

Learning Integrated Symbolic and Continuous Action Models for

Continuous Domains

 Joseph Z. Xu and John E. Laird
Computer Science and Engineering, University of Michigan

2260 Hayward Street, Ann Arbor, MI 48109-2121 USA

{jzxu, laird}@umich.edu

Abstract
Long-living autonomous agents must be able to learn to
perform competently in novel environments. One important
aspect of competence is the ability to plan, which entails the
ability to learn models of the agent’s own actions and their
effects on the environment. In this paper we describe an
approach to learn action models of environments with
continuous-valued spatial states and realistic physics
consisting of multiple interacting rigid objects. In such
environments, we hypothesize that objects exhibit multiple
qualitatively distinct behaviors we call modes, conditioned
on their spatial relationships to each other. We argue that
action models that explicitly represent these modes using a
combination of symbolic spatial relationships and
continuous metric information learn faster, generalize better,
and make more accurate predictions than models that only
use metric information. We present a method to learn action
models with piecewise linear modes conditioned on a
combination of first order Horn clauses that test symbolic
spatial predicates and continuous classifiers. We empirically
demonstrate that our method learns more accurate and more
general models of a physics simulation than a method that
learns a single function (locally weighted regression).

Introduction

We are interested in the problem of developing long-living,
embodied agents that can adapt to a variety of novel
environments and tasks. One way an agent can gain
competence in a novel environment is to learn to plan in it.
This requires that the agent have an internal model of how
its actions change the environment. We call such a model
an action model.
 Many real-world environments can be characterized as
collections of discrete, interacting objects with continuous
properties embedded in a two or three dimensional space.
The action model for such an environment can be

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

described as a continuous function �: �� , �� → ���	, where
�� , ���	 ∈ ℝ� are the environment state at time steps
 and

 + 1, and �� ∈ ℝ� is the agent’s action at time
.
Common methods for learning continuous action models
include locally weighted regression (Atkeson, Moore, and
Schaal 1997), Gaussian processes, and support vector
regression (Nguyen-Tuong and Peters 2011). These
methods all assume that the model function is smooth over
its input space, and rely on this smoothness assumption for
generalization, i.e. the behavior of the model is assumed to
be similar in the neighborhood of each training example.
 However, in environments with multiple interacting
objects, the model function often changes abruptly and
discontinuously at boundary conditions. Consider a world
with a free moving ball and a fixed box. The ball’s velocity
will change smoothly when it is flying in the air, but it will
change direction instantaneously when it bounces against
the box. Whether the ball flies or bounces is determined by
whether it touches the box and not by the absolute
positions of the ball and the box. In the six-dimensional
space of the ball’s and box’s ��, �, �� positions, the points
with bouncing behavior forms a set of disjoint hyper-
planes instead of a bulbous neighborhood. In these types of
environments, the smoothness assumption fails, and
generalizations based on that assumption are invalid.
 We hypothesize that in environments with multiple
interacting objects, it is the relationships between the
objects that determine how they behave, rather than their
absolute positions in a coordinate system. Furthermore,
behaviors tend to vary smoothly when certain relationships
hold but change abruptly when relationships change. The
action model should therefore be described by a set of
individually smooth functions that cover disjoint regions in
the relation space instead of a single global smooth
function. Call these individual functions modes.
 In this paper, we present a method to learn action
models that are composed of multiple modes. Our system

automatically identifies new modes from unlabeled
training data using Expectation Maximization (EM) and
learns a classifier that predicts which mode the
environment exhibits based on spatial relationships
between objects. We compare its performance in a
simulated environment with realistic physics to that of a
global model learning approach (locally weighted
regression) and show that our modal approach has better
generalization and prediction accuracy.

Related Work

The idea of learning models with multiple modes is not
new. Toussaint and Vijayakumar (2005) learned multiple
linear models with Expectation Maximization and
distinguished between modes with a product-of-sigmoids
classifier. Many approaches to a similar problem called
“hybrid system identification” have been studied in the
control literature (Paoletti et. al. 2007), using a variety of
clustering techniques, including EM. There has also been
work on learning piecewise linear functions as the leaves
of decision trees known as model trees (Potts 2005). These
approaches all associate modes with continuous regions of
the metric state space, which generalizes poorly when
behaviors are conditioned on relationships between
objects. Our approach conditions modes on first-order
Horn clauses that test spatial relationships and thus
performs better in those cases.
 Our system uses similar combined symbolic/continuous
representations as qualitative and spatial reasoning systems
such as FROB (Forbus 1980), CLOCK (Forbus, Nielson,
Faltings 1991), and QSIM (Kuipers 1994). The focus of
those pieces of work was on symbolic reasoning with
hand-coded qualitative representations, whereas we focus
on learning and our use of symbolic information is in
service of making better numeric predictions.
 Troha and Bratko (2011) learn a qualitative model of a
robot pushing an object and use it for motion planning.
Their model differs from ours in that it only makes
predictions about directions of change for individual
dimensions of the continuous state, rather than actual
numeric values.

