

Combining Learned Discrete and Continuous Action Models

Joseph Z. Xu and John E. Laird

Department of Computer Science and Engineering, University of Michigan

2260 Hayward Street, Ann Arbor, MI 48109-2121 USA
{jzxu, laird}@umich.edu

Abstract

Action modeling is an important skill for agents that must
perform tasks in novel domains. Previous work on action
modeling has focused on learning STRIPS operators in
discrete, relational domains. There has also been a separate
vein of work in continuous function approximation for use
in optimal control in robotics. Most real world domains are
grounded in continuous dynamics but also exhibit emergent
regularities at an abstract relational level of description.
These two levels of regularity are often difficult to capture
using a single action representation and learning method. In
this paper we describe a system that combines discrete and
continuous action modeling techniques in the Soar cognitive
architecture. Our system accepts a continuous state
representation from the environment and derives a relational
state on top of it using spatial relations. The dynamics over
each representation is learned separately using two simple
instance-based algorithms. The predictions from the
individual models are then combined in a way that takes
advantage of the information captured by each
representation. We empirically show that this combined
model is more accurate and generalizable than each of the
individual models in a spatial navigation domain.

 Introduction

An intelligent agent that wishes to plan in an environment

must have an internal model of how the environment

changes in response to its actions. We call such a model an

action model. Traditionally, action models have been

provided to the agent a priori using hand-coded

representations such as STRIPS operators. However, if the

agent needs to plan in a novel environment, then it must

learn the action model from experience. We call this

learning process action modeling.

 Traditionally, action modeling has been studied in the

context of learning STRIPS operators (Carbonell & Gil

1990, Wang 1995, Pasula et. al. 2007, Xu & Laird 2010).

These methods involved learning the pre- and post-

condition lists of a given set of STRIPS operators by

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

observing examples of their execution. These methods are

confined to relational domains.

 There has also been work in robotics on learning models

for continuous environments. Most of these methods

represent the environment state as a vector of real numbers

and use function approximators to learn a continuous

function �(�, �) → �, where x is the current state, u is the
action taken, y is the resultant state. Many general function

approximation methods such as radial basis functions,

neural networks, and regression trees have been applied to

this problem. In this paper we will use locally weighted

learning (Atkeson et. al. 1997) for its simplicity and power.

 Realistic problems exhibit a combination of discrete and

continuous dynamics. For example, the trajectory of a ball

traveling through the air follows a smooth and continuous

function, but undergoes a sudden qualitative change when

with the ball hits the ground. While discrete and

continuous action modeling can individually address these

domains to some extent, it is not natural or easy. A

complex scene consisting of many objects can be

approximately described by a large number of spatial

predicates such as left-of, on-top, etc., and changes to the

scene can be encoded as predicate value changes. However

the Poverty Conjecture (Forbus et al. 1991) argues that no

single general set of spatial relations can fully capture all

the information encoded in a continuous scene. As an

example, consider a fast-moving car turning a corner. It is

difficult to use a set of spatial predicates to distinguish

between cases where the car will successfully make the

turn and cases where it will not.

 Continuous models can accurately represent such

continuous dynamics, but are weak at capturing relational

dynamics. Although they are capable of generalization by

smoothing the learned function around the neighborhoods

of training examples, continuous models have difficulty

generalizing across higher-order regularities such as how

the trajectories of two balls change in a collision unless

relevant metrics such as the distance between the two balls

are explicitly included in the state vector.

 Recent work in robotics (Plaku & Hager 2010, Choi &

Amir 2009) has explored combining robot motion planning

techniques with classical planning techniques in mixed

discrete/continuous domains. However, these methods

assume that the agents have hand-coded models of both the

continuous and relational dynamics of the environment.

Hybrid automata are a popular approach to modeling these

domains in the controls literature, but we have not found

any work on learning hybrid automata structure from

experience.

