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Abstract 

This dissertation presents a theory describing the components of a cognitive 

architecture supporting intelligent behavior in spatial tasks. In this theory, an abstract 

symbolic representation serves as the basis for decisions. As a means to support 

abstract decision-making, imagery processes are also present. Here, a concrete (highly 

detailed) representation of the state of the problem is maintained in parallel with the 

abstract representation. Perceptual and action systems are decomposed into parts that 

operate between the environment and the concrete representation, and parts that 

operate between the concrete and abstract representations. Control processes can 

issue actions as a continuous function of information in the concrete representation, 

and actions can be simulated (imagined) in terms of it. The agent can then derive useful 

abstract information by applying perceptual processes to the resulting concrete state. 

This theory addresses two challenges in architecture design that arise due to the 

diversity and complexity of spatial tasks that an intelligent agent must address. The 

perceptual abstraction problem results from the difficulty of creating a single perception 

system able to induce appropriate abstract representations in each of the many tasks an 

agent might encounter, and the irreducibility problem arises because some tasks are 

resistant to being abstracted at all.  Imagery works to mitigate the perceptual 

abstraction problem by allowing a given perception system to work in more tasks, as 

perception can be dynamically combined with imagery. Continuous control, and the 

simulation thereof via imagery, works to mitigate the irreducibility problem. The use of 

imagery to address these challenges differs from other approaches in AI, where imagery 

is considered as an alternative to abstract representation, rather than as a means to it. 

A detailed implementation of the theory is described, which is an extension of the Soar 

cognitive architecture. Agents instantiated in this architecture are demonstrated, 
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including agents that use reinforcement learning and imagery to play arcade games, and 

an agent that performs sampling-based motion planning for a car-like vehicle. The 

performance of these agents is discussed in the context of the underlying architectural 

theory. Connections between this work and psychological theories of mental imagery 

are also discussed. 
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Chapter I - Introduction 

People are confronted with a range of situations in their everyday lives that are 

characterized by a need for precise interaction with the spatial aspects of their 

surroundings. As a few extreme examples, consider catching a ball, solving a jigsaw 

puzzle, or parallel parking. To catch a ball, a person must position their hand in a place 

where the ball will arrive; whether or not a given position meets this criterion depends 

upon the exact velocity of the ball and the influence of gravity. To solve a puzzle, a 

person must find which pieces fit together, which is a property that depends on the 

precise details of the shapes of both pieces. And to parallel park a car, the complex 

relationship between the controls of the car and its position on the street determines 

whether or not a given action sequence will result in successful parking. 

Of course, the fact that a person can act as if all of this information has been considered 

does not imply that it is explicitly represented within their mind and reasoned over. 

However, to build machines capable of human-level intelligence, or to create detailed 

models of human cognition, hypotheses about what is represented and how it is 

processed to generate this sort of behavior are needed. 

In this thesis, work developing such a theory is presented. The problems I focus on are 

spatial control problems. In these problems, based on the spatial state of the world, an 

agent must make decisions about actions that will (possibly) change that state. This 

category includes tasks like those mentioned above, along with simpler tasks like the 

stacking blocks on a table. It does not include tasks where the perceptions provided to 

the agent are not spatial, like language understanding, or tasks where the result of 

reasoning is not the selection of an action that will have spatial effects, like solving a 

physics homework problem. However, those tasks do involve spatial information, and 

humans address all of these tasks (seemingly using the same basic machinery), so it is a 
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long-term goal of the theory to eventually address them. Spatial control problems are 

some of the most basic problems any agent must solve, though, so they will be the focus 

here.  

In spatial control tasks, as in most tasks, an agent can benefit from using an abstract 

internal representation of the structure of the task, where unnecessary detail is 

removed, allowing for more efficient processing. However, as will be explained in detail 

in the next chapter, there are two problems inherent in designing an architecture 

capable of abstract representation in spatial control tasks. First, the diversity of tasks an 

intelligent agent must address is large, and it is difficult to create a single perception 

system to create appropriate abstract representations in all such tasks. This difficulty is 

the perceptual abstraction problem. Second, some tasks are resistant to being 

abstracted at all, as is the case when the appropriate action outputs vary continuously 

as a precise function of the details of the environment: this is the irreducibility problem. 

The use of continuous controllers can partially remediate the irreducibility problem, but 

difficulties are encountered integrating these into a general-purpose cognitive 

architecture when the diversity and complexity of different spatial tasks is taken into 

account. 

In this thesis, I present a theory of basic architectural mechanisms that can work to 

mitigate the perceptual abstraction and irreducibility problems. By mitigating these 

problems, the central claim of this thesis is that this theory represents progress towards 

the goal of a cognitive architecture capable of general intelligence in spatial tasks. The 

crucial aspects of the theory include the use of both abstract and concrete (highly 

detailed) representations of the state of world, continuous action controllers which 

access the concrete representation, and simulative imagery capability, where internal 

simulations based on concrete representation are used to derive abstract information 

about the consequences of potential actions. 

As will be explained, the theory leads to a set of functional benefits, which act both to 

improve performance in individual tasks and to increase the number of tasks that can be 
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addressed by the architecture (its generality). The theory has been implemented, by 

augmenting the Soar cognitive architecture (Laird, 2008; Newell, 1990) with memories 

and processes for handling spatial information. Agents instantiated in the implemented 

architecture presented here provide demonstrations of both the operation of the 

architecture itself and the functional benefits of the underlying theory. 

An inspiration for the theory has been psychological research in mental imagery. This 

research has provided strong evidence that people maintain and manipulate visual and 

spatial information at a level close to that of perception, reusing the same systems that 

process perceptual data to process internally generated (imaginary) data (Kosslyn et al., 

2006). This work in this thesis builds on existing work on computational imagery 

systems, particularly that of Lathrop (2008), who created a pilot implementation of a 

mental imagery extension for Soar, but also drawing on other theories and systems 

(e.g., Barsalou, 1999; Glasgow & Papadias, 1992; Grush, 2004; Huffman & Laird, 1992; 

Kosslyn et al., 2006; Kurup & Chandrasekaran, 2006).  

However, as outlined above, here, I start with the assumption that abstract 

representation is used, and examine issues that arise in creating an architecture to 

support abstract representation in arbitrary problems. Concrete, perceptual-level 

representation and imagery are incorporated in the theory as a means to this end. In 

contrast, in other theories and systems, these aspects are instead presented as a means 

to model psychological phenomena, or to allow the agent to exploit differences in 

processing efficiency that different representations allow.  

To elaborate on this, prior functionality-based examinations of imagery have assumed 

that since, in principle, abstract propositional representations and concrete perceptual 

representations can encode the same information, the primary functional role for 

imagery is to allow more efficient inference. However, the analysis here reveals that, in 

a general-purpose architecture, these representations will likely not be informationally 

equivalent. Particularly, the abstract representation alone cannot capture all relevant 
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details of the problem, while these details can be represented at the concrete level. A 

functional role for imagery is then to compensate for this informational inequivalence. 

This concept leads to a difference in the broad way perceptual-level representation and 

imagery are understood in the context of a cognitive system. Rather than viewing these 

aspects primarily as a more efficient means for addressing particular tasks, like solving 

geometry problems, or as a means to model human imagination, here, they are viewed 

as essential parts of the basic process of capturing the right details of the state of the 

outside world in order to choose an action. 

This view is reflected in the types of tasks addressed. Spatial control tasks are studied, 

rather than tasks where the goal itself is to imagine something. The use of imagery in a 

particular task emerges from the need to construct appropriate abstract properties for 

that task given the architectural means available, not due to the task being “about” 

imagery. The same basic architectural mechanisms that allow an agent to perform 

mental rotation or solve geometry problems might also allow this, but the tasks 

examined here are more basic, involving the immediate interaction between the agent 

and its environment. 

In order to make traction in these tasks, in this work, it is assumed that a concrete 

representation encoding spatial properties is available, and that this representation, 

combined with the agent’s background knowledge, contains all of the relevant 

information necessary for the agent to act intelligently (where imagery processing may 

be necessary to make some of this information explicit). General-purpose perception in 

AI and robotics is an unsolved problem, so in this work the tasks studied will use either 

simulated environments or limited environments where perception is possible. 

Nevertheless, as will be demonstrated, interesting tasks can still be addressed, and 

progress can be made towards the overall goal of a general-purpose cognitive 

architecture for spatial tasks. 
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The plan for the rest of this document is as follows: 

Chapter II outlines the basic assumptions behind this research, and then motivates the 

perceptual abstraction and irreducibility problems through a few detailed examples. 

In Chapter III, the basic architectural theory is introduced, and mapped to particular 

functional benefits. The approach for evaluating the theory is also explained in this 

chapter. 

In Chapter IV, the Soar/SVS architecture which instantiates the theory is presented. As a 

complete, functional system, this architecture includes many important details that are 

not part of the general theory, including mechanisms for several different types of 

imagery operations. These details are described here. 

