functional hierarchies that are used to

generate the testing data. It uses the same update and prediction procedures, but with

fixed optimal hierarchies. Thus, this baseline reflects the optimal learning that can

possibly be achieved.

72

5.4.3 Results and Analysis
We compare our algorithm, piecewise function approximation with joint optimization

hierarchies, with the four baselines under different levels of object diversity and different

degrees of regularity. The range of data is generated by the model in Figure 5.7, using

different configurations of the parameters as shown in Table 5.2. The performance is

evaluated by comparing the learning curves of mean squared error (MSE) in the

prediction, up to 300 training samples. MSEs are evaluated by using 1000 random

independent samples at fixed intervals during training. The final result is the average of

100 independent runs.

To begin with a simple case, we first evaluate the performance for target functions that

have low functional diversity and high regularity. We choose the step sizes [6, 4, 2],

which generates functional categories with a 3 level hierarchical structure as shown in

Figure 5.7. Visualizations of three instantiated functions with the step sizes [6, 4, 2] are

shown in Figure 5.8a. The evaluation is based on the average of learning curves for 100

such functions, one for each independent trial. Note that the heatmap function does not

necessarily recover the original functional hierarchies used to generate the data. For

example, in the leftmost of Figure 5.8a, the true categorization at the first level for the

rows should be {1, 2, 3, 4} and {5, 6, 7, 8}, while the heatmap function gives {1, 2, 5, 6,

7, 8} and {3, 4}. This reflects the complexity in the distribution generated by multiple

steps of random perturbations.

Figure 5.8b to Figure 5.8d compare the performance under different perceptual diversity

and output noise. Figure 5.8b uses 3 binary perceptual features, which is the minimum

required to discriminate the 8 functional categories for each object. Nearest neighbor,

unsupervised hierarchies and joint optimization hierarchies all achieve performance close

to the optimal baseline. MLP learns much slower. In Figure 5.8c, the perceptual diversity

is increased by introducing 7 random perceptual features to each object, therefore there

are 1,024 perceptually distinctive instances and 8 functional distinctive categories for

each object. In Figure 5.8d, functional diversity is further increased by introducing

random Gaussian noise with standard deviation 3 to the output values of generated

instances.

73

Figure 5.8: Comparison of learning performance for hierarchies with 3 levels.
The conditions are: step sizes [6, 4, 2]. (a) visualization of distribution pattern in the functional state
space. (b) 3 binary perceptual features (no irrelevant features); no noise in output value. (c) 10
binary perceptual features (7 irrelevant features); no noise in output value. (d) 10 binary perceptual
features (7 irrelevant features); Gaussian noise with standard deviation 3 in output value.

Joint Optimization Hierarchies

Nearest Neighbor

MLP

Optimal Hierarchies

Unsupervised Hierarchies

Training Samples

M
SE

(b)

Training Samples

M
SE

Training Samples

M
SE

(c)

(d)

(a)

74

Figure 5.8 illustrates that for a given diversity and regularity in the underlying functional

category hierarchies, how perceptual diversity and random noise in output affects the

performance. The MLP baseline generally learns slower because it is designed to

approximate smooth functions and is more globally constrained. In our data set, the target

function is rather unsmooth especially at the lower levels, which causes significant

interference among the learning units in MLP. In such situations, a winner-take-all

learner with local approximation will generally perform better. The nearest neighbor

algorithm baseline is a winner-take-all algorithm; however, it is sensitive to irrelevant

features. On the other hand, the neural network can adaptively adjust the weights of

features based on their relevance to the output value. That is why in Figure 5.8c, the

neural network learns faster than nearest neighbor initially, but stops improving after

certain point. It can be seen that when perceptual diversity increases as in Figure 5.8c, the

nearest neighbor algorithm, along with the unsupervised hierarchies baseline, are the

most affected due to sensitivity to irrelevant features. The performances are not

differentiated very much by adding random noise in the output. In Figure 5.8d, we can

see that all algorithms have a certain level of noise tolerance, because they are not

affected as much as the optimal learning curve.

In the following tests, we increase the degree of functional diversity by adding more

perturbation steps, and vary the functional regularity by using different step sizes. For

each regularity pattern, we perform the same set of comparison as shown in Figure 5.8.

5.4.3.1 Increase functional diversity

Figure 5.9a shows the visualization for three instantiations of functions that have a 5-

level hierarchical structure with step sizes being [10, 6, 4, 2, 1]. Therefore, there are 32

distinctive functional categories for each object. Figure 5.9b to Figure 5.9d compare the

performance under different levels of perceptual diversity and noise. Figure 5.9b uses 5

perceptual features, which is the minimum required to discriminate the 5-level hierarchy

(32 distinctive functional categories) for each object. In Figure 5.9c, the total number of

perceptual features for each category is increased to 10 (5 irrelevant features). In Figure

5.9d, Gaussian noise with standard deviation 3 is added the output values. The trends are

the same as in Figure 5.8.

75

Figure 5.9: Comparison of learning performance for hierarchies with 5 levels.
The conditions are: step sizes [10, 6, 4, 2, 1]. (a) visualization of distribution pattern in the functional
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value.