 In this paper, we integrate a learning algorithm for

continuous action modeling with a learning algorithm for

relational action modeling. Although the two algorithms

operate independently with different representations and on

different time scales, they are embedded together in the

Soar cognitive architecture (Laird 2009). The combination

outperforms the individual approaches in an example

domain that has both continuous and discrete dynamics.

The Rooms Environment

The test environment that we use throughout the paper is

called the Rooms environment. This environment consists

of an agent embodied as a moving square navigating

among a set of connected rooms. Each room has one

switch in the form of a floor tile and one door that leads to

another room. Initially all doors are closed. When the agent

moves over a switch, the door leading to the next room

slides open. The environment’s state is represented as a

vector of real numbers (Figure 1.a). The vector contains

the x, y coordinates of the agent, rooms, doors, and

switches. The agent’s output is a vector of two numbers

representing its vertical and horizontal velocities. The

environment has discrete time and changes in lock step

with the agent. At every time step, the environment sends

its state vector to the agent, who must then specify its

horizontal and vertical velocities for the next time step.

The environment then updates its state based on those

inputs and repeats the loop.

System

The agent is implemented in the Soar cognitive

architecture. Soar combines multiple memory, learning,

and decision mechanisms. Soar’s working memory and

long-term procedural memory mediate the interactions

between all other components. Working memory encodes

information as a labeled, directed graph structure.

Production rules test for the presence of specific

substructures in the working memory graph and fire when

those structures are present, making changes to working

memory. Productions can initiate action in and receive

responses from other Soar modules by testing for and

creating structures in designated parts of working memory

that are monitored by the components.

 Soar also has an episodic memory (Nuxoll & Laird

2007, Derbinsky & Laird 2009) that automatically records

the state of working memory at fixed intervals, a semantic

memory for storing long-term declarative facts, and the

Spatial Visual System (SVS; Wintermute 2010) for

reasoning about continuous spatial scenes. In this paper we

are only concerned with episodic memory and SVS.

Episodic Memory

The episodic memory mechanism stores periodic snapshots

of working memory in an independent long-term memory.

Each snapshot is called an episode. Stored episodes can be

retrieved into working memory by querying episodic

memory with a cue. The cue specifies a subset of the

episode that the agent wants to retrieve. The episodic

memory mechanism returns the episode that shares the

most common substructure with the cue. We describe later

how we use this structure-matching mechanism to

implement a relational action model learner.

SVS

SVS mediates between a continuous environment and

Soar’s symbolic working memory. The environment

deposits its state in SVS as a vector of continuous numbers

(Figure 1.a). The numbers represent the centroid positions

(x, y, z), rotations (roll, pitch, yaw), and scaling factors (sx,

sy, sz) of all objects in the environment. Associated with

each object is also a 3D geometry defined as a convex hull

over a point cloud. For the Rooms environment, we use

only two dimensional coordinates and ignore rotation and

scaling.

 SVS encodes the environmental state in a continuous

spatial scene buffer (Figure 1.b). The agent reasons about

the continuous scene by querying for the truth values of

spatial literals. For example, the agent can ask SVS

whether the convex hulls of two objects intersect.

Currently SVS contains a fixed set of basic innate spatial

predicates, including intersection, containment, and

alignment. The result of a query is placed into Soar’s

working memory. By using an appropriate set of queries,

the agent can create a relational representation of the

spatial scene in working memory. For the Rooms

environment, the agent queries for containment

relationships between rooms and the agent, doors, and

switches, and also intersection relationships between the

agent and switches and between rooms. The relational state

is encoded as a bipartite graph with a set of literal vertices

and a set of object vertices (Figure 1.c). Edges connect

each literal vertex with the object vertices corresponding to

its arguments. Each literal vertex is labeled as either true or

false with the result of the corresponding query.

 One of the contributions of this paper is the addition of

continuous model learning and continuous control

subcomponents to SVS. The model learning component is

described in detail below.