Chapter V presents a set of reinforcement learning agents instantiated in Soar/SVS. A 

simple technique is presented, where imagery is used as a means to infer abstract state 

information in a reinforcement learning agent, and a new algorithm, ReLAI, is 

introduced that more tightly integrates imagery and reinforcement learning. Some basic 

theoretical analysis of ReLAI is presented, and related to the benefits of the theory. An 

interface connecting Soar/SVS to an emulator for the Atari 2600 game system is briefly 

discussed, and agents that address tasks based in three different arcade games are 

presented. These agents are analyzed with respect to the ReLAI algorithm and with 

respect to the broader architectural theory. 

In Chapter VI, an agent in Soar/SVS that performs motion planning for a car-like vehicle 

is presented. This agent is an instantiation of an existing algorithm for motion planning 

within the architecture. The algorithm, RRT (LaValle & Kuffner Jr., 2001) was developed 

by others not working in the context of a cognitive architecture, but maps easily onto 

the system here, and demonstrates the benefits of the theory. 

Chapter VII presents related work, including discussions of AI research in cognitive 

architecture, robotics, and qualitative reasoning, along with psychological research in 

cognitive modeling and theories of grounded cognition. 
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Chapter VIII reviews the claims made and the demonstrations thereof in implemented 

agents. A brief discussion is presented, covering how insights uncovered here might 

apply to cognitive models and the imagery debate in psychology. Some contributions of 

the thesis are enumerated, future work is discussed, and the main body of the 

dissertation is concluded. 

At the end of the document, an appendix is presented where issues involving the 

representation of quantities in Soar’s working memory are discussed, as many concerns 

in that area overlap with the work on SVS presented in the main part of the thesis. 
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Chapter II -  Motivation 

In this chapter, issues behind representing and solving spatial problems in a task-

independent architecture are introduced through a few simple examples, and some 

basic problems in cognitive architecture design are laid out. 

2.1 Using Symbolic Representation for Decision-Making 

At a high level, any agent can be viewed as a system that takes in sensations and 

produces actions. The central goal of this work is to investigate cognitive architectural 

structures to support intelligence in spatial tasks; that is, to investigate common 

computational representations and mechanisms to allow an agent to efficiently process 

its sensations and produce action choices that an external evaluator might judge as 

intelligent. 

The space of all theories is huge, and not all possibilities can be addressed here. Instead, 

this analysis takes discrete decision-making as a starting point: we assume that the 

agent’s reasoning process is a series of steps where potential action choices are 

weighed, and one action is chosen. In addition, we assume that this decision-making is 

contingent upon symbolic information. To keep the discussion as general as possible, 

the definition of “symbolic information” will remain purposefully vague. Here, the only 

important property of this information is that, from the perspective of the decision 

procedure, symbols are discrete entities that have no intrinsic similarity to one another. 

Essentially, this means that properties influencing the decision (for example, learned 

action values) cannot be a continuous function of components of the agent’s internal 

state. 

As will be explained in detail shortly, there are two basic implications of these 

assumptions: an agent needs to derive symbolic information that distinguishes between 

situations where one decision should be made versus another (so the correct decisions 
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can be made), and this symbolic information should distinguish between as few 

situations as possible (so minimal knowledge is required to make decisions). 

These assumptions are fulfilled by decision making in Soar and other symbolic cognitive 

architectures, along with table-based reinforcement learning systems and symbolic 

planning systems. They do not cover reinforcement learning with continuous function 

approximation, nor systems where the agent’s entire behavior is described by a 

continuous function from input to output (e.g., a feedback rule or neural network), and 

there is no notion of discrete decisions between actions. 

It should be noted that these assumptions do not mean that actions must be a function 

of symbolic perceptions alone. Previous perceptions and arbitrary background 

knowledge can influence decision making. In addition, non-symbolic processes can 

operate over symbolic information and effect decision making. For example, 

reinforcement learning adjusting control biases (Sutton & Barto, 1998), memory 

activation influencing knowledge retrieval (Anderson et al., 2004), or Bayesian reasoning 

to infer properties from evidence (Tenenbaum et al., 2006) can all fit in this framework.  

In addition, the assumption that discrete decision-making is present is not intended to 

mean that every aspect of the agent’s external behavior—every detail of its motor 

vector—must be the direct result of a decision. As will be discussed, hierarchical control 

is necessary in many spatial problems, and symbolic decision-making at the upper 

level(s) of the hierarchy is sufficient to meet these assumptions. 

2.2 Motivating Tasks 

To better understand what is necessary to represent and solve spatial tasks, three 

example tasks are introduced in this section. 
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2.2.1 The Blocks World 

In the blocks world (Figure 1), an agent is presented with some blocks on a table, and 

has a simple task of stacking them in some specific configuration, such as block A on 

block B on block C. At any time, the agent can move any block that has nothing on top of 

it. Blocks can be moved to the top of another block or to the table. 

A straightforward way of addressing this task in a symbolic agent is to use a planning 

language such as STRIPS. The state is described in terms of abstract predicates
1
, as 

shown on the right of the figure, and rules encode possible actions available to the 

agent. For example, a rule might encode that if a block X is on another block Y 

(on(X,Y) is true), and X moved to the table, block Y is now clear and block X is now on 

the table (on(X,Y) is no longer true, on(X,table) is true, and clear(Y) is true). In 

the simplest case, the initial state and the goal of the problem are expressed in similar 

terms, and the problem space can be searched through using a standard algorithm (e.g., 

iterative deepening), finding a sequence of actions that lead to the goal. 

An alternative approach is to use a reinforcement learning algorithm to gradually learn a 

policy through interaction with the environment (Sutton & Barto, 1998). In this 

approach, the state could again be represented in terms of abstract predicates
2
, but the 

goal is instead mapped onto a reward signal. With enough trials, the agent can learn a 

policy to maximize its reward, effectively solving the problem. 

                                                      
1
 Throughout this work, predicate representations will be used as notational shorthand for generic 

symbolic representations. The use of predicates is not meant to imply anything about the symbolic 

processing that could be used, but merely to illustrate what data is encoded in terms of symbols. 

2
 In line with the symbolic decision-making assumption, when discussing reinforcement learning here, I 

am referring to table-based RL, and not RL with function approximation. Connections between the issues 

discussed here and RL function approximation will be discussed in Section 7.4. 

Figure 1: A simple blocks world task. 
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These agents share the general characteristic that the end result (after planning has 

occurred, or a policy has been learned) is a mapping from states to actions. In the blocks 

world, for both of these agents, the on and clear predicates capture the right aspects 

of the task such that an optimal plan or policy can easily be found by an appropriate 

planner or learning algorithm.  

One of these agents might exist in a world where it is repeatedly presented with blocks 

world situations, and must solve each one. In that case, the agent is solving multiple 

instances of the same task. In realistic environments, any given instance of a task might 

vary in its details. For example, in different instances, the blocks might be in slightly 

different positions, they might be different colors, or be slightly larger or smaller.  

However, the representation of the task used here is good enough that it covers all of 

these variations of the task. This is the benefit of using an abstract description of the 

world. If an abstraction correctly summarizes the important properties of the task, as it 

does in this case, lower-level details can be ignored so that many underlying problem 

instances are mapped to a single internal task representation. Any instance of the task 

where the initial state encodes that all blocks are on the table can be solved with the 

same action sequence, regardless of the exact location of the blocks on the table, their 

size, color, etc.  

In opposition to the abstract agents described above, consider an agent using a more 

detailed representation, such as continuous coordinates describing the shapes of blocks, 

without a higher-level interpretation (we will call this detailed representation concrete). 

As these coordinates would be treated symbolically, any variation in the blocks 

(however minor) would cause the agent to perceive a completely different state. An 

agent using concrete information for a symbolic representation would have very little 

generalization ability: it would be extremely unlikely that two blocks in different 

problem instances would ever appear in the same precise position, so the agent would 

never be able to transfer knowledge between instances of the task, no matter how 

similar they may appear to an observer. 
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2.2.2 The Pedestal Blocks World 

Now, consider a slightly modified version of the environment (Figure 2). Here, the agent 

is presented with a table and three blocks. There are some pedestals fixed to the table 

upon which the blocks can be placed. The goal is to place the blocks on the pedestals in 

the correct order (A to the left, then B, then C to the right). The agent moves each block 

to a pedestal, first A then B then C. 

Rather than having a single goal, this agent receives a numerical reward proportional to 

the quality of its solution. A reward of 100 is received for placing the blocks in the 

correct order. It is better to place the blocks as far to the left as possible: 10 points are 

deducted from the reward for each empty platform to the left of C. However, the blocks 

can only be placed centered on the pedestals (otherwise they fall off), and the pedestals 

may be positioned such that a certain block cannot be placed on a certain pedestal, as a 

neighboring pedestal is in the way, or that two blocks cannot fit on adjacent pedestals. If 

the agent places a block where it cannot fit, it receives a reward of -100 and the task 

ends. If the agent places the blocks on the pedestals without a collision, but the ordering 

is wrong, a -10 reward is received. 

This task is not as straightforward for a symbolic agent to address, as it is not as clear 

how to represent the state of the task in terms of abstract symbols. If symbols simply 

describe the same basic aspects of the state as was necessary in the unmodified blocks 

world (on and clear predicates), these symbols are insufficient to distinguish between 

cases where the best action is, for example, moving A to pedestal1 from cases where 

the best action is to instead move A to pedestal2. This is because the crucial aspect of 

the problem that affects which choice is better is not captured by the given symbols: 

whether or not the given action would cause a collision.  