Training Samples

M
SE

(b)

Training Samples

M
SE

Training Samples

M
SE

(c)

(d)

(a)

Joint Optimization Hierarchies

Nearest Neighbor

MLP

Optimal Hierarchies

Unsupervised Hierarchies

76

5.4.3.2 Reduce functional regularity

Both of the previous data sets have high regularity in the functional space, although with

different degrees of diversity. Our algorithm (joint optimization hierarchies) consistently

outperforms the other baselines because it can take advantage of such hierarchical

distribution assumptions. In order to better understand the potential capability of our

algorithm under more adversarial conditions, we perform the same set of testing using

different patterns of step sizes that generate functions with less degrees of regularity.

Figure 5.10a shows the visualization for functions with step sizes being [3, 6, 4, 2, 1],

where the second step size is the largest. As a consequence, it exhibits a pattern with

smaller regions of consistent value blocks compared to Figure 5.9a.

Same as the previous settings, Figure 5.10b to Figure 5.10d compare the performance

under different levels of perceptual diversity and noise. In Figure 5.10b, the relative

performance is the same as in previous experiments. However, in Figure 5.10c, when

irrelevant features are added to the input, our algorithm only performs on par with the

nearest neighbor and MLP baselines. This is because the reduced regularity makes it

more difficult to discover the true hierarchies.

77

Figure 5.10: Comparison of learning performance with reduced regularity.

The conditions are: step sizes [3, 6, 4, 2, 1]. (a) visualization of distribution pattern in the functional
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value.

Training Samples

M
SE

(b)

Training Samples

M
SE

(c)

Training Samples

M
SE

(d)

(a)

Joint Optimization Hierarchies

Nearest Neighbor

MLP

Optimal Hierarchies

Unsupervised Hierarchies

78

Figure 5.11a shows the visualization for functions with step sizes being [6, 5, 4, 3, 2],

where the consecutive step sizes are only different by 1. The hierarchical distribution

pattern is less obvious comparing to previous data sets.

Same as the previous settings, Figure 5.11b to Figure 5.11d compare the performance

under different levels of perceptual diversity and noise. In Figure 5.11b, when there is no

other types of noise, our algorithm is only marginally better than the MLP and nearest

neighbor baselines. When different types of noise are added to the data in Figure 5.11c

and Figure 5.11d, performances of the different algorithms are indistinguishable.

79

Figure 5.11: Comparison of learning performance with reduced regularity.
The conditions are: step sizes [6, 5, 4, 3, 2]. (a) visualization of distribution pattern in the functional
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value.

Training Samples

M
SE

(b) (c)

Training Samples

M
SE

(d)

Training Samples

M
SE

(a)

Joint Optimization Hierarchies

Nearest Neighbor

MLP

Optimal Hierarchies

Unsupervised Hierarchies

80

Figure 5.12a shows the visualization for functions with step sizes being [2, 2, 2, 2, 2].

The hierarchical pattern is reduced to almost randomness.

Same as the previous settings, Figure 5.12b to Figure 5.12d compare the performance

under different levels of perceptual diversity and noise. In this situation, the neural

network algorithm (MLP baseline) becomes the best option in Figure 5.12c and Figure

5.12d. This is because the neural network does not make any assumption about the

distribution of the data, while for our algorithm, making the hierarchical assumption

incurs an extra cost when the expected pattern is not presented in the data. However, the

relative magnitude of the learnable information in the data is largely reduced, as revealed

by the position of the optimal baseline.

81

Figure 5.12: Comparison of learning performance with reduced regularity.
The conditions are: step sizes [2, 2, 2, 2, 2]. (a) visualization of distribution pattern in the functional
state space. (b) 5 binary perceptual features (no irrelevant features); no noise in output value. (c) 10
binary perceptual features (5 irrelevant features); no noise in output value. (d) 10 binary perceptual
features (5 irrelevant features); Gaussian noise with standard deviation 3 in output value.

Training Samples

M
SE

(b) (c)

Training Samples

M
SE

(d)

Training Samples

M
SE

(a)

Joint Optimization Hierarchies

Nearest Neighbor

MLP

Optimal Hierarchies

Unsupervised Hierarchies

82

5.4.3.3 Analysis

Our algorithm is robust against increased functional diversity, but sensitive to reduced

functional regularity. It consistently outperforms nearest neighbor and neural network

with different degrees of object diversity when abundant regularity is present. When the

regularity is low, the performance is indistinguishable from, or slightly worse than the

nearest neighbor and the neural network baselines. From another perspective, the

difference in performance can be attributed to the lack of regularization in the nearest

neighbor and neural network baselines in the general sense (here regularization has the

same meaning as constraints). For the nearest neighbor algorithm, the desirable

regularization should help it only keep a small set of instances that focus on the relevant

features, as opposed to keeping all instances and thus being distracted by irrelevant

features. For the neural network algorithm, the desirable regularization should make the

connection weights’ updates gradually progress towards more specific categories and

prevent it from interfering with the general categories once learned. However, nearest

neighbor and neural network algorithms do not have a natural way of the proper

regularization for hierarchical distribution pattern. For example, the common

regularization techniques for neural networks include: limiting the number of hidden

units, constraining network connectivity, weight decay, early stopping, input/output

transformation and weight sharing. These techniques are aimed at different situations, but

none of them capture the hierarchical distribution pattern. On the other hand, the

assumption about hierarchical distribution pattern is built-in with our algorithm, which

will yield superior performance when such regularity is presented in the data.