Continuous Controller

The controller mediates between the discrete actions

generated by production rules and the continuous outputs

to the environment. Discrete actions are defined as desired

changes to predicate values. For example, when the agent

is not on a switch, it can instruct the controller to make the

literal intersect(agent, r0_switch) true, i.e., it wants to

move to the switch. In order to translate this command into

continuous outputs, the controller needs to know what

outputs will take the environment towards a state where the

predicate is true.

 We associate each spatial literal with an objective

function over continuous states that has a global minimum

at a state where the literal is true. For example, we take the

objective function for the literal intersect(a, b) to be the

squared Euclidean distance between the centroids of a and

b. Given a command to change the value of a certain

literal, the continuous controller follows the gradient of the

objective function until either the desired literal is achieved

or a local minimum is reached. It does this by sampling the

range of possible outputs at each time step, predicting the

next state resulting from using that sample with the learned

continuous model, and calculating the value of the

objective function at that state. It then chooses the output

that results in the lowest next objective value, and repeats.

Hence the controller implements a greedy search.

 Even though the agent specifies only one literal to

change per discrete action, it is often the case that other

literals will change while executing the action. For

example, if the agent is in room r1 and moves to make

intersect(agent, r2_switch) true where r2_switch is located

in room r2, then it will also have made contains(r2, agent)

true and contains(r1, agent) false in the process.

Furthermore, the controller can reach local minimums

before achieving the desired literal. For example, if the

agent wishes to enter a room whose door is closed, then the

controller will become trapped in a local minimum next to

the door. The agent must then take a different discrete

action to make progress.

Learning Action Models

In the context of our system, we define the action model to

predict the literal changes in the relational state that results

from taking a discrete action. Even though our system is

also capable of making predictions about changes to the

continuous state, we are mainly concerned with relational

predictions because goals are usually given to the agent as

relational conditions. For example, a goal in the Rooms

environment may be for the agent to move into a certain

room rg, which corresponds to making contains(rg, agent)

true.

Learning Continuous Action Models

Given a vector state x and a motor output u, the purpose of

the continuous model is to predict the resultant vector state

y. In other words it must approximate the environment

function �(�, �) → �. We use locally weighted learning to
learn the model. Locally weighted learning is an instance-

based learning technique that combines nearest neighbor

and linear regression. For each time step elapsed in the

environment, the model stores the observed tuple (�, �, �)
in a database. To make a prediction for a state and output

(�′, �′), the model first chooses k closest training samples
to (�′, �′) and performs a linear regression on them. The

Figure 1. System and representations overview.

Vector Representation Relational RepresentationSpatial Scene Representation

1.3

2.1

3.0

3.4

0.9

0.4

Agent.y

Agent.x

R0.x

R0.y

R0_Switch.x

R0_Switch.y

R0_Door

R1R0

R0_Switch

R1_Switch

Agent

SVSEnvironment Symbolic Soar

continuous output Controller

spatial predicates

queries

Productions

Spatial Scene

discrete actions

Agent R0_Door

Contains IntersectsContainsContains

R0 R0_Switch

Episodic

Memory

Working

Memory

Continuous

Model

continuous

state
a c

c

a

a cb

b
object geometries

resulting local linear model is then used to make the

prediction. This approach is online and incremental, and

has been shown to provide good generalization as well as

being able to fit arbitrarily complex functions. We set k at

20 for the experiments in this paper.

 To make a prediction about which literals change as a

result of performing some discrete action, SVS simulates

the controller’s trajectory using the continuous model

rather than sending it to the environment. At each step, the

model updates the spatial scene based on its prediction.

These changes to the scene appear in working memory as

if they were caused by the environment. This kind of

transparency allows the same set of production rules to

control both actions taken in the environment as well as in

simulation.

Learning Relational Action Models

The relational model makes direct predictions about how

the relational state changes as a result of discrete actions

issued to the controller. This is similar to the problem of

learning STRIPS operators from example transitions. We

use an instance-based algorithm that is both online and

incremental first described in (Xu & Laird 2010).