Figure 2: A pedestal blocks world problem and its optimal solution state. 
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Instead, more complex predicates are needed. For example, a predicate encoding 

exactly the relevant property would suffice: for example 

collision_if_moved(A,pedestal1) might be true if moving block A to 

pedestal1 would cause a collision. However, note that this predicate is not a simple 

property describing the state of the world, like the fact that a block is on the table, but 

rather encodes a much more complicated, task-specific relationship. For example, 

Figure 3 shows a situation where, to infer collision_if_moved(C,pedestal2), the 

exact sizes and positions of three blocks and three pedestals need to be accounted for, 

and one of those blocks (C) is located spatially far from the other objects. Overall, the 

symbolic information necessary in this task is not a simple, local property of the world 

that one might expect a generic perception system to calculate. 

2.2.3 Motion Planning for a Nonholonomic Car 

One final task is needed to introduce a relevant aspect of intelligent spatial behavior 

that is not apparent in blocks world examples: precise control. As a representative task 

of this sort, the problem of motion planning for a nonholonomic car will be considered. 

Even in the blocks world, if a real robot is used, precise control is necessary. In such a 

system, the final output of the agent is a set of motor voltages. Since real blocks can 

vary in size and shape, the actual voltages output might need to be sensitive to those 

variations. If the motor voltages are continuous, as are the positions of the blocks, the 

problem likely cannot be solved by symbolically mapping abstract symbolic perceptions 

to actions.  

However, in simple domains, this aspect can be ignored. A complete system would 

Figure 3: A situation in pedestal blocks world where nonlocal interactions are important if the 

agent is considering moving block C to pedestal 2. 
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include low-level controllers in the architecture that continuously transform the 

perceived state to output voltages. For example, for a motor that causes a translation of 

a gripper arm, the output voltage could be set to �Δ�, where Δ� is the distance from the 

arm to the block and � is a negative constant factor, in order to move the gripper to the 

block. This is a partially nonsymbolic approach to the problem, but fits within a system 

using symbolic representations for decision making: controllers can be encapsulated in 

modules isolated from the rest of cognition, and the actions of the agent can simply be 

viewed as selecting between controllers (e.g., Laird et al., 1991). 

For this encapsulated controller approach to work, though, to make intelligent 

decisions, the controllers typically must have symbolic characterizations: the behavior of 

the controllers must result in consistent transitions between symbolic states. This 

essentially means that the controllers must have performance guarantees.  

For example, a robotic blocks world agent might have a controller to move a gripper 

arm to a block and grasp it. If every time clear(A) is true, invoking the controller 

results simply results in the agent picking up block A, the agent can act intelligently. If in 

some circumstances reaching for a block might also knock down towers of nearby 

blocks, the agent needs to have symbolic information that allows it to distinguish those 

circumstances if it is to make intelligent decisions. 

Motion planning, as it is considered here, is the problem of determining a sequence of 

control outputs that causes a robot to move through space to reach a goal position.
3
 In 

Figure 4, the task is to drive the car object to the goal region while avoiding the grey 

obstacles. A line outlining the optimal path to follow is shown. Some approaches to 

motion planning use encapsulated controllers, where low-level controllers are designed 

such that the problem can be reduced to a search through the symbolic states those 

controllers reliably traverse (e.g., Beeson et al., 2010). This works well for particular 

                                                      
3
 The problem is posed slightly more generally in the motion planning literature, but the distinction is 

unimportant here. 
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classes of robots, such as polygonal robots 

that can move in any direction, and for 

more complicated robots when tight 

maneuvering is less important. 

However, in other situations, the 

encapsulated controller approach does 

not work as well. One reason for this 

difficulty is that certain kinds of 

constraints on motion are infeasible to capture in abstract representations, and creating 

an abstract representation is necessary for the encapsulated controller approach to 

work well. Nonholonomic constraints result from systems where the number of 

controllable dimensions is less than the total number of degrees of freedom. For 

instance, a car is nonholonomic, since its position can be described by three parameters 

(its position on the surface of the earth and the direction it is facing), but it is only 

controllable in two dimensions (driving forward and reverse, and steering left and right). 

Where it is relatively straightforward to abstractly characterize the relevant parts of the 

reachable space of a robot that can turn in place, this is not as simple with a car-like 

robot when precise details matter. This difficulty is familiar to most drivers: it is 

relatively easy to determine a sequence of roads to travel on to reach a destination 

(where precise details beyond the specific roads traveled on do not matter), but it is 

much more difficult to parallel park (where the details do matter). The figure shows an 

example problem where the nonholonomic constraints matter. It is difficult to come up 

with an abstraction of the problem where the path shown could have been composed 

by searching through an abstract state space. 

This situation, where precise control cannot be reduced to transitions between symbolic 

states, presents a challenge to symbolic agents, which will be addressed shortly. 

Figure 4: A nonholonomic car motion 

planning problem. 
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2.3 Meta-Problems in Architecture Design 

These domains provide insight into some fundamental issues in cognitive architecture 

design. These issues will be presented as meta-problems: problems that the design of 

the architecture must support solving. 

First, in order behave intelligently in any task, the agent needs to use its perception 

system to infer information about the outside world, which leads to the first meta-

problem: 

Veridical Perception Problem: An agent must have means to use its perceptual input to 

determine sufficient information about the true state of the world in order to 

intelligently select actions. 

The notion of “intelligently” selecting actions will be discussed shortly.  

This problem is posed mainly to clarify what this research is not about. Much research in 

AI and related fields is working towards addressing veridical perception, including 

research in robotic perception and in computer vision. However, the focus here is 

instead on problems that arise even when the complete state of the world is known to 

the agent, such as it is in virtual environments. The previous section described 

difficulties related to perception in both the pedestal blocks world and nonholonomic 

motion planning tasks, however, these difficulties had nothing to do with inferring the 

true state of the world: they had to do with representing that information in a form 

such that actions can be chosen. 

Another meta-problem is then present, related to the need for an agent to construct 

appropriate abstract symbols to choose actions. Any agent that performs symbolic 

decision-making needs to derive symbols from its perceptual input that it can use to 

distinguish between situations where one action should be chosen versus another. If 

two situations cannot be distinguished in terms of the available symbolic information, 

the agent will make the same action choice in both, regardless of what non-symbolic 

processes are operating in terms of the symbolic representation. For example, an agent 
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in the pedestal blocks world using only on predicates cannot distinguish between states 

where moving block A to pedestal1 will and will not cause a collision. 

In addition, these symbols should distinguish as few states as possible—they should be 

abstract. If, instead of using on predicates, the pedestal blocks world agent encoded 

every detail of the problem in its symbolic representation (a concrete symbolic 

representation), planning or learning would be extremely difficult, especially if multiple 

instances of the problem were addressed. 

Any agent architecture following the symbolic assumption must then solve a problem of 

perceptual abstraction: 

Perceptual Abstraction Problem: An agent must have a means to create abstract 

symbolic structures from perceptual input that can serve as the basis for intelligent 

action choices. 

The discussion of control in the previous section motivates another meta-problem. If all 

behavior is simply viewed as mapping primitive perceptions to symbolic information, 

and selecting primitive actions based on that symbolic information, there may be no 

possible symbolic representation of the problem that makes all of the necessary 

distinctions between situations and yet is abstract enough that efficient planning or 

general learning is possible. 

Irreducibility problem: An agent must have the means to intelligently act in tasks where 

abstract, purely-symbolic representation is not possible.
4
 

In many cases, the irreducibility problem can be handled by including encapsulated 

controllers in the architecture, as can be done in the blocks world. In that case, at the 

                                                      
4
 The word “irreducibility” here makes the most sense when the task is viewed as an MDP (as will be 

discussed in Chapter V). The size of an MDP may be reduced by identifying equivalent states and/or 

actions and combining them (Givan et al., 2003). However, at some point the MDP will reach a minimal 

size. If the minimal MDP is still very large, we call the problem irreducible. In general, though the term can 

be used in the context of any symbolic representation scheme, not just MDPs. 
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symbolic level, the actions are to choose among controllers rather than to issue raw 

motor commands. However, in other tasks, such as motion planning for a nonholonomic 

vehicle, this simple reduction may not be possible, as there is no apparent way to 

effectively divide the problem between low-level controllers and symbolic reasoning to 

choose between controllers. 

The word “intelligence” is prominent in all three of these problems. The broad goal of 

this work is to work towards an implemented cognitive architecture capable of human-

level intelligence in spatial problems. Towards this goal, intelligence should be judged 

based on matching human behavior. While it is possible that the definitions of these 

problems can vary based on differences in what it means to “match” human behavior, 

and differences in the details of the agent, for the level of analysis presented here these 

differences should be minor. Moreover, in the tasks examined here, matching human 

behavior and achieving optimal performance will not be differentiated—progress 

toward optimal performance will be used as a substitute for progress toward human-

level performance. The goal of matching human behavior here serves only as a very 

rough guide to what tasks should be addressed and what level of performance should 

be achieved, rather than as a direct objective to evaluate. 