5.5 Compare with Other Approaches
The latent hierarchical clustering model we have presented in this chapter is specifically

designed for object-based environments. Our algorithm achieves nonlinear function

approximation via piecewise approximation. It can adaptively choose the piecewise

segment boundaries by learning hierarchically organized functional categories of the

component objects. We briefly review other commonly used function approximation

approaches. The purpose is to understand the key differences in the underlying

assumptions of these alternatives.

83

Linear models are among the most commonly used approximators. Linear regression

(Draper & Smith, 1998) models are used when the output value is numeric. For

classification, there are linear discriminant analysis (LDA) (McLachlan, 2004), and the

logistic regression model (Agresti, 2007). The major limitation of linear models is that

the target function is restricted to be in linear form with a set of variables. These variables

can be either a direct measure of raw features, or a transformed measurement via a link

function as in the generalized linear model (GLM) framework (Nelder & Wedderburn,

1972). The advantages of linear models are simplicity, interpretability, and efficient

computability. However, the linear assumption limits the flexibility of the model.

Support vector machines (SVM) are classifiers based on the maximum margin principle

(Cortest & Vapnik, 1995). SVMs can be adapted to different tasks and domains by the

appropriate choice of kernel functions (Schölkopf & Smola, 2001). For example, SVM

using graph kernels has been successfully used to predict the function of proteins

(Borgwardt et al., 2005), which are represented by graph structures. However, it is not

clear how the combinatorial structure and hierarchical distribution pattern can be

captured by kernel functions.

Radial basis function (RBF) networks use linear combinations of radial basis functions

to achieve nonlinear function interpolation. They are conceptually similar to k-nearest

neighbor algorithms. The difference is the former keep a fixed number of basis functions

and adaptively learn a set of weights, one for each basis function using least squares

criterion. K-nearest neighbor algorithms can dynamically expand their instance base, and

do not need to learn the weights (they will weigh equally the top k matches). RBF

networks and k-nearest neighbor algorithms have been successfully used in various

applications such as handwritten digit recognition (Lee, 1991). The performance of a

RBF network relies on the set of manually selected basis functions. Since we do not

assume there is sufficient prior knowledge to properly choose the basis functions in

complex object-based environments, we use the nearest neighbor algorithm in our

evaluation, which can serve as a special case representative of this class of algorithms.

Multilayer perceptron (MLP) are feedforward neural networks with one or more

hidden layers trained by the back-propagation algorithm (Rumelhart et al., 1986). A MLP

84

can approximate nonlinear functions by using nonlinear sigmoid activation functions

(such as logistic function, or hyperbolic tangent function) in the hidden layer. Compared

to linear regression models, the extra hidden layers in a neural network perform adaptive

feature learning. A MLP with one hidden layer is included as one of the baselines in our

evaluation. Using more hidden layers increases the MLP’s function approximation

capacity, but generally slows down learning because of the increased parameter space.

Although there are methods to improve the learning speed for deep neural networks

(Hinton et al., 2006), we do not expect adding more layers can improve the MLP’s

performance in learning functions with hierarchical distribution patterns.

Convolutional neural networks are multilayer neural networks with constrained

connections (LeCun et al., 1990). Their connection structures are designed to model

images of objects by composing local invariant features at different scales (Lee et al.,

2009). From the perspective of function approximation, convolutional networks rely on

similar principles such as latent representation and hierarchical structure to achieve

efficient nonlinear function approximation. The key difference is that the hierarchy in

convolutional neural networks are based on spatial decompositions (compositional

hierarchy), while in our model, the hierarchy is based on sample partitions

(discriminative hierarchy). For example, in a convolutional network, the hidden layers

contain representations of local feature, each being a component of the object. The

hidden layers in our model form categories of objects, with each category representing a

subset of the sample population. It is possible to integrate a convolutional network as the

perceptual processing layer as shown in the bottom of Figure 3.1, which can extract

higher level features from pixels.

Conditional random fields (CRFs) are discriminative probabilistic graphical models

(Lafferty, 2001). In addition to the ability of modeling dependency structures, CRF

models can have latent variables (Gunawardana et al., 2005), they can support kernels

(Lafferty, 2004), and can be trained incrementally with stochastic gradient descent

methods (Vishwanathan et al., 2006). These properties make CRFs powerful machine

learning tools for models with highly interdependent variables, such as natural language

processing problems (Sha & Pereira, 2003; Settles, 2004) and biological sequence

85

modeling (DeCaprio et al., 2007). However, it is not clear how CRF models can capture

the distribution assumption of hierarchical categorization, which is essential for making

efficient generalization in object based environment according to our general assumption.