Approach

We assume that the environment is deterministic and fully
observable, progresses in fixed-length time steps, and is
composed of discrete objects. The environment reports its
state to the agent as a vector of continuous properties. Each
object has a position ��, �, ��, rotation �����, ��
�ℎ, ����,
and scaling factor ���, ��, ���, as well as a 3D geometry
defined by a convex hull. These properties have a fixed
interpretation in the system. Other arbitrary continuous

properties can also be included in the state vector, such as
the ��, �, �� velocity of the object. Our system has no a
priori interpretation for these properties. We also require
the environment to provide a type for each object. Our
system doesn’t have special knowledge about types, but it
does assume that objects of the same type behave
identically, which aids in generalization.
 We assume for simplicity that the action models for the
individual dimensions of the state vector are independent,
and decompose the problem of learning the model
�: �� , �� → ���	 into learning individual models
�: �� , �� → ��	 for each dimension �� ∈ ���	. Furthermore,
we treat the agent’s output � just like any other dimension
in �, so the problem further reduces to learning the
function �: � → �.
 Figure 1 gives an overview of the learning and
prediction algorithms. The learning algorithm (upper half
of Figure 1) segments the training examples into modes
and learns a classifier that associates modes with initial
states. The prediction algorithm (lower half) uses the
learned classifier to predict the mode of a state and then
uses the mode’s function to predict the value of the
modeled dimension.

Learning
Given a sequence of observations ��	, �	�, ��!, �!�, …, (� in
Figure 1) our system combines the continuous state vector
and object geometries into a 3D scene called the scene
graph. It is then able to extract spatial relationships from
the scene graph, such as if �#
$��$�
�%, &� is true. The set
of spatial relationships tested is hard-coded into the system
and invariant across domains. Because most predicates in
our system are binary, even a small number of objects
results in a large number of possible predicates. Therefore,
we only consider the predicates involving the objects
closest to the one being modeled. This heuristic is based on
the assumption that there is no “action at a distance”.
Object types are encoded as unary predicates such as
'����%�. The true relational and type predicates for each
time step are collected in the set �� and combined with the
continuous data to form the input into the model learner
��	, �	, �	�, ��!, �!, �!�, … (�).

Figure 1. Overview of the learning and prediction algorithms.

 Our system must then solve two learning problems,
which are described in detail in the following sections. We
call the first problem the segmentation problem, where the
system must identify a set of modes, the parameters of the
functions describing those modes, and which modes are
responsible for each observation (�). Solving the
segmentation problem associates with each input tuple
��(, �(, �(� a corresponding mode index)(. These
augmented observations ��(, �(, �(,)(� serve as the training
input for the classification problem (�), where the system
must learn a classifier *+,: �, � →) that predicts the
mode from the initial state of a transition.

The Segmentation Problem
Our system uses Expectation Maximization (EM) to solve
the segmentation problem, as shown in Figure 2. Given a
set of training examples ��-, �.� and a set of modes, EM
simultaneously solves for the parameters of each mode and
the assignment of examples to modes that results in a
locally maximal likelihood. We assume that each mode can
be approximated by a linear function, so the parameters for
each mode are just a set of weights /�. EM begins with a
guess at the parameters of each mode and then iteratively
alternates between an expectation (E) step and a
maximization (M) step. In the E step, the algorithm
calculates the probability that each example � was
generated by mode 0, assuming that the current parameter
estimates for 0 are correct. We assume the data has
Gaussian noise, so the probability that example ��-, �(� is
generated by mode 0 with weights /� follows a Gaussian
distribution centered on the dot product /� ∙ �- with
variance 	2!. In the M step, the parameters for each mode
are updated to maximize the likelihood that it generated the
examples assigned to it in the E step. This is done with
forward stepwise linear regression. We chose forward
stepwise regression to avoid overfitting the training data,
because the continuous state has high dimensionality even
when there are few objects in the environment, but most
models only depend on a small number of dimensions.
Repeating these two steps guarantees convergence to a
local maximum likelihood.