Another important aspect that affects the difficulty of solving these meta-problems is 

the number of tasks the agent is to address. Solving the problems and creating an 

architecture capable of supporting human-level performance in a single task is much 

simpler than doing the same for a general-purpose architecture. Accordingly, the 

general veridical perception, perceptual abstraction, and irreducibility problems are 

defined to be the versions of these problems faced that must be addressed by an 

architecture capable of supporting intelligent behavior in the same breadth of tasks as 

humans. 

2.4 Imagery for Spatial Tasks 

In this thesis, cognitive architecture structures are introduced which are proposed to 

work towards solving the general perceptual abstraction and general irreducibility 
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problems. These structures support what is called simulative imagery. Here, simulative 

imagery is explained at a high level in the context of two of the tasks introduced in 

Section 2.2. 

In the pedestal blocks world, an issue with symbolic representation was that some 

important information—the circumstances under which a given action will cause a 

collision or not—is difficult to capture in terms of symbols. A predicate to capture this 

information was proposed (collision_if_moved), however, calculating this 

predicate involves many factors, and it is not obvious how a task-independent agent 

could infer it. That is, it is one of the difficult cases that make general perceptual 

abstraction a problem. 

In this thesis, the proposed solution to the difficulty of perceptual abstraction in cases 

like these is to use imagery. An imagery agent has both an internal abstract problem 

representation, along with a more precise internal concrete representation: a 

representation that makes as many distinctions as possible between states of the world. 

That is, it has internal representations akin to both pictures and predicates. System 

design is covered later, but for this discussion, it is sufficient to say that the agent can 

simulate its actions in terms of the concrete representation, and derive the resulting 

abstract state. In the pedestal blocks world, the agent can imagine what would happen 

if it were to move a given block on to a given pedestal, and detect whether a collision 

would result (Figure 5). Essentially, imagery here allows a complex, task-specific 

predicate to be inferred by using a combination of simple, task-independent 

mechanisms. 

Figure 5: Imagery in pedestal blocks world. 

The agent has imagined block b on pedestal2 (creating an imagined copy, B’) and inferred 

the abstract predicates at right. 
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In nonholonomic motion planning, the issue discussed above is that the selection of 

complex control sequences cannot easily be reduced to a search through abstract 

symbolic states. That is, the problem is irreducible, and this irreducibility cannot be 

handled by encapsulated controllers. In response to this difficulty, a common approach 

used is sampling-based motion planning (Lindemann & LaValle, 2003). These techniques 

determine the reachable locations for a robot by simulating motion from its current 

position. This simulation process can be considered a form of imagery (Wintermute, 

2009a). Sampling-based motion planning is often used in conjunction with low-level 

controllers. For a car planning problem, a controller can be created to steer the car 

toward a point in space, and the algorithm samples possible inputs to this controller 

(intermediate goal points, or waypoints) through simulation to find a sequence that 

results in a short, collision-free path reaching the goal. Leaving aside (for now) the issue 

of how candidate waypoints are generated, the relevant aspect of this technique is that 

imagery operations simulating the behavior of the agent’s low-level controllers are an 

essential part of this motion planning technique. In many cases, the actual controllers 

used for external action can be run on simulated data to allow this  (e.g., Leonard et al., 

2008). 

In using imagery, the problem is then divided between a high-level search over possible 

sequences of waypoints, and low-level simulations over concrete states that determine 

which further waypoints are reachable from a known state. This differs from the 

encapsulated controller approach: while the technique still has aspects of a search 

through abstract states, the problem is not reduced to such a search. Abstract states 

encoding information like “reached waypoint 12” or “collided with an obstacle” are 

used, but the agent has no way of knowing what future abstract state transitions will 

happen without using simulative imagery. Put another way, the agent can use low-level 

controllers whose behavior cannot be reliably characterized with simple abstract state 

transitions. Through the use of simulative imagery, though, the irreducibility problem is 

mitigated in these agents. A complete motion planning agent will be discussed in 

Chapter VI. 
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Chapter III -  A Theoretical Architecture for Spatial Problems 

The examples in the previous chapter informally present some aspects of an 

architecture for spatial tasks and why they are useful, but there are still many 

unanswered questions. In this chapter, a theory for an architecture incorporating these 

aspects is described, and specific functional benefits afforded by the theory are 

described. In Chapter IV, details of a computational instantiation of the theory are 

described. 

3.1 Theory Description 

Many types of AI systems fit the basic pattern that perceptions are mapped to an 

abstract problem state, and abstract decision-making occurs in terms of that problem 

state. This is shown in Figure 6(a). In the figure, the decision system could be a symbolic 

planner or a reinforcement learning system, or something less constrained such as 

Soar’s symbolic processing. 

Details of perception are often ignored when discussing these systems and only the 

Figure 6: A basic non-imagery architecture (left) and an imagery architecture 

(right). 
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internal problem representation is addressed, but a perception algorithm is still at least 

implicitly part of the system. For example, in the blocks world, the internal 

representation could consists of predicates like on(A,B) and clear(C), and in an 

embodied agent, some sort of vision system would build those predicates during 

perception. 

Figure 6(a) labels the different parts of this generic architecture. Call the direct output of 

the agent’s sensors Pr, for raw perception. This signal is transformed by the perception 

system to create an abstract perception signal, called Pa. The system maintains an 

internal abstract representation of the problem state, R, calculated as a function Pa, 

possibly taking into account past observations and background knowledge. Agents of 

this sort also typically use a high-level representation of actions: it is rare that actions 

are considered in terms like “set motor voltage to .236”, even though that may be the 

final output of an embodied agent. So, even in a simple system, there are typically 

distinct abstract and raw action signals, Aa and Ar, and a motor system that creates Ar 

from Aa. 

An architecture with imagery is shown in Figure 6(b). A concrete representation, Rc, is 

present, in addition to Ra (in the abstract decision system). An additional level of 

perceptual and action processing has also been added. The output of low-level 

perception is now provided to Rc, so it is called Pc, for concrete perception. Rc is chiefly 

derived from this signal. However, Rc is not strictly a reflection of Pc, but can also be 

locally manipulated. In particular, it can be manipulated based on the high-level action 

signal Aa from the abstract decision system. High-level perception processes transform 

Rc into Pa, which is the perception signal provided to the abstract decision system. Note 

that this happens independently of whether the contents of Rc are real or imagined: the 

form of Pa is the same, just possibly annotated as real or imagined.  

Imagery actions share common mechanisms with external actions. Agents can thus 

simulate the results of external actions in the imagery system. Moreover, the system 

can now use actions that cause changes to the imagery system, but do not have a 
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corresponding external action. These imagery actions can be used for many different 

things, for example, memories could be retrieved, or geometric reasoning could be 

performed. For this discussion, though, we will focus on simulative imagery: using 

imagery actions to predict the value of Pa a given action would cause if it were to be 

executed in the environment. Through simulative imagery, the abstract decision system 

can get information about the state of the world not just via Pa directly, but via 

predictions about future values of Pa. Both these predictions and the execution of the 

external actions themselves can be based upon information not present in the current 

value of Pa itself, but present in Pc.  

The properties of an architecture following this theory can be divided into nine 

important aspects, as outlined below. Each of these aspects (excluding the first) can 

depend on others being present (as indicated), otherwise they are independent of one 

another. This theory is being described with a sort of open world assumption: other 

aspects not described here may also be present, unless they are specifically ruled out. 

A1. Bimodality 

- Two representations of information derived from perception are present, Ra and 

Rc. 

- Representation Rc contains more perceptual information than Ra—it makes more 

distinctions between states of the world. If Rc encodes spatial locations of 

objects in the world, it is a concrete spatial representation.
5
 

- Processes can encode information in Ra based on Rc (through high-level 

perception processes). 

A2. Concrete routines 

 Requires A1. 

                                                      
5
 While the focus here is on spatial information, this theory could potentially also apply to non-spatial 

(e.g., auditory) modalities, although that possibility will not be covered here. In addition, other 

information can be present in the concrete representation that may not be considered “spatial”. The 

implemented system discussed in Chapter IV includes object shape, velocity, and identity information in 

the concrete spatial representation, and other systems could include information like the mass or 

acceleration of objects. 
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- Processes can cause changes to representation Rc based on its existing contents 

(they can locally manipulate it). 

A3. Imagery 

 Requires A1, A2. 

- Concrete routines can be invoked by processing in Ra, and result in persistent 

changes to Rc. These are imagery processes. 

- Via high-level perception, results of imagery are reflected in Ra. 

A4. Simulative imagery 

 Requires A1, A2, A3. 

- Some imagery operations simulate future states of the world in terms of Rc: they 

manipulate Rc such that its resulting state is similar to a situation that might be 

perceived in the future.   

A5. Concrete controllers  

 Requires A1. 

- External actions can be contingent on information in Rc but not in Ra. Modules 

that generate these actions are called concrete controllers. 

A6. Simulative imagery of concrete control 

 Requires A1, A2, A3, A4, A5. 

- Some simulative imagery operations simulate the effects of concrete controllers. 

A7. Architectural representation conversion 

 Requires A1. 

- High-level perception and imagery are supported by specialized architectural 

mechanisms.  

A8. Perception/action reuse 

 Requires A1, A7. 