5.6 Summary
One major limitation of the algorithm introduced in Chapter 3 is that hierarchical

category learning and value function approximation are performed in separate learning

components. As a consequence, the formation of categories does not depend on feedback

from the value function learning process. This limits the performance of the system in

domains where prior knowledge about the functional feature set is not accurate.

The algorithm introduced in this chapter aims to address this limitation. In the new

algorithm, hierarchical categorization and value function approximation are integrated

into a single optimization step: internal categories are formed synchronously to optimize

the performance of value function approximation. The algorithm effectively selects the

functional features in the learning process.

The important assumption designed into our learning algorithms is the existence of

hierarchical structure in the distribution of the objects’ functional space. We created a

parameterized data generation model that can produce data sets with different patterns of

hierarchical distributions. The evaluation is based on systematically generated data set,

ranging from simple data set with obvious hierarchy structures to more complex data set

without observable patterns. Our algorithm consistently outperforms the baseline

algorithms, and the difference margin is correlated with the degree of hierarchical pattern

presented in the data set.

We also briefly review other commonly used function approximation approaches. The

advantage of our algorithm, comparing to the other alternatives, is that the assumption

about the hierarchical category distribution pattern is built into the learning algorithm.

86

Chapter 6

Conclusion

Our research presents a synthesis of hierarchical category learning and value function

approximation, which are traditionally formulated as separate machine learning problems.

We first identify and analyze the challenges and assumptions for the problem of long-

lived learning agent in complex object-based environments. We provide novel

implementations exploiting the distribution assumption of hierarchical categorization.

Our work not only provides efficient value function approximation algorithms, but also

offers computational insights to human category learning.

6.1 Discussion
The key to the success of our approach, compared to alternative value function

approximation approaches, is using hierarchical categories as internal representations.

The hierarchical structure not only supports flexible generalization to achieve sample

efficiency, but also supports incremental learning algorithms to achieve computational

efficiency.

The existence of hierarchical distribution patterns in the functional space of objects, as

illustrated in the evaluations of Chapter 3 and Chapter 5, is a critical assumption for our

approach. Although it is not the intention of the thesis to prove the general existence of

such patterns in natural environments, this is a reasonable assumption based on

converging observations. Using hierarchies to organize natural objects has been a practice

in AI systems (Quillian, 1967; Lenat & Guha, 1990), as well as a recurring theme in

human cognitive models (Mervis & Rosch, 1981; Kemp & Tenebaum, 2006). The results

in Chapter 4 also support such assumption.

87

Hierarchical structure has already been exploited in many machine learning algorithms.

Hierarchical clustering algorithms are often used as data analysis tools for visualizing the

general pattern of data distribution in high dimensional feature space. However, these are

unsupervised learning algorithms, and do not directly support learning a value function.

There are also supervised learning algorithms that leverage on hierarchical structures,

such as kd-tree based value function approximation (Vollbrecht, 2000), adaptive tile

coding (Whiteson, 2007) and the general decision tree algorithm (Quinlan, 1986).

However, these algorithms hierarchically partition the entire state feature vector, which

does not capture the compositional structure of object-based environments. As a

consequence, it results in less efficient learning as shown in the 3rd comparison (Figure

3.11) in Chapter 3.

Our approach leverages on having prior knowledge built into the learning algorithm.

According to the “no free lunch” theorems (Wolpert & Macready, 1997), there is no

general-purpose universal optimization algorithm. One algorithm outperforms another

because it is specialized to the specific problem under consideration, and there is

generally a performance advantage in incorporating prior knowledge of the problem into

the algorithm. In practice, what are the specific forms of prior knowledge, and how they

can be injected into the algorithm, depend on technical details of the implementation. In

our approach, we present two forms of prior knowledge. The hierarchical category

structure can be considered as a very general form of prior knowledge, which is used

across different tasks. Furthermore, in the first algorithm (Chapter 3), the hierarchical

structure ca be controlled by selected functional feature sets, which are more specific

prior knowledge and can be tuned for different tasks.

The general advantage of using hierarchical representations for value function

approximation is that the system can achieve both fast learning and accurate learning,

which is otherwise a dilemma (section 3.3.2.3). Conceptually, the system first learns the

value function at a coarser level, then progress down towards a higher resolution at more

specific levels as more training samples are received. Intuitively, it appears to require

local approximators be recursively processed at different resolution levels both for

learning and prediction. This is the case for the second algorithm presented in Chapter 5.

88

In the first algorithm presented in Chapter 3, however, learning and predicting the value

function is performed in a linear form of the coarse coding basis variables, where the

coefficients are simultaneously updated. Linear models generally assume, or prefer, that

the input variables are independent. A unique feature in our system is that the input

variables to the linear approximator are coarse coding variables with a systematic

dependent structure (Figure 3.4). The original motivation for this implementation is

because a linear coarse coding learning mechanism has already been implemented in

Soar-RL (Nason & Laird, 2005), and we only need to test how well does it perform when

coarse coding variables have such dependency structures. The result is somewhat

surprising: the same general linear mechanism achieves the desired general-to-specific

learning utilizing the hierarchical structures. We have also use used the same mechanisms

to faithfully replicate rat behavioral data in a maze environment without object-based

representations (Wang & Laird, 2008).