 The agent stores each transition it experiences in its

episodic memory as a pair of adjacent episodes. To make a

prediction about which literals change from taking action a

in state s, our algorithm first queries episodic memory for a

state t that is similar to s where a was also performed. We

retrieve t with a cue that includes the discrete action, a

subset of the literal graph, and type information (i.e.

containment literals can only map to containment literals

and doors can only map to doors) but not the names of

objects. Therefore, the algorithm generalizes training

instances to all situations with similar relational structure

modulo object names.

 Next, the algorithm retrieves episode t’ that immediately

follows t. The two episodes are compared to find the literal

changes that occurred, and then those changes are

analogically mapped back into s. The analogical mapping

algorithm is similar to the one used in the Structure

Matching Engine (Falkenheiner 1989). The intuition is that

since s and t are relationally similar, the changes that occur

between t and t’ will be relationally similar to the changes

that will occur in s.

The Combined Model

We now describe how the two models are combined to

make a final prediction. Figure 2 shows an example

walkthrough of this process. The agent first makes multiple

predictions with its relational model using different

retrieved episodes. Because important spatial information

may be missing from episodic memory or the retrieval cue,

episodes with different spatial properties will structurally

match the initial state equally well. In the example, the cue

used does not specify the relationship between the agent’s

current room and the room containing the switch, so one of

the retrieved episodes is of the agent moving to a switch in

the same room (N) while the other is of the agent moving

to a different room (M).

 In order to determine which retrieval is correct, the agent

makes a prediction using the continuous model. Since the

continuous model’s prediction is based on a simulation

instead of an analogical mapping, it takes into account all

the spatial information in the scene. In the example, the

continuous model correctly predicts that the agent will

enter another room when it tries to hit the switch.

However, the continuous model is poor at generalizing

over relational dynamics, and it doesn’t predict that hitting

the switch will open the door, because in the agent’s

training examples the switch was in a different location. To

make the final prediction, we assume that the literal

changes agreed upon by all the relational model predictions

are valid, and for the literal changes that are not in

agreement, we take the predictions from the continuous

model. In the example, the agent combines the agreed upon

predictions about the door opening with the predictions

about the agent changing rooms from the continuous model

to make the correct final prediction.

Figure 2. Example walkthrough of the combined model making a

prediction. Two predictions are made by the relational model,

one that predicts the agent will change rooms (contains(R0,

Agent) is made false and contains(R1, Agent) is made true) and

another that does not. Both agree on the opening of the door

(contains(R1, R1_Door) is made false). The continuous model is

used to resolve the disagreement in favor of the room change.

The final prediction includes both the room change and the door

opening.

R0

Agent

R1

R1_Switch

R0_Door

R1_Door

INITIAL STATE RELATIONAL MODEL

CUE

EPISODE M

EPISODE N

FINAL PREDICTION

CONTINUOUS MODEL

+intersect(Agent,R1_Switch)

-contains(R1,Agent)

-contains(R1,R1_Door)
-contains(R0,Agent)

+contains(R1,Agent)

+intersect(Agent,R1_Switch)

+contains(R1,Agent)

-contains(R0,Agent)

+intersect(Agent,R1_Switch)

-contains(R1,R1_Door)

-contains(R1,R1_Door)

+contains(R1,Agent)

-contains(R1,Agent)

+intersect(Agent,R1_Switch)

Experiments

To measure the advantage gained by combining the

relational and continuous models, we tested the prediction

accuracy of the continuous model alone, the relational

model alone, and the combined model on random

transitions in the Rooms environment.

 To train the agent for each condition, we repeatedly

instantiate the agent in randomly generated states in the

Rooms environment. The state always consists of four

rooms with one switch each and doors separating them.

The doors are randomly chosen to be open or closed. For a

single agent, the positions of the switches in the rooms are

fixed. This prevents the continuous model from smoothing

over training examples where the same switch is in

different places and as a result incorrectly predicting that

the switch moves.