- Some types of perceptual information
6
 arrive in Ra only via Rc. 

                                                      
6
 For example, if the concrete representation encodes spatial information, spatial information may only 

arrive in the decision system via that representation. This is not all perceptual information, though, since 

the agent might have different modalities of perception (e.g., visual and auditory) that might vary in their 

imagery capability. 
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- Common high-level perception mechanisms operate over structures created by 

imagery and low-level perception in Rc. 

- Some imagery processes share mechanisms with those used to generate external 

actions. 

As will be discussed in the next chapter, each of these aspects maps in a different ways 

to functional benefits. To clarify what how each aspect affects the overall architecture, 

alternative systems can be described that lack that aspect. Some of these systems are 

shown in Figure 7 The implications of leaving out these aspects, however, are not 

discussed here, as that will be covered in the next section. 

Figure 7(a) shows a system including all of the aspects. Figure 7(b) demonstrates a 

system lacking in bimodality. This system only represents information at one level of 

abstraction.  

 

Figure 7: Alternative architecture designs lacking aspects of the imagery theory. 
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Figure 7(c) shows an example of a bimodal system without imagery or concrete 

routines. Here, the high-level action system has no connection to Rc. This is a simple 

hierarchical control system, where the only role of the concrete representation is to 

provide more state information for controllers in the action system.  

A bimodal system can have imagery capability without simulative imagery. Many 

previous computational imagery systems address tasks that are more about high-level 

reasoning than detailed interaction with a spatial environment, such as solving 

geometry problems (e.g., Gelernter, 1963) or geographic reasoning (e.g., Barkowsky, 

2002) and hence lack this aspect. 

Figure 7(d) shows an example of a bimodal system with concrete routines, but not 

imagery. In such a system, high-level perception uses concrete routines as a means to 

derive abstract properties. Hence, there is an arrow from that system to Rc rather than 

from the action system. Such a system can include concrete routines that simulate 

actions. Concrete routines are a generalization
7
 of Ullman’s concept of visual routines 

(Ullman, 1984). These are local processes within a concrete visual representation that 

are used as means to compute more abstract properties, such as edges or connectivity 

between objects. In the pedestal blocks world example in Figure 5, the agent imagines 

the movement of the blocks, creating a persistent state in the imagery system to which 

it applies high-level perception to infer that moving B to pedestal2 will cause a 

collision. However, one could create a similar system where the same information 

(future collisions) is calculated via the same concrete routines (geometric operations in 

the concrete representation), but where the abstract decision system does not access it 

by applying perception to an imagined state. In that case, a predicate such as 

collision_if_moved(A,peg1) might simply be provided by high-level perception, 

which happens to use concrete routines to determine it.  

                                                      
7
 Concrete routines are a concept that can apply to any concrete representation, not just visual. Another 

difference from Ullman’s theory is that here, imagery is a specialization of concrete routines, where 

Ullman proposed visual routines as a means to perception of abstract properties, not as imagery 

operations. Pinker, however, posited a commonality between visual routines and imagery (Pinker, 1984). 
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Figure 7(e) shows a system that encodes both concrete and abstract representations, 

but does not use architectural mechanisms to convert between them. That is, the 

process of converting between one format and another is left to knowledge, or the 

system may not differentiate between knowledge and architecture. For example, an 

agent mixing quantitative and abstract information in a common architectural memory 

with knowledge that converts between the formats meets this description. This system 

might have all of the other aspects in it, but they cannot be seen in the diagram because 

they are not supported by architecture. 

Finally, Figure 7(f) shows an architecture where the imagery system is encapsulated in a 

module, and not connected to perception and action. Again, this architecture might 

have every other aspect in it, but imagery processing here is distinct from perception 

and action as it relates to the external world.  

Reasons for preferring the proposed architecture over these alternatives will be more 

fully discussed in Section 3.3, which covers the functional benefits of the theory. 

3.2 High-level Claims and Evaluation Approach 

As has been stated, the central goal of this work is to investigate cognitive architectural 

mechanisms to support intelligence in spatial tasks. The central claim is that the theory 

outlined in the previous section makes progress towards this goal. This progress can be 

captured by three high-level claims:  

- The theory allows for improved performance in individual spatial tasks. 

- The theory allows for improved generality: more tasks can be covered. 

- The theory is practically useful: an architecture following the theory can be 

implemented and used. 

To show evidence for these claims, in the next section, specific benefits afforded by the 

architecture are introduced. Each of these benefits relies on a certain subset of the 

architectural aspects outlined in the previous section, and each supports one or more of 

the high-level claims. For those benefits supporting the first two claims, the 
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performance or generality of an architecture following the theory can be compared to 

that of an architecture that is otherwise the same, but lacking the theoretical aspect(s) 

supporting the benefit. This comparison is the basis for arguing “improvement” as 

stated in the claims. 

In later chapters, a comprehensive implemented architecture is presented, and agents 

instantiated in that architecture are demonstrated. These demonstrations serve to 

directly evaluate the third claim. While evaluation of the first two claims is supported by 

evidence from these demonstrations and experiments, it is important to note that those 

claims cannot be directly evaluated with experimental data. There are many free 

parameters in the design of an architecture and agent if the only constraints on it are 

that it is symbolic and lacks a particular aspect. This makes it extremely difficult to 

develop alternative agents that can be used in truly fair experimental comparisons to 

agents following the complete theory. Instead, while implemented agents and empirical 

data are presented to demonstrate the benefits, the evaluation of the first two claims is 

primarily based on analysis as opposed to empirical results. 

3.3 Benefits of the Theory 

In this section, specific functional benefits of the theory are described. Outside of the 

implementation of the architecture itself (as described in the next chapter), a thorough 

exploration of the functional benefits of simulative imagery and the other architectural 

aspects is a major contribution of this work.  

As discussed in the previous section, the three main claims here are that the 

architecture allows the agent to solve particular tasks better compared to alternatives 

(task performance is improved), that the architecture can address more tasks compared 

to alternatives (generality is improved), and that the architecture can be usefully 

implemented. Broadly speaking, the particular benefits outlined here can be categorized 

based on which of these goals they further the most: they are task performance, 

generality, or design benefits (those which simplify the implementation). 
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Improved generality and task performance are tightly intertwined goals: improving task 

performance can aid generality if the task improvement moves the architecture from 

being unable to address a problem (by meeting some minimal standard of behavior) to 

being able to address it. In addition, an improvement in generality is also an 

improvement in task performance, if one simply defines the “task” being addressed as 

solving some set of primitive tasks. Here, we restrict generality benefits to those that 

are most applicable to what are conventionally called task-independent systems. 

At a higher level, for some benefits, the means by which task performance or generality 

is improved is by directly addressing the perceptual abstraction or irreducibility 

problems. When a benefit can be understood in these terms, it is noted. 

The individual benefits are described in detail below. Each is supported by particular 

theoretical aspects, as is described. For task performance and generality benefits, the 

improvement claimed is compared to a similar architecture, but lacking the necessary 

aspect(s) supporting the benefit. 

For convenience, Tables 1 and 2, located at the end of the chapter, summarize the 

theoretical aspects of the architecture, the benefits, and the associations between 

them. Table 2 also references agents that are introduced in later chapters that 

demonstrate the benefits. 

B1. Concrete routines allow movement and nonlocal interaction to be captured in 

terms of abstract symbolic information, mitigating the perceptual abstraction 

problem. 

In order to choose an action, an agent may need to take into account the precise 

movement of objects. For example, when parking in a parking garage, one needs to 

consider whether the car will collide with a pillar when turning into a tight spot. 

Similarly, it can be necessary to take into account object interactions that, from the 

perspective of the current state, are non-local. The pedestal blocks world again provides 

an example of this: when considering moving a block from the bin to a pedestal, it must 
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be determined whether a collision will occur in the future. In the current state (when 

the block is on the table), this determination involves both properties of the moving 

block and properties of objects that are spatially distal from it. 

To represent these problems at an abstract level, the perception system must 

distinguish between the relevant states. Even if the agent has a perception system 

specifically built for the task, though, this is a difficult perceptual abstraction problem if 

concrete routines are not present. The distinctions cannot be easily detected by 

composing simple “features” of the current visual scene detected in a bottom-up 

manner, or by matching the scene to memories.  

However, if actions can be simulated based on concrete information, properties that 

were difficult to compute in the original state might be simpler to compute in the 

simulated state. In the pedestal blocks world example, once the block is imagined in its 

new position, the agent need only infer a basic property: whether or not the block 

collides with any other object. Using simulation, the necessary properties can be 

inferred, improving task performance.  

The minimal aspect of the architecture necessary for this benefit is concrete routines 

(A2). Note that imagery is not necessary; a system could leverage this benefit without 

having the decision system deliberately invoke simulations, and without having 

persistent resulting concrete states. For example, to address pedestal blocks world, the 

perception system of an imagery-less architecture like that in Figure 7(d) could provide a 

predicate like collision-if-moved(A,pedestal2) as a result of an automatic 

concrete simulation, capturing a non-local interaction. The next benefit explains why 

imagery might be a preferable approach, though. 

Concrete routines also allow for a system to encode useful properties beyond 

movement and nonlocal interaction, such as object connectivity (Ullman, 1984). 