6.2 Contributions
This section summarizes the major contributions.

Efficient value function approximation algorithms. The unique feature of our

approach is the integration of hierarchical category learning into the value function

approximation algorithm. Hierarchical category learning forms symbolic categories,

which are used as representational basis to approximate the value function. We developed

two specific algorithms based on this general design. The first algorithm (Chapter 3), as

the initial step, combines two separate learning algorithms: a hierarchical clustering

algorithm adapted from COBWEB (Fisher, 1987), and a sparse coarse coding based

function approximator implemented in Soar-RL (Nason & Laird, 2005). The second

algorithm (Chapter 5) coherently integrates hierarchical categorization and value function

approximation into a single joint optimization problem. Both algorithms achieve efficient

learning of value functions, and scale well with object diversity.

Computational model of human category learning. The observation of naturally

occurring hierarchies in human category learning (Mervis and Rosch, 1981) is one major

89

source of inspiration for this research. In return, our research provides computational

insights to human category learning (Chapter 4).

Extend the capabilities of a general cognitive architecture. Soar is a general cognitive

architecture, which has been serving as a framework for building robust, long-lived,

interactive online learning agents (Laird, 2008). The learning system presented in

Chapter 3 extends the category learning capability of Soar. Together with other recent

extensions (Nason & Laird, 2005; Nuxoll & Laird, 2007; Lathrop & Laird, 2009;

Wintermute, 2010), this work makes Soar a more powerful framework for creating

intelligent agents with improved functionality.

6.3 Future Directions
We identify the following areas of work that can directly follow from this thesis.

Combine prior knowledge with utility driven optimization. In the first algorithm

(Chapter 3), the category hierarchy is controlled by prior knowledge in the form of

preselected functional feature sets, and does not depend on the performance of value

function learning. In the second algorithm (Chapter 5), which has greater flexibility, the

hierarchical structures are jointly optimized with the utility value function. Nevertheless,

there is still the advantage to incorporate prior knowledge especially during the initial

learning stage when the training samples are insufficient for making useful inferences. It

is technically straightforward to numerically combine the information from preselected

functional feature sets with the optimization criteria in the second algorithm. However,

how to appropriately balance the two factors is an empirical question, which must be

explored with specific domains and tasks.

Qualitatively model human category learning using the second algorithm. In Chapter

4, we use the first algorithm (Chapter 3) to generate category learning behaviors that

qualitatively match with human. The successful matching is not a coincidence of the

specific implementation, but a general property of integrating hierarchical category

learning with utility based value function approximation. The second algorithm in

Chapter 5 follows the same general design. Therefore, we expect the same kind of

qualitative category learning behaviors. In order to model the human category learning

90

behaviors, salient symbolic categories must be extracted from the system. We define a

category domination model for the first algorithm in section 4.3.2. Similarly, we must

define a salient category extraction criterion for the second algorithm.

Integrate the second algorithm into the Soar cognitive architecture. The second

algorithm (Chapter 5) is designed to achieve utility based category learning without

relying on preselected functional feature sets. The implementation respects the general

constraints of a cognitive agent, which are incremental learning and scalability with large

knowledge base by using hierarchical structures. In order to achieve the ultimate goal of

creating robust long-lived agent, it is desirable to integrate the algorithm into the Soar

cognitive architecture, which has already been equipped with many useful capabilities.

An initial integration is to directly include the second algorithm as an independent

module for deliberately learning and predicting value functions, with an interface similar

to other deliberate modules such as the semantic memory module (Derbinsky & Laird,

2010) and the mental imagery module (Lathrop & Laird, 2009). In a more parsimony

integration, the system should share this value function approximation module with the

architectural RL mechanism. This may lead to modifying the existing Soar-RL

implementation and require exploring new use cases with extensive empirical evaluations.

Sequential decision making. Both the original motivation and evaluation tasks are

closely related to the reinforcement learning problem, where an agent incrementally

adjusts its behavior based on a numeric feedback (reward) from the environment. Among

numerous topics in the field of reinforcement learning, our approach is a special case of

value function approximation via state aggregation. More specifically, our state

aggregation is achieved by hierarchical aggregation of individual objects. In addition to

value function approximation, classic reinforcement learning problems involve sequential

decision making in stochastic environments which are normally modeled as Markov

Decision Processes (MDPs). In such models, the value functions in the context of the

MDPs are incrementally estimated simultaneously with the value function approximation,

which complicates the convergence of learning. Theoretic analysis about convergence

with value function approximation has been a major area in the field of RL (Singh et al.,

1995; Maei et al., 2009). In this thesis, we make two simplifying assumptions to

91

eliminate such convergence concerns. First we assume the availability of stationary state

values for training, and second, we assume that there is only a one shot decision to be

made based on the value function. It is an important future work to empirically

characterize the convergence properties of our value function approximation algorithm in

sequential decision making tasks.