 For each new training example, our algorithm runs EM
to convergence or until a fixed number of iterations is
reached. The algorithm skips the M step when a new
example fits an existing mode to within a hand-tuned
threshold, allowing it to be responsive enough for online
learning. When this is not the case, the M step must rerun
the regression for the mode that needs to be updated. While
it is difficult to characterize the complexity of forward
stepwise regression, it is at least linear in the number of
training examples, and hence unsuitable for online
learning. Future work may correct this problem, for
example by discarding redundant training data.
 Textbook EM formulations assume that the number of
modes is known, but our system must infer this from
training data. We do this by initially assuming that all
examples are generated by a single noise mode with a
constant low probability. Periodically, the algorithm
attempts to find a new linear function that fits a large
subset of the noise examples. The system does this by
running a second EM loop on the noise data, only
assuming that the data was generated by a noise function
and a single linear function. If a linear function is found
that fits at least 40 examples within the aforementioned
accuracy threshold, then a new mode is added containing
those examples.
 The threshold of 40 is domain-dependent and was
chosen to avoid overfitting the noise data and inventing
spurious modes, while balancing against the need to
discover real modes without requiring too much training
data. However, with enough narrow data, the system can
still commit to overspecific modes. For example, it may
discover two separate constant-valued modes of a ball
rolling at two different speeds that can be generalized into
a single mode conditioned on the previous speed of the
ball. Therefore, when a new mode is discovered, our
system will first try to merge it with each existing mode by
looking for a function that covers both. Modes will also be
removed if they fall below the 40 example threshold. This
can occur if the examples in a mode are subsumed by a
more general mode.

The Classification Problem
The goal of the classification algorithm is to predict the
mode for each transition given the initial state. We
hypothesize that many modes can be identified based on
common, domain independent spatial relationships, but
others are based on the specific numeric properties of the
continuous state. For example, the flying mode of a ball
can be distinguished from the bouncing mode based on
whether the ball is intersecting the ground, but whether the
ball is bouncing off a ramp or rolling depends on the
numeric value of the ball’s � velocity at the beginning of
the transition. This leads us to propose that our system
actually learns two types of classifiers: a symbolic one

Figure 2. The segmentation algorithm.

based on spatial relations and type predicates (�(�, and a
numeric one based on continuous properties ��-�. These
are combined in the final classifier.
 For symbolic classification, we use the FOIL (Quilan
1990) algorithm to learn a classifier in the form of a
disjunction of Horn clauses that test the spatial predicates
of the symbolic state. FOIL is an inductive logic
programming (ILP) algorithm, and generalizes over object
identities so that the learned clauses describe the concept
using variables rather than the actual objects in the training
set. We use FOIL because it is simple to implement and
sufficient for our experiments, but want to replace it with
an incremental algorithm in the future. In our system, each
training example consists of all predicates that are true at
the beginning of the transition (and implicitly by closed
world assumption all predicates that are false), and which
mode the transition belongs to.
 Consider the example in Figure 3. The FOIL learner is
given three observations ��	, 3�, ��!, 33�, ��4, 3� where 3 is
the flying mode and 33 is the bouncing mode. It recognizes
that �#
$��$�
�%, &� is the predicate that separates modes
3 and 33, whereas �$5
�%, &� is inconsequential and
therefore discarded. The final learned clause,
~�#
$��$�
��, ��, is variablized so that it can be used to
distinguish between bouncing and flying for any ball and
obstacle, not just A and B.
 As discussed previously, some modes cannot be
distinguished by symbolic information alone. When this is
the case, each learned Horn clause may misclassify some
negative examples as false positives. Furthermore, true
positive examples that cannot be accurately described by
Horn clauses will be classified as false negatives. To
address this problem, our system learns a numeric
classifier that distinguishes between the true and false
positives of each clause whose false positive rate is above a
hand-tuned threshold. Furthermore, if the false negative
rate of the entire disjunction is too high, our system also
learns a numeric classifier to distinguish between the true
and false negatives. The final decision combines these two
types of classifiers as shown in Figure 4. The algorithm has
a waterfall model. If any pair of Horn clause/numeric
classifier both decide an instance is positive, then it is