Concrete routines supporting these properties may not simulate actions, as the routines 

that have been discussed so far do. 
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Since relevant properties can be easily detected by a system with concrete routines that 

cannot be easily detected by a system without, aspect A2 supports improved task 

performance via this benefit. 

B2. Imagery allows task-specific abstract properties to be encoded by a fixed, task-

independent high-level perception system, mitigating the general perceptual 

abstraction problem.   

This benefit addresses the general perceptual abstraction problem. How can a task-

independent agent construct abstract perceptual properties in arbitrary tasks? This is a 

hard problem, since deriving abstract properties from concrete information is a difficult 

process. The simplest approach to this would be to come up with a set of universal 

abstract properties, which are calculated by architectural means. 

However, for spatial problems, this approach does not seem viable. Researchers in 

qualitative spatial reasoning have attempted to describe such a set of universal 

properties, but no such set has been found. This has led to the poverty conjecture of 

Forbus et al. (1991):  

"We claim there is no purely qualitative, general-purpose, representation of 

spatial properties. That is, while qualitative descriptions are useful in spatial 

reasoning, they are not sufficient to describe a situation in a task-independent 

and problem-independent fashion."  

Task-independent qualitative properties are precisely the sort of abstract symbolic 

representation of perceptual information that allow an agent to compactly represent 

the state of a problem while retaining enough information to choose appropriate 

actions. Assuming the poverty conjecture is true, something more is needed to solve the 

general perceptual abstraction problem. 

For solving qualitative reasoning problems, Forbus et al. propose augmenting qualitative 

information with a quantitative representation, which is similar to the approach taken 

here. If imagery is present, the overall process of perceptual abstraction can involve 
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both concrete manipulation and high-level perception. From an architectural point of 

view, the same high-level perceptual processes allow different symbolic information to 

be encoded depending on how the concrete representation has been manipulated. In 

this way, if the set of concrete manipulation processes change or are applied in different 

ways in different tasks, the process of perceptual abstraction is more flexible. Not only 

can more relevant properties in particular tasks be generated (as the previous benefit 

covered), but this flexibility allows the architecture to encode different task-specific 

properties in different tasks, improving generality. 

As in the pegged blocks world example, in this work we focus on using simulative 

imagery (A4) to generate these task-specific properties. In that example, the fact that a 

collision results from a particular action is a (task-specific) property of the current state. 

Non-simulative imagery could be used for the same purpose, though. For example, an 

agent could use geometric imagery operations such as creating a line between two 

objects to determine if a third object is between them. However, it is important to note 

that imagery (A3), and not concrete routines alone (A2), provide this benefit. That is, it is 

important that the concrete routines are selected and controlled by the abstract 

decision system, and that the resulting state is persistent. To allow the agent to adapt to 

new tasks, the full reasoning power of the agent must be brought to bear to select 

which concrete routines to apply and how to interpret or further manipulate the results. 

An architecture like that in Figure 7(d) cannot support this, as the process of selecting 

routines and interpreting results is isolated within the perception system and 

disconnected from the agent’s general-purpose knowledge, which, we are assuming, 

resides in the abstract decision system.  

Since imagery (A3) allows an agent to encode task-specific properties with a task-

independent perception system (and the poverty conjecture appears true), this aspect 

can result in improved architectural generality.  

  



32 

B3. Simulative imagery provides the agent with the ability to abstractly model actions 

that are non-deterministic at the abstract level. 

Action models have often been used in AI systems as a means to inform action choices 

and improve task performance. For example, using an action model, an agent can 

internally search through a problem space to determine an action sequence that leads 

to a goal (Newell, 1990). Similarly, a model-based RL agent uses an action model to 

internally simulate experience in order to learn a policy (Sutton & Barto, 1997). 

Essentially, both of these techniques are processes of taking knowledge of how actions 

affect state transitions and “unrolling it” to make explicit knowledge about which 

actions to take. As simulative imagery supports action modeling, it similarly allows this 

benefit. 

However, while simulative imagery can be used for action modeling, due to its use of 

multiple levels of abstraction, an imagery system is not simply equivalent to a set of 

action models. A standard action model produces predictions of future states (or state 

changes) based on the current state and proposed action. Importantly, both the states 

that the predictions are based on and the states the predictions produce are from the 

same state space. This is not the case with imagery, as predictions are based on 

concrete states, but produce both concrete states (in the imagery system) and abstract 

states (in the decision system). This difference is clear in the pedestal blocks world 

example (Figure 5). Given a single abstract state and action, the system could predict 

different successor states (collision or non-collision states) depending on details that are 

not encoded in the original abstract state. From the perspective of the decision system, 

the predictions are non-deterministic.  

Predictions of this sort can be viewed as both action models and inferences about the 

current state. A prediction that a collision will occur given a particular action both 

distinguishes the state from one in which the collision will not occur (as discussed in B1) 

and predicts a future state. However, action models can be “unrolled” to achieve 

performance benefits above and beyond what is possible if the prediction is simply 
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assumed to be an inference about the current state, which sets this benefit apart from 

B1. 

Due to abstract non-determinism, difficulties may be encountered using techniques like 

problem space search or model-based RL with simulative imagery action models. If the 

predictions of imagery are non-deterministic in terms of abstract states (as in the 

pedestal blocks world), dynamic programming techniques, including chunking in Soar, 

cannot be used. If the agent encounters an abstract state it has previously examined, 

that state does not contain sufficient information for the agent to know whether the 

result of previous processing still applies. Nevertheless, simulative imagery can still 

provide a benefit of action modeling, even in situations where dynamic programming is 

impossible, as will be demonstrated in later sections. 

Simulative imagery (A4), rather than concrete routines (A3), are necessary for this 

benefit. If an agent is to model its actions, the decision system needs to be able to 

choose which action to model, and the state must be persistent in case further actions 

are to be simulated. With concrete routines alone, these capabilities would not be 

present. Since simulative imagery can allow action modeling even when abstract state 

transitions may appear nondeterministic, improved task performance is possible. 

B4. Simulative imagery allows decisions to be made using an abstract representation 

while predictions are made using a concrete representation, allowing each process to 

use the representation that allows the most efficiency. 

When making decisions, abstraction can be a great benefit. The level of abstraction in a 

reinforcement learning agent’s state space affects the speed at which it will learn, and 

for any agent that uses symbolic knowledge to choose actions, the degree of state 

abstraction influences the amount of knowledge necessary to solve a problem. 

Conversely, when making predictions, abstraction is not always beneficial. The 

movement of objects in the physical world can often be characterized with simple 

equations that operate over quantitative, concrete information. Over long time scales, 
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this form of prediction is increasingly difficult and inaccurate, and qualitative prediction 

(e.g., Forbus, 1983) may be a better approach, but over short time scales, quantitative 

prediction can be very simple and accurate.  

Similarly, in problems like the blocks world, the consequences of a movement can be 

easily described and simulated in concrete geometric terms—the block will be 

positioned such that it will be centered on top of the object below. Action modeling in 

problems like the blocks world can be performed either concretely or abstractly, but 

concrete simulation eliminates such difficulties as encoding the relevant frame axioms 

for the transition, as has been argued by others (Huffman & Laird, 1992; Glasgow, 1995; 

Kurup & Chandrasekaran, 2006). 

Allowing this flexibility in the means of implementing action models can improve task 

performance, and is supported by simulative imagery (A4) for the same reasons B3 is. 

B5. Concrete control allows continuous control processes to be used in conjunction 

with abstract symbolic reasoning, mitigating the irreducibility problem. 

In the previous chapter, it was argued that irreducibility is a problem even in simple 

tasks like those in the blocks world. An agent must be able to adapt its outputs to tiny 

variations in the state of the world in order to perform an action like grasping a block. In 

many problems, this issue can be addressed by incorporating low-level controllers in the 

system, and dividing the task between a decision system that chooses between which 

controller to invoke, and the controllers themselves, which actually execute the action. 

The controllers have access to much more precise state information than is used to 

make decisions. In that way, a blocks world problem can be abstractly solved by a robot 

through reasoning about grasping a block, moving a grasped block, etc., and the 

controllers to perform those actions can vary their output to exactly conform to the 

state of the world (Laird et al., 1991). 

From the perspective of the decision system, concrete controllers change the action 

space of the task: where raw motor outputs would be selected before, now the agent 
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can select between controllers or parameterizations of controllers (e.g., “reach for block 

A” or “reach for block B” rather than “set motor 2 to .02 volts”). Given the transformed 

action space, perceptions can also be transformed and made more abstract, since the 

number of states the decision system needs to distinguish between to select a controller 

is likely to be smaller than the number of states it would need to distinguish between to 

select a raw motor output.  

This division of labor is supported in the proposed architecture via aspect A5, concrete 

control. It should be noted that the theory implies that all controllers base their actions 

on a common concrete representation. It remains to be seen whether a common set of 

concrete information can encapsulate everything any controller in a human-level system 

may need to know to determine its output, or if individual controllers will need 

perceptual information beyond what is in the concrete representation. 

Since concrete control can reduce the effective state space of a problem, allowing for 

more efficient decision making, task performance can be improved. 