Integration with spatial abstractions. Since this research focuses on object category

learning, another simplifying assumption we have made is about the spatial aspect. Our

algorithms form abstract symbolic categories for independent objects, without exploiting

abstract spatial relations among objects. One important topic for future work is to

integrate our hierarchical object categorization approach with spatial relationship

abstraction approaches (Kuipers, 2000; Wintermute, 2010). This integration will enable

more powerful generalization in spatial domains. For example, in the hunting task in

Chapter 3, we only aggregate states having the same distance-to-prey. If there are more

abstract spatial predicates such as “close”, “far”, and “very far” etc., it would be possible

to aggregate more states together and achieve higher degree of generalization.

92

Bibliography

Agresti, A. (2007). Building and applying logistic regression models. An Introduction to

Categorical Data Analysis. Hoboken, New Jersey: Wiley.

Ambros-Ingerson, J., Granger, R., & Lynch, G. (1990). Simulation of paleocortex

performs hierarchical clustering. Science, 247, 1344-1348.

Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., & Qin, Y. (2004). An

integrated theory of the mind. Psychological Review, 111(4), 1036-1060.

Antoniou, G., & van Harmelen, F. (2003). Web Ontology Language: OWL. Handbook on

Ontologies in Information Systems, 67–92.

Ashby, E. G., & Maddox, W. T. (2005). Human category learning. Annual Review of

Psychology, 56, 149-178.

Barto, A. G. (1995). Adaptive critics and the basal ganglia. Models of Information

Processing in the Basal Ganglia. MIT Press.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N., Smola, A.J., &

Kriegel, H. (2005). Protein function prediction via graph kernels. Bioinformatics,

21(1), 147-156

Bradtke, S. J., & Barto, A. G. (1996). Linear least-squares algorithms for temporal

difference learning. Machine Learning, 22(1), 33-57.

Brodley, C. E., & Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning,

19(1), 45-77.

Clogg, C. C. (1995). Latent class models. Handbook of statistical modeling of social and

behavioral sciences, Ch.6, 311-359. New York: Plenum.

93

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),

273-297

DeCaprio, D., Vinson, J. P., Pearson, M. D., Montgomery, P., Doherty, M., Galagan, J. E.

(2007). Conrad: Gene Prediction using Conditional Random Fields. Genome

Research 17(9), 1389–1396.

Derbinsky, N., Laird, J. E. (2010). Extending Soar with Dissociated Symbolic Memories.

Symposium on Human Memory for Artificial Agents, AISB (2010).

Diuk, C., Cohen, A., & Littman, M. L. (2008) An object-oriented representation for

efficient reinforcement learning. Proceedings of 25th International Conference on

Machine learning, 240-247.

Draper, N.R., & Smith, H. (1998). Applied Regression Analysis. Wiley Series in

Probability and Statistics.

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous Localization and Mapping

(SLAM): Part I The Essential Algorithms". Robotics and Automation Magazine,

13, 99–110

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning.

Machine Learning, 43, 7-52

Falkenhainer, B., Forbus, K., & Gentner, D. (1989). The structure-mapping engine -

algorithm and examples. Artificial Intelligence, 41(1), 1-63.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering.

Machine Learning, 2(2), 139-172.

Forgy, C. L. (1982). Rete: a fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, 19(1), 17-37.

French, R. M. (1991). Using semi-distributed representations to overcome catastrophic

forgetting in connectionist networks. Proceedings of the 13th Annual Cognitive

Science Conference, 173-178.

http://www.acfr.usyd.edu.au/homepages/academic/tbailey/papers/slamtute1.pdf�
http://www.acfr.usyd.edu.au/homepages/academic/tbailey/papers/slamtute1.pdf�

94

Frigui, H., & Krishnapuram, R. (1997). Clustering by competitive agglomeration. Pattern

Recognition, 30(7), 1109-1119.

Fu, W., & Anderson, J. R. (2006). From recurrent choice to skill learning: A

reinforcement-learning model. Journal of Experimental Psychology: General, 135,

184-206.

Gennari, J. H., Langley, P., & Fisher, D. H. (1989). Models of incremental concept

formation. Artificial Intelligence, 40, 11-61

Granger, R. (2006). Engines of the brain: the computational instruction set of human

cognition. AI Magazine., 27(2), 15-32.

Gunawardana, A., Mahajan, M., Acero, A., & Platt, J. C. (2005). Hidden conditional

random fields for phone classification. Proceedings of Eurospeech.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief

nets. Neural Computation, 18(7), 1527-1554.

Johnson, C. (1987). Numerical solution of partial differential equations by the finite element

method. Cambridge University Press.

Jolion, J. M., Meer, P., & Bataouche, S. (1991). Robust clustering with applications in

computer vision. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(8), 791-802.

Kemp C. & Tenebaum, J. (2006). The discovery of structural form. Proceedings of the

National Academy of Sciences, 105(31), 10687-10692.

Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artificial Intelligence, 119(1-2), 191-

233.

Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., & Savelli, F. (2004). Local metrical

and global topological maps in the hybrid Spatial Semantic Hierarchy. IEEE

International Conference on Robotics and Automation (ICRA-04).

95

Kullback, S., & Leibler, R.A. (1951). On information and sufficiency. Annals of

Mathematical Statistics, 22 (1), 79–86

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. Proceedings of the 18th

International Conf. on Machine Learning, 282–289.

Lafferty, J., Zhu, X., & Liu, Y. (2004). Kernel conditional random fields: Repre-

sentation and clique selection. The 21st International Conference on Machine

Learning (ICML).

Laird, J. E. (2008). Extending the Soar cognitive architecture. Proceedings of the First

Conference on Artificial General Intelligence.

Langley, P., McKusick, K. B., Allen, J. A., Iba, W. F., & Thompson, K. (1991). A design

for the ICARUS architecture. ACM SIGART Bulletin, 2(4), 104-109.

Lathrop, S. D., & Laird, J. E. (2009). Extending cognitive architectures with mental

imagery. Proceedings of the Second Conference on Artificial General Intelligence.

LeCun, Y., Baser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, R., &

Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation

network. Advances in Neural Information Processing Systems 2.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief

networks for scalable unsupervised learning of hierarchical representations.

Proceedings of the Twenth-Sixth International Conference on Machine Learning

(ICML).

Lee, Y. (1991). Handwritten digit recognition using k nearest-neighbor, radial-basis

function, and backpropagation neural networks. Neural Computation, 3, 440-449.

Lenat, D. B., & Guha, R. V. (1990). Building Large Knowledge-Based Systems:

Representation and Inference in the Cyc Project. Addison-Wesley.

96

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of

category learning. Psychological Review, 111(2), 309-332.

Maei, H. R., Szepesvari, C., Batnaghar, S., Precup, D, Silver, D., & Sutton, R. S. (2009).

Convergent temporal-difference learning with arbitrary smooth function

approximation. Advances in Neural Information Processing Systems 22, 1204–

1212.

McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are

Complementary Learning Systems in the Hippocampus and Neocortex.

Psychological Review, 102(3), 419-457.

McLachlan, G. J. (2004). Discriminant Analysis and Statistical Pattern Recognition.

Wiley Interscience.

McShea, D. W., & Brandon R. N. (2010). Biology’s First Law: The Tendency for

Diversity and Complexity to Increase in Evolutionary Systems. University of

Chicago Press.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning.

Psychological Review, 85(3), 207-238.

Mervis, C. B., Rosch, E. (1981). Categorization of natural objects. Annual Review of

Psychology, 32, 87-115

Nason, S., & Laird, J. E. (2005). Soar-RL: integrating reinforcement learning with Soar.

Cognitive Systems Research, 6(1), 51-59.

Nelder, J. & Wedderburn, R. (1972). Generalized Linear Models. Journal of the Royal

Statistical Society. Series A (General), 135 (3), 370–384.

Nosofsky, R. A., & Zaki, S. R. (2002). Exemplar and prototype models revisited:

Response strategies, selective attention, and stimulus generalization. Journal of

Experimental Psychology: Learning, Memory and Cognition, 28(5), 924-940.

97

Nuxoll, A. M., & Laird, J. E. (2007). Extending cognitive architecture with episodic

memory. Proceedings of the 22nd AAAI National Conference on Artificial

Intelligence.

Quillian, M. R. (1967). Word concepts: A theory and simulation of some basic semantic

capabilities. Behavioral Science, 12(5), 410-430.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.

R Development Core Team. (2010). R: A languate and environment for statistical

computing. http://ww.R-project.org.

Rosch, E. (1973). Natural categories. Cognitive Psychology, 4(3), 328-350.

Rosch, E. (1978). Principles of categorization. Cognition and Categorization, 27-48. John

Wiley & Sons Inc.

Rouder, J. N., & Ratcliff, R. (2006). Comparing exemplar-and rule-based theories of

categorization. Current Directions in Psychological Science, 15(1), 9-13.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal

representations by error propagation. Parallel Distributed Processing, 318–362.

Russell, S. J., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice

Hall.

Schölkopf, B., & Smola, A. J. (2001). Learning with Kernels. The MIT Press.

Settles, B. (2004). Biomedical named entity recognition using conditional random fields

and rich feature sets. Proceedings of the International Joint Workshop on Natural

Language Processing in Biomedicine and its Applications (NLPBA).

Sha, F., & Pereira, F. (2003). Shallow parsing with conditional random fields.

Proceedings of Human Language Technology, NAACL.

Sharp, H. (1968), Cardinality of finite topologies. Journal of Combinatorial Theory 5,

82–86

98

Singh, S. P., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with soft state

aggregation. Proceedings of Neural Information Processing Systems 7, 361–368.

Smith, J. D., Chapman, W. P., & Redford, J. S. (2010). Stages of category learning in

monkeys (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental

Psychology: Animal Behavior Processes, 36(1), 39-53.

Sutton, R.S. (1996). Generalization in reinforcement learning: successful examples using

sparse coarse coding. Advances in Neural Information Processing Systems 8, pp.