labeled as belonging to mode 1. Otherwise it goes on to the
next clause/numeric classifier pair. If none of the pairs
consider the instance as positive, then a final numeric
classifier makes the decision between mode 1 and 2. Note
that if the false positive rate of a clause is very low, then
the numeric classifier will be null and default to a “yes”
answer. The same is true for false negatives.
 We currently use Linear Discriminant Analysis (LDA)
(Hastie, Tibshirani, Friedman 2001) for learning the
numeric classifier. Other methods such as support vector
machines can also be used, but we chose LDA due to its
simplicity and lack of tunable parameters. As future work,
we plan to investigate whether it is possible to learn new
spatial predicates from numeric classifiers that prove to be
accurate and useful over multiple domains.
 A drawback of using numeric classifiers is that they are
based on the absolute values of continuous properties
rather than the relationships between objects. Therefore,
they are more prone to overfitting than the symbolic
classifiers, and occasionally will decrease the performance
of the overall classification as the system incorrectly
second guesses its symbolic classification. We plan to
address this problem in future work.
 Since FOIL only learns binary classifiers and a model
can exhibit more than two modes, we use a one-against-
one approach to combine multiple binary classifiers (Tax
and Duin 2002). This means that for each pair of modes)
and #, we learn a binary classifier using the instances from
mode) as positive examples and the instances from mode
as negative examples. During classification, each binary
classifier casts a vote for one of its modes, and the mode
with the most votes wins. Ties are broken arbitrarily.

Prediction
Having learned a set of linear modes 7� and a classifier
*+,: �, � →), prediction is straightforward. Given the
input state � (A in Figure 1), our system first augments the
input with predicate information ��, ��, just like during
learning (B). Next, the classifier predicts which mode)
governs the transition (C). The final prediction is /� ∙ �
where /� are the linear weights learned for) (D).

Figure 3. Simple FOIL classifier learning example.

Figure 4. Classification flowchart for how clauses learned with
FOIL and numeric classifiers (Num) are combined to make a
single binary classification.

Experiments

We test the model learning algorithm’s accuracy and
generalization in a realistic physics domain. The
experimental domain is a 2 dimensional square room
containing a ball, a box, and a ramp. The box and ramp are
stationary after initial placement. The ball can bounce and
slide against the walls, floor, box, and ramp, and is affected
by gravity. The domain is implemented with the Chipmunk
Physics Engine (Lembcke 2013).
 Training occurs in blocks, each consisting of initializing
the room in a particular configuration and then running the
physics simulation for 200 time steps. The initial positions
and sizes of the ball, box, and ramp, and also the ball’s
initial direction of travel are varied in each block.
Furthermore, the exact distances between objects are
randomly varied, and the entire room is randomly placed
with respect to the origin of the coordinate system. This
randomization makes it difficult for algorithms that depend
on absolute coordinate values to generalize, but it does not
affect generalization using spatial relationships. There are
40 relationally unique initial configurations, and we repeat
them three times with different random seeds, for a total of
120 training scenarios. We test the accuracy of the learned
models on 120 test scenarios generated in the same way,
but with different random seeds. Each test block also runs
200 time steps. Finally, we repeat this training-testing
sequence five times, randomizing the presentation order of
the training configurations each time, since this effects
how the modes are learned.
 The algorithm learns two models simultaneously: one
for the horizontal or x component of the ball’s velocity,
and one for the vertical or y component. These two models
are qualitatively different because gravity acts on the y axis
but not the x axis. The algorithm does not learn models for
the ball’s position because it can be derived from the
velocity predictions. We expect the algorithm to learn