 The agent first wanders for ten steps, adding ten samples

to its continuous model, and then attempts to change a

randomly chosen literal. This results in the agent traversing

a trajectory along the literal’s gradient and further adds a

number of samples to its continuous model. This entire

training sequence adds exactly two episodes to the agent’s

episodic memory: an episode before attempting to change

the literal and an episode after. We repeat this training

procedure on all 168 combinations of door configuration

and discrete actions for one configuration of switches.

 In preliminary experiments we found that the continuous

model trained in this way did not consistently learn that

doors impeded movement. This is because when making a

prediction for a location close to a door, the nearest

neighbor search will return training examples of the agent

on both sides of the door. While the training examples on

one side of the door suggest that the agent will be blocked

by the door, the examples on the other side suggest that the

agent will move unimpeded. The weighted linear

regression smoothes over these examples and predicts that

the agent’s movement will be slowed by the door but not

stopped. Because allowing movement through doors is

tantamount to ignoring all spatial aspects of the problem,

we manually added knowledge to the agent to stop a

simulation as if a local minimum was encountered

whenever the agent intersected a door. As discussed

before, not being able to accommodate abrupt changes in

the dynamics of the world is a general problem with

continuous function approximators. Since we are using the

continuous model to primarily help in generalization of the

relational model, this piece of a priori knowledge does not

invalidate our results. However, it is a problem we will

address in future work.

 At the intervals where the agent has experienced 10, 30,

50, 100, and 168 training examples, we test the agent’s

prediction performance on a distinct test set of 50

randomly generated combinations of initial states and

discrete actions. The same 50 test combinations are used at

each interval. We measure the agent’s performance by the

average number of incorrect literals it predicts. 1.75

predicates changed in each test transition on average, with

a maximum of 10. The results averaged over 24 random

switch configurations are shown in Figure 3. As the plot

shows, while the relational model alone initially performs

better than the continuous model, presumably due to its

ability to generalize better on few training examples, its

performance plateaus faster and it ends performing slightly

worse than the continuous model. The combined model

both generalizes better and has better asymptotic

performance than either of the individual models.

 To better understand the performance of each model,

Figure 4 breaks the error into two cases. The stacks in a

group from left to right correspond to the continuous

model, the relational model, and the combined model. The

bottom bars in the stack show the number of missed

literals, meaning the model predicted that a literal remains

unchanged when in fact it changed. The top bars show the

number of extra literals, meaning the model predicted that

a literal changes when in fact it did not.

Figure 3. Average number of incorrect literals per prediction

for the three types of models. Error bars indicate one standard

deviation.

Figure 4. Average number of extra and missed predicates per

prediction. The bars from left to right are continuous model

only, relational model only, and combined model.

0

0.5

1

1.5

2

2.5

3

0 50 100 150

N
u

m
.

In
c

o
r

r
e

c
t

li
te

r
a

ls

Training Examples

Continuous

Relational

Combined

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

10 30 50 100 168

A
v

g
.

In
c

o
r

r
e

c
t

P
r

e
d

ic
a

te
s

Training Examples

Extra

Missed

 Most of the discrepancy between the performance of the

continuous model and the combined model consists of

missed literals. This is due to the fact that the continuous

model cannot capture the causal link between stepping on a

switch and opening a door. The continuous model only

learns that a door opens (changes position) when the agent

moves to the absolute location of the corresponding switch

in the training room configuration. In the test

configurations, the switch positions are randomly

permuted, but the continuous model still associates the

original position of the switches with door opening. The

problem is that the relative distances between the agent and

the switches are not considered by the distance metric of

the nearest neighbor algorithm underlying the continuous

model. The relational model can capture this dynamic

because its distance measure is based on relational

structure and can be conditioned on the intersect(agent,

switch) literal which is invariant of the absolute positions

of the agent and switch. Note that even though the

continuous model does better overall than the relational

model, it consistently misses more literals.