1038-1044. MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Adaptive

Computation and Machine Learning. The MIT Press.

Thorndike, E. L. (1911). Animal Intelligence, Macmillan.

Vanpaemel, W., & Storms, G. (2008). In search of abstraction: The varying abstraction

model of categorization. Psychonomic Bulletin & review, 15(4), 732-749.

Vishwanathan, S.V.N., Schraudolph, N. N., Schmidt, M. W., & Murphy, K. (2006).

Accelerated training of conditional random fields with stochastic meta-descent.

International Conference on Machine Learning (ICML), 969–976.

Vollbrecht, H. (2000). Hierarchical function approximation in kd-Q-learning.

Proceedings of the 4th International Conference on Knowledge-Based Intelligent

Engineering Systems and Allied Technologies, 466-469

Walsh, T. J. (2010). Efficient learning of relational models for sequential decision

making. Ph.D. thesis, Rutgers, The State University of New Jersey, New

Brunswick, NJ.

Wang, Y., & Laird, J. E. (2007). The importance of action history in decision making and

reinforcement learning. Proceedings of the 8th International Conference on

Cognitive Modeling (ICCM). Ann Arbor, MI

99

Wang, Y., & Laird, J. E. (2010). A computational model of functional category learning

in a cognitive architecture. Proceedings of the 10th International Conference on

Cognitive Modeling (ICCM). Philadelphia, PA

Wang, Y., & Laird, J. E. (2010). Efficient value function approximation with

unsupervised hierarchical categorization for a reinforcement learning agent.

Proceedings of the 9th International Conference on Intelligent Agent Technology

(IAT). Toronto

Whiteson, S., Taylor, M. E., & Stone, P. (2007). Adaptive tile coding for value function

approximation. Technical Report AI-TR-07-339, University of Texas at Austin.

Wintermute, S. (2010). Abstraction, Imagery, and Control in Cognitive Architecture

(PhD Thesis). University of Michigan.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

Yuan, Y, & Shaw, M. J. (1995). Induction of fuzzy decision trees. Fuzzy Sets and

Systems, 69, 125–139

	Dedication
	Acknowledgments
	List of Figures
	Abstract
	Chapter 1 Introduction
	1.1 Challenge of Object Diversity
	1.2 Example Task of Object Diversity
	1.3 Overview of Chapters

	Chapter 2 Research Problem Definition and Design of General Approach
	2.1 Research Problem Definition
	2.2 Requirements of Efficient Learning
	2.3 Challenges
	2.3.1 Object Diversity
	2.3.2 Nonlinear Interaction Function

	2.4 General Assumptions and Approach
	2.4.1 Assumptions
	2.4.2 General Design
	2.4.3 Implementations and Evaluations

	Chapter 3 Combining Unsupervised Clustering and Sparse Coarse Coding
	3.1 Background
	3.2 Our Approach
	3.2.1 Category Learning System
	3.2.1.1 Category Formation
	3.2.1.2 Category Recognition

	3.2.2 Sparse Coarse Coding System
	3.2.3 Algorithm Complexity Analysis

	3.3 Evaluation
	3.3.1 Evaluation Task
	3.3.2 Empirical Results
	3.3.2.1 Evaluation Data
	3.3.2.2 Comparison with No Categorization
	3.3.2.3 Comparison with Fixed-resolution Generalization
	3.3.2.4 Comparison with Suboptimal Hierarchy
	3.3.2.5 Summary of Results and Analysis

	3.4 Related Work
	3.5 Discussion
	3.6 Summary

	Chapter 4 Modeling Human Functional Category Learning
	4.1 Background
	4.2 Related Work
	4.2.1 Hierarchical Category Learning
	4.2.2 Reinforcement Learning

	4.3 Evaluation
	4.3.1 Category Learning Speeds RL
	4.3.2 RL Shapes Category Learning
	4.3.2.1 Category Domination Model
	4.3.2.2 Basic-level Effect
	4.3.2.3 Context Effect
	4.3.2.4 Expert Effect

	4.4 Discussion
	4.5 Summary

	Chapter 5 Joint Optimization of Functional Categories and Value Function
	5.1 Background
	5.2 A Probabilistic Latent Class Model
	5.2.1 Prediction
	5.2.2 Maximum Likelihood Optimization Criterion
	5.2.3 Intuition of the Optimization Criterion

	5.3 An Hierarchical Approximation Algorithm
	5.3.1 Learning the Hierarchies
	5.3.2 Prediction

	5.4 Empirical Evaluation
	5.4.1 Synthetic Data
	5.4.1.1 Functional space
	5.4.1.2 Perceptual feature space

	5.4.2 Baselines
	5.4.3 Results and Analysis
	5.4.3.1 Increase functional diversity
	5.4.3.2 Reduce functional regularity
	5.4.3.3 Analysis

	5.5 Compare with Other Approaches
	5.6 Summary

	Chapter 6 Conclusion
	6.1 Discussion
	6.2 Contributions
	6.3 Future Directions

	Bibliography