individual modes corresponding to the ball rolling on flat
surfaces, flying in the air, rolling on the ramp, or bouncing
off objects.
 Table 1 shows the complete list modes we expected in
the environment and those learned by model. 8� and 8�
are the values of the x and y velocities in the initial state of
the transition. Except for the very tiny constants introduced
by rounding errors, all the learned constants are correct:
We used a gravity constant of 9.8)�<!, and our simulation
step size was 10<> seconds. Each object has a restitution
constant of 0.9, resulting in the −0.81 constants on the
bouncing modes. The system also discovered modes that
are more general than we anticipated. We expected
separate modes for bouncing and flat rolling in the y-
velocity model, as well as for bouncing against a ramp
versus rolling on it, but the system combined them with no
loss of accuracy in each case. There were also occasional
training sequences that resulted in irregular modes, but
most of them were pruned after sufficient training.
 We compare the accuracy of our model learning method
to locally weighted regression (LWR). LWR (Atkeson,
Moore, and Schaal 1997) is an instance-based function
approximation technique that has been applied successfully
to many model learning scenarios in robotics. In LWR,
learning involves simply storing each training instance
��(, �(� in a table. To make a prediction for instance �,
LWR chooses @ training instances closest to � and fits a
linear function to them using regression. The function is
then used to make the prediction for �. This approach has
been shown to provide good generalization while fitting
arbitrarily complex functions. The most important
difference between LWR and our algorithm is that LWR
learns a single smooth function conditioned on absolute
coordinates, whereas our algorithm learns a set of
functions that can change abruptly as spatial relationships
change. We use Euclidean distance as the measure of
closeness between instances, and set @ at 300 and used a
A<! kernel, verified empirically to give good results. We
center the training and testing data on the location of the
ball so that the distance metric measures relative distance
between the ball and other objects, which is more robust
than using absolute coordinates. Note that we don’t
perform this centering for our algorithm.
 Figure 5 plots the prediction accuracy for both x and y
velocities using our model learning method and LWR. The
y-axis has a logarithmic scale and marks the ratio of the
model’s prediction error and the baseline error. The
baseline error is the average error of a model that always
predicts no change in the modeled dimension. These values
are 8.38 × 10<> for x-velocity and 9.75 × 10<> for y-
velocity. The lines in the plot represent median values.
Error bars were not drawn because they obscured the plot.
Except for the first two data points, the 5 and 95 percentile
ranges of each data point are completely separated. The

 Ideal Learned
X-velocity, flying or rolling on flat surface

8� 8�

X-velocity, rolling or bouncing on ramp

@	 ∙ 8� + @! ∙ 8� + � 0.638 ∙ 8� − 0.724 ∙ 8� + 3.92 × 10<>

X-velocity, bouncing against vertical surface

−@ ∙ 8� −0.81 ∙ 8� + 3.04 × 10<	I

Y-velocity, rolling and bouncing on flat surface

−@ ∙ 8� + � −0.81 ∙ 8� − 4.87 × 10<	J

Y-velocity, flying under influence of gravity

8� + � 8y − 9.8 × 10<>

Y-velocity, rolling or bouncing on ramp

@	 ∙ 8� + @! ∙ 8� + � −0.724 ∙ 8� − 0.448 ∙ 8� − 1.96 × 10<>

 Table 1. Ideal modes for each model and the learned modes.

results are averaged across 5 different training orders, all
40 initial configurations, and 3 random seeds.
 The plot for x-velocity only shows the prediction errors
for test points that exhibited either the bouncing or ramp-
rolling mode. This is because the third mode – flat
rolling/flying – results in no change in x-velocity and is
thus easy to predict and uninteresting, but accounts for
94% of the generated test data. Including these test
examples would drown out the discrepancy between our
approach and LWR on the more interesting transitions,
such as rolling on the ramp and bouncing off objects.
 The results show that our algorithm outperforms LWR
as expected, and that LWR was not able to perform
significantly better than the null baseline. The major
shortcoming of LWR is that Euclidean distance over the
raw input space is a poor measure of the similarity of two
transitions, even after centering the data on the ball.
Therefore, the learned model doesn’t generalize well. We
also analyzed nature of the prediction errors made by our
model, and found that they all resulted from incorrect
mode classifications. For both the x and y velocities, the
linear functions for the natural modes of the domain were
learned accurately after only a few examples, but the FOIL
classifier converged more slowly, and never reached
perfect accuracy.
 As discussed previously, there exist other multi-modal
learning algorithms, but they do not consider spatial
relationships in their mode classifiers. We argue that our
approach performs better than these other approaches in
spatial domains. To show this, we compare the
classification accuracy of FOIL with two popular
classifiers that only rely on continuous state information –

support vector machines and nearest neighbor – on the
physics simulation data. For each data point, we use the
mode that results in the lowest prediction error as the true
mode. For the SVM and NN classifiers, each training and
test example has the form ��,)�, where � is the vector of
continuous state properties and) is the true mode. For
these examples, we centered the state vectors around the
ball in the same way as for LWR. We use a quadratic
kernel for the SVM classifier. The results are shown in
Figure 6. Again, there is the problem of the flat-
rolling/flying mode dominating the x-velocity test set.
Here, we show the accuracy of all three classifiers
averaged over all examples (“All” condition), as well as
over only the examples from the ramp-rolling and
bouncing modes (“Hard” condition). Only the All
condition is shown for y-velocity. The plots show the FOIL
classifier learns significantly faster and converges at a
much higher accuracy than both SVM and NN.