 The cause of the discrepancy between the relational

model and the combined model is more convoluted. By

examining the traces of individual runs, we see that in

some cases the relational model predicts that the agent

cannot enter a room or step on a switch in a different room

because the doors between the start and end positions were

closed in the retrieved episodes. This results in missed

literal changes. In other cases the exact opposite problem

occurs and results in extra literal changes. The combined

model is robust to the second case due to the predictions

from the continuous model. However, in cases involving

stepping on switches in other rooms, even though the

continuous model successfully predicts that the agent can

intersect the switch and the relational model successfully

predicts that stepping on the switch opens a door, the

combined model only takes the intersection of these

predictions, resulting in it not predicting the door to open.

This is a shortcoming of the way we are combining the

predictions and should be improved in future work.

Conclusion

In this paper we have described an approach to integrating

continuous and relational model learning techniques in a

single agent architecture. We showed that by combining

the predictions made by the two types of models, we can

make predictions that both generalize better on small

numbers of training examples and are more accurate in the

limit. Although more sophisticated and specialized

continuous modeling techniques can probably yield better

results, our point is that a hybrid of relatively simple

techniques can capture some of the same complex

dynamics that the specialized algorithms are designed for.

 As discussed previously, one of the shortcomings of

locally weighted learning is that it incorrectly smoothes

over training examples that are qualitatively different. This

has not been addressed here because this paper is primarily

concerned with improving relational predictions using the

continuous model as additional knowledge. Our planned

immediate future research direction is to explore ways to

prevent these types of problems using knowledge encoded

in the relational model.

 Another interesting research direction concerns the

choice of spatial queries used to build the relational state.

This is an important factor in determining how regular and

learnable the relational dynamics of the environment are.

In this paper we designed the queries by hand to be

sufficient to learn a good model over. It would be

interesting to explore approaches for the agent to learn

these through experience.

Acknowledgment

The authors acknowledge the funding support of the Office

of Navy Research under grant number N00014-08-1-0099.

References

Atkeson, C., Moore, A., and Schaal, S. 1997. Locally Weighted Learning.

AI Review 11. 11-73.

Carbonell, J. G. and Gil, Y. 1990. Learning by Experimentation: The

Operator Refinement Method. Machine Learning, An Artificial

Intelligence Approach, vol 3. Morgan Kaufmann, San Mateo, California.

Choi, J. and Amir, E. 2009. Combining Planning and Motion Planning.

ICRA 2009.

Derbinsky, N. and Laird, J. E. 2009. Efficiently Implementing Episodic

Memory. Proc. of 8th ICCBR.

Falkenhainer, B., Forbus, K. D., and Gentner, D. 1989. The Structure-

Mapping Engine: Algorithms and Examples. Artificial Intelligence 41.

Forbus, K.D., Nielsen, P., & Faltings, B. 1991. Qualitative spatial

reasoning: the CLOCK project. Artificial Intelligence 51(1-3)

Laird, J. E. (2008). Extending the Soar Cognitive Architecture. Proc of
the First Artificial General Intelligence Conference.

Nuxoll, A. M. and Laird, J. E. 2007. Extending Cognitive Architecture

with Episodic Memory. Proc. 22nd AAAI.

Pasula, H., Zettlemoyer, L., and Kaelbling, L. 2007. Learning Symbolic

Models of Stochastic World Domains. JAIR 29. 309-352.

Plaku, E. and Hager, G. 2010. Sampling-based Motion and Symbolic

Action Planning with Geometric and Differential Constraints. ICRA 2010.

Wang, X. 1995. Learning by Observation and Practice: An Incremental

Approach for Planning Operator Acquisition. Proc. 12th ICML. 549-557.

Wintermute, S. 2010. Abstraction, Imagery, and Control in Cognitive

Architecture. PhD. Thesis, University of Michigan.

Xu, J. and Laird, J. E. 2010. Instance-Based Online Learning of

Deterministic Relational Action Models. Proc. 24th AAAI.