B6. Simulative imagery of concrete control allows symbolic reasoning over continuous 

processes, eliminating the need for symbolic characterization of controller 

performance, further mitigating the irreducibility problem. 

While irreducibility in some problems can be handled entirely by encapsulating 

appropriate behaviors in concrete controllers, this is not always the case. As with the 

motion planning example in the last chapter, sometimes controllers cannot be built such 

that the problem can be reduced to an abstract state space. However, if simulative 

imagery of concrete control (A6) is present, abstract symbolic processing in the agent 

can reason over controllers without having a characterization of their behavior in terms 

of abstract states. The simulation allows the agent to derive the abstract outcome of a 

proposed action in the particular situation, even though that outcome might depend on 

details of the situation that the agent cannot capture in terms of abstract symbols. 
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This allows for much less constraint on the kinds of controllers that can be used in the 

system. Performance is then improved in tasks like nonholonomic motion planning, 

where the problem cannot be otherwise addressed without some loss of solution 

quality. 

B7. Architectural representation conversion encapsulates complex, common 

processes, rather than requiring task-specific knowledge. 

As an alternative to the theory proposed here, a system could be constructed that does 

not include fixed architectural processes to support representation conversion (Figure 

7(e)). Conversions between representational formats (high-level perception and 

imagery) would be performed by task knowledge. This results in an alternative way of 

approaching the general perceptual abstraction problem—if no fixed processes are 

present to build abstract representations, the problem of building appropriate task-

specific representations is left up to the agent designer (or the agent itself), rather than 

the architecture designer. 

However, this alternative seems infeasible. Converting between representational 

formats can be very difficult, and it is not clear what sort of system would be needed to 

learn to do this conversion. In addition, many forms of representation conversion are 

useful across many tasks. For example, high-level perception in both the pegged blocks 

world and motion planning examples detects collisions between objects, so a generic 

high-level perception system that can encode abstract information about object 

collisions in the concrete representation is useful in both tasks. 

This commonality across tasks is present in the action system, but to a lesser degree. It 

is reasonable to assume that an intelligent agent must learn new low-level controllers to 

address new tasks throughout its life, so at least some knowledge must go in the action 

system. All controllers can use the same architectural interface to the decision system, 

despite their low-level differences, however.  



37 

Since complex, common processes are in the architecture, rather than encoded as 

knowledge, they need not be learned or re-engineered in new tasks, improving 

generality. However, it is an open question as to what set of high-level perception and 

action processes exists that can be implemented to support human-level cognition. In 

the next chapter, a rough proposal for these architectural mechanisms will be put forth. 

In addition, architectural processes can be much more efficient than equivalent 

processes encoded in as task-independent knowledge (Lathrop, 2008). For this reason, 

this is a task performance benefit in addition to a generality benefit. 

B8. Perception/action reuse provides for a parsimonious set of architectural 

processes. 

The final architectural aspect, perception and action reuse, has a straightforward 

associated benefit. In an architecture where perception and action systems are not 

reused for imagery (Figure 7(d)), agent performance may not be substantially affected, 

but the design of the architecture itself would be complicated. In general, the abstract 

information that is useful to extract from imagined states is similar to that which is 

useful to extract from direct perception, so the same mechanisms can be used. A 

concrete representation is useful as an intermediate construct during perception 

(Ullman, 1984), so there is no compelling reason to use an isolated imagery 

representation. And the same low-level controllers useful for external actions can be 

used internally to simulate those actions (e.g., Leonard et al., 2008), so again, there is no 

reason for isolated systems. 

Since there does not seem to be a functional benefit for separate imagery and 

perception/action processing, there is a strong functional benefit to be gained in terms 

of architectural simplicity by unifying them. 
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Tables 1 and 2 summarize the theoretical aspects of the architecture, the benefits, and 

the associations between them. 

 

 

 

Benefits Supporting 

aspect 

Main high-

level benefit 

Demon-

stration(s) 

B1 Symbolic 

capture of 

movement and 

non-local 

interaction 

Concrete 

routines (A2) 

task 

performance 

(perceptual 

abstraction) 

all agents 

B2 Task-specific 

abstract 

property 

generation 

Imagery (A3) generality 

(perceptual 

abstraction) 

all agents 

(collectively) 

B3 Abstract 

action modeling 

Simulative 

imagery (A4) 

task 

performance 

all agents 

B4 Abstract 

decisions with 

concrete 

predictions 

Simulative 

imagery (A4) 

task 

performance 

all agents 

B5 Abstract 

decisions with 

concrete control 

Concrete 

controllers (A5) 

task 

performance 

(irreducibility) 

RRT agent 

B6 Symbolic 

reasoning over 

continuous 

control 

Simulative 

imagery of 

concrete 

control (A6) 

task 

performance 

(irreducibility) 

RRT agent 

B7 Complex, 

common 

processes in 

architecture 

Architectural 

representation 

conversion (A7) 

generality, 

task 

performance 

all agents, 

architecture 

design 

B8 Architectural 

parsimony 

Perception and  

action reuse 

(A8) 

design all agents, 

architecture 

design 

Table 2: Benefits of the theory, mapping to aspects and 

demonstrations 

Architectural 

aspects 

Pre-

requisites 

A1  Bimodality - 

A2 Concrete 

routines 

A1 

A3 Imagery A1,2 

A4 Simulative 

Imagery 

A1,2,3 

A5 Concrete 

controllers 

A1 

A6 Simulative 

imagery of 

concrete 

control  

A1,2,3, 

4,5 

A7 

Architectural 

representation 

conversion 

A1 

A8 Perception 

and action 

reuse 

A1,7 

Table 1:  Aspects of the 

theory 
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Chapter IV - The Soar/SVS architecture 

In this chapter, I outline the design and capabilities of the Spatial/Visual System, or SVS, 

which together with the existing Soar architecture (Laird, 2008) constitutes an 

implementation of the theory presented in Chapter III. SVS inherits from two previously-

separate projects, Spatial Reasoning for Soar (SRS), which I developed (Wintermute & 

Laird, 2007, 2008), and Soar Visual Imagery (SVI), which Scott Lathrop developed 

(Lathrop, 2008; Lathrop & Laird, 2007, 2009). The relationship of SVS to these prior 

systems is discussed in detail in Section 7.2. 

In general, the discussion here is at a more detailed level than in the previous chapters. 

Planning, reinforcement learning, simulative imagery, etc., are different techniques that 

an agent instantiated in Soar/SVS can use to solve problems, but the architecture itself 

can support many other techniques. More specifically, SVS contains parts that can be 

composed together to support simulative imagery, it is not simply a simulative imagery 

module—the parts can be alternatively used to support very different methods. This is 

part of the overall goal of working towards an architecture capable of supporting 

general spatial intelligence. Simulative imagery is one important method that can 

enhance spatial capabilities in many problems, but it is important that the architecture 

itself be posed in as general terms as possible, so that other methods can also be used.  
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4.1 Overview  

The overall design of SVS is shown in Figure 8. This diagram is decomposed in a similar 

way to Figure 6(b), in terms of a decision and imagery system, and the connections 

between them. Soar is the decision system in this case
8
. Agents in Soar can be 

instantiated to use many different techniques to make decisions, including planning and 

                                                      
8
 SVS is an extension to the Soar architecture, however, in this document I use “Soar” to refer to the 

previously existing components of Soar, and “Soar/SVS” to refer to the combined system. 

Figure 8: SVS System design. Boxes are short-term memories, circles are processes. 

Grey circles involve access to information in long-term memory (knowledge). There are 

implicit control lines (not shown as arrows) between working memory and all of the 

processes shown.  
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reinforcement learning. Soar contains a symbolic working memory, through which 

different processes in memories in Soar communicate. This is where SVS connects to the 

existing Soar system, high-level perception (via Pa) adds elements to a special area of 

working memory, and high-level actions (issued via Aa) are similarly formulated in a 

special area of working memory. The Pa and Aa signals have many meaningful 

components (there are many “forms” of perception and action), as shown in the 

diagram, and is explained later. Other cognitive architectures, such as ACT-R (Anderson 

et al., 2004), similarly use symbolic structures to connect to the outside world, and the 

concepts behind SVS (if not the software itself) could be adapted to any system with 

such an interface. 

As an imagery system, SVS sits between symbolic processing in Soar and the outside 

world. A complete embodied agent also requires lower-level perception and action 

systems to handle the actual output of sensors and input to effectors. These systems are 

the source of the Pc signals and receiver of the Ac signals, respectively.  

The memories inside SVS are influenced by Kosslyn’s theory of visual imagery (Kosslyn et 

al., 2006). There are two short-term memories in the system, for spatial and visual 

information. The visual buffer represents information in 2D arrays of pixels, analogous 

to the part of the human visual system active during classical imagery tasks. This 

represents strictly visual information, including precise shapes and colors. In contrast, 

the spatial scene contains 3D information that is (theoretically) derived from multiple 

senses, quantitatively represented as continuous coordinates describing polyhedrons in 

3D space
9
. 