Conclusion

We have presented an algorithm for learning piecewise
linear action models conditioned on both symbolic spatial
relations and continuous state properties. Our main
argument is that in spatial domains with physics-like
behavior and multiple interacting objects, knowledge of
spatial predicates can lead to more generalization and
accuracy in model learning. We have shown that our model
learning approach outperforms LWR and our FOIL-based
mode classifier outperforms SVM and NN classifiers that
only use numeric state information.
 One of the major shortcomings of our system is that
while it accepts training examples in an online manner,
many of its parts are not incremental, and it is not fast
enough to run in real-time. The major performance
bottlenecks are the algorithm for searching for new modes
and FOIL, both taking on the order of seconds for each
execution in the domain presented here. This will be
addressed in future work.
 Another limitation is our assumption that all modes are
linear. Our approach should theoretically work with
higher-order modes as well, but when the individual modes
are capable of modeling complex functions, the system
requires more sophisticated ways to balance learning fewer
complex modes with learning more simple modes.

Acknowledgment

The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099.

Figure 5. Comparison of prediction accuracy for x and y velocity
between our model learning method (MM) and LWR.

Figure 6. Performance of mode classifiers learned with FOIL,
SVM, and NN on x and y velocity modes.

0 20 40 60 80 100 120
10

-15

10
-10

10
-5

10
0

10
5

X velocity

Number of Scenarios

R
a

tio
 o

f B
a

se
lin

e
 E

rr
o

r

0 20 40 60 80 100 120
10

-15

10
-10

10
-5

10
0

10
5

Number of Scenarios

Y velocity

MM
LWR

MM
LWR

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Number of Scenarios

R
a

tio
 o

f C
o

rr
e

ct
 C

la
ss

ifi
ca

tio
ns X velocity

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Number of Scenarios

Y velocity

FOIL All FOIL Hard SVM All SVM Hard NN All NN Hard

References
Atkeson, C., Moore, A., and Schaal, S. 1997. Locally Weighted
Learning. AI Review 11. 11-73.

Forbus, K. D. 1980. Spatial and Qualitative Aspects of Reasoning
about Motion. Proceedings of 1st Proceedings of the 1st Annual
National Conference on Artificial Intelligence.

Forbus, K. D., Nielsen, P. and Faltings, B. 1991. Qualitative
Spatial Reasoning: The CLOCK Project. Artificial Intelligence
51, p 417-471.

Hastie, T., Tibshirani, R. and Friedman, J. 2001. The Elements of
Statistical Learning. New York: Springer-Verlag.

Kuipers, B. 1994. Modeling and Simulation With Incomplete
Knowledge. MIT Press.

Lembcke, S. 2013. Chipmunk Physics Engine. Version 6.1.2.
Available from http://chipmunk-physics.net.

Nguyen-Tuong, D.; Peters, J. 2011. Model Learning in Robotics:
a Survey. Cognitive Processing, 12, 4.

Potts, D. 2005. Incremental Learning of Linear Model Trees.
Machine Learning 61.

Quilan, R. 1990. Learning Logical Definitions from Relations.
Machine Learning 5, p. 239-266.

Paoletti, S., Juloski, A., Ferrari-Trecate, G. and Vidal, R. 2007.
Identification of Hybrid Systems: A Tutorial. European Journal of
Control, vol. 13, p. 242-260.

Tax, D. and Duin, R. 2002. Using Two-Class Classifiers for
Multiclass Classification. Proceedings of the 16th International
Conference on Pattern Recognition.

Toussaint, M., and Vijayakumar, S. 2005. Learning
Discontinuities with Products-of-Sigmoids for Switching between
Local Models. Proceedings of the 22nd International Conference
on Machine Learning, p. 904-911.

Troha, M. and Bratko, I. 2011. Qualitative Learning of Object
Pushing by a Robot. Working papers of the 25th International
Workshop on Qualitative Reasoning.