Both of these representations are concrete representations—they make as many 

distinctions between external states of the world as possible. In this work, however, the 

visual system is not be used, although it is a part of the architecture and its components 

                                                      
9
 This is the equivalent of the Object Map in (Kosslyn et al., 2006), and in (Lathrop, 2008), which inherits 

the terminology. 
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will be briefly discussed in this chapter. Lathrop (2008) focused on usage of the visual 

system in his work on a predecessor of this architecture. 

In addition to the two short-term memories, there is a long-term memory in SVS for 

visual, spatial, and motion data, called perceptual LTM. To simplify the diagram, this 

memory is not explicitly shown, but is accessed by the object retrieval and motion 

processes. While these memories contain chiefly non-symbolic information, they also 

are partly symbolic—unique objects are given identifying symbols, through which the 

symbolic aspects of the system can refer to them. These identifying symbols, here called 

perceptual pointers, are similar to the visual indexes described by Pylyshyn (2001) for 

short-term visual memory, in that the system “... picks out a small number of 

individuals, keeps track of them, and provides a means by which the cognitive system 

can further examine them in order to encode their properties ... or to carry out a motor 

command in relation to them”.  

For real-world agents, perception is a major challenge. Theoretically, the perceptions 

provided to SVS (Pc) should be raw pixels from a camera, or something analogous to the 

lowest cohesive representation in the human visual system. This is the component of Pc 

that feeds directly to the visual buffer. Theoretically, memories and processes inside 

SVS, with influence from symbolic processing in Soar, should segment and recognize 

objects and estimate 3D spatial structure based on 2D visual information. As we do not 

address the veridical perception problem, the system does not attempt this. However, 

limited capabilities are present to recognize objects in the visual system, carried over 

from SVI’s ability to manipulate the visual representation to identify new objects or 

object features (e.g., the enclosed space in the letter A). 

However, for many virtual environments (and some limited problems in real 

environments), it is possible for a separate perception system to provide information at 

a high-enough level that SVS can be used without a complete visual system. Many 

simulated environments directly represent the world as labeled 3D polyhedrons; in that 

case, those objects and labels can be directly fed into the spatial scene via Pc. In the 



43 

current implementation, the Pc component to the visual buffer is not used, only the 

component to the spatial scene. 

From the point of view of the decision system, the only aspects of the underlying visual 

and spatial state available are what are encoded in Pa. Here, that includes the 

perceptual pointers, along with information available through spatial and visual 

predicate extraction
10

 processes. These processes, outlined fully in the next section, 

extract qualitative symbolic information from the underlying quantitative state. For 

example, the agent can detect whether or not two objects intersect. Note that these 

processes do not involve access to knowledge: there is a fixed, architectural library of 

predicates that the system can extract. The exact visual and spatial details of the objects 

in the world (their coordinates in 3D space) are not provided in Pa. 

Since the information available to the symbolic system is limited to object identities and 

simple qualitative properties, for complex reasoning tasks, imagery must be used. To 

perform imagery, the system needs mechanisms through which visual and spatial 

images can be created and manipulated. In SVS, there are four such mechanisms, which 

will be outlined in the following sections. These mechanisms include memory retrieval, 

which instantiates objects from long-term memory into either the visual or spatial STM, 

motion simulation, which moves images in the spatial scene in the same way a motor 

action or other motion in the world would, and predicate projection, which creates 

spatial objects based on qualitative descriptions created by Soar (such as “a line 

between A and B”).  

4.2 Perceptual Pointers 

The most basic form of information passed between SVS and symbolic processing in 

Soar is the perceptual pointer. A perceptual pointer is a unique token, which refers to a 

                                                      
10

 This terminology is inherited from work in diagrammatic reasoning (Chandrasekaran, 1997). The term 

“predicate” is perhaps overly formal, since it might imply that predicate logic is being used for inference in 

the system, which is not the case, but it has the correct implication that we are dealing with symbolic 

properties of objects. 
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specific underlying visual or spatial structure. A pointer appears as an id attribute in 

Soar's working memory. In addition, if a structure is recognized as an instantiation of a 

structure in perceptual LTM, it is augmented with a class-id.  

The types of structures that use this identifier system are spatial objects, spatial 

transformations, visual textures, and motion models, all of which are discussed below. 

The perceptual pointer provides a simple means by which a symbolic working memory 

structure can refer to an underlying perceptual structure: the pointer id is generated by 

SVS, and every time symbolic processing in Soar uses that id in a context SVS 

understands (e.g., an imagery specification to “imagine car23 to the right of 

house12”), SVS uses that id to access the underlying perceptual structure (e.g., the 

polyhedron describing the car) from its internal memories. 
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Figure 9 shows blocks world information represented in Soar/SVS. Soar’s working 

memory is shown on the left. Structures in working memory are represented by a 

directed graph of symbols that are matched and manipulated by rules. A portion of this 

graph is shown in the figure. Working memory structures can also be represented with 

text, as shown. 

Dotted arrows in the figure show perceptual pointers, represented in working memory 

as symbols. Only those created by SVS have arrows in the figure, but other instances of 

the same symbols are also pointers to the same objects.  

Figure 9: Top, blocks world information in Working Memory, Perceptual LTM, and Spatial 

Scene. Bottom, equivalent text representation of the extract-predicate structure. Working 

memory structures in red italics are created by SVS. 

 

Working Memory as Text 

intersection.object-id blockB:i1 

            .object-id blockC:i1 

            .value true 
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4.3 Spatial Scene Encoding 

The spatial scene is SVS’s short-term memory for spatial information. It normally 

contains the structure of the world around the agent (including parts it cannot 

immediately see), or the structure of an imagined situation, or, more commonly, a 

mixture of both. Internally, the scene is a set of 3D polyhedrons grounded in continuous 

coordinates. This information is presented to Soar’s working memory as a hierarchically-

organized tree of objects, with the tree structure indicating part-of relationships. Each 

object node includes a perceptual pointer by which Soar can refer to it. Between each 

object node, a transformation node is present. Each transformation node contains a 

perceptual pointer to the relationship between the two objects. 
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Objects in pegged blocks world lack hierarchical structure as would be present in more 

complicated environments, so, for simplicity, Figure 9 shows only the object nodes at 

one level of the hierarchy. Figure 10 shows a scene with richer structure, and the full 

detail of how the spatial scene is encoded (with the exception of class-ids). Only the 

leaves of the tree in working memory correspond to primitive polyhedrons (which are 

labeled in the Figure), but nodes at every level are considered objects. Everything in the 

scene is part of one scene object (the root of the tree), and the scene object has 

children for its parts, the tree and house (connected via their transformations), which 

are further decomposed to primitive parts. Much of the processing in SVS (e.g., 

detecting an intersection between two objects) relies on the assumption that objects 

 svs.spatial-scene.object.id scene 

                         .transform-child tree-transform 

                         .transform-child house-transform 

                  .transform.id tree-transform 

                            .object-child tree 

                  .transform.id house-transform 

                            .object-child house 

                  .object.id tree 

                         .transform-child canopy-transform 

                         .transform-child trunk-transform 

                  .object.id house 

                         .transform-child roof-transform 

                         .transform-child frame-transform 

                  .transform.id canopy-transform 

                            .object-child canopy 

     .transform.id trunk-transform 

                            .object-child trunk 

                  .transform.id roof-transform 

                            .object-child roof 

                  .transform.id frame-transform 

                            .object-child frame 

                  .object.id canopy 

                  .object.id trunk 

                  .object.id roof 

                  .object.id frame 

 

Figure 10: An example of the symbolic encoding of the spatial scene in Soar. 
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are convex, so when objects are referred to, what is actually used is the convex hull of 

all of the parts below that object. If non-convex objects are to be used, the environment 

must encode them as a set of convex parts, each of which the system can reason with 

independently. Automating this convex decomposition is an area for future work. 

Transformation nodes exist between each object node in the hierarchy. Each object has 

some intrinsic reference frame, and the transformation node refers to the relationship 

between those frames. The figure shows one of those transformations, tree-

transform, which relates the reference frame of the scene object to that of the tree 

object. 

It should be emphasized that the perceptual pointers that make up the scene graph in 

Soar’s working memory refer to the actual objects and transformations in the spatial 

scene. If the agent refers to the id of a transformation in the spatial scene, it is referring 

to a specific quantitative transformation in 3D space, not a generic qualitative 

relationship like “towards the upper right” of “northeast of”. If the agent retrieves a 

transformation from perceptual long-term memory (by referring to its class-id), that 

transformation is similarly quantitative. In general, everything in perceptual LTM and in 

the STMs of SVS is quantitative. However, symbolic processing in Soar can only refer to 

quantitative perceptual information, it cannot directly access the actual quantities 

involved. Rather, it accesses that information only indirectly, by querying the scene for 

qualitative information through the predicate extraction process (to be covered shortly). 

4.4 Predicate Extraction 

The predicate extraction processes serve to provide symbolic processing in Soar with 

qualitative properties of the contents of the spatial short-term memory in SVS. These 

processes are fixed parts of the architecture; there are no plans to enable new forms of 

predicate extraction to be learned by the agent itself. In contrast to perceptual pointers, 

qualitative predicates are created in working memory only when requested by 

processing in Soar. There is a great deal of qualitative information implicit in the 

memories of SVS, each piece of which can take substantial calculation to derive, so 
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some attention mechanism is needed to make the system computationally tractable. 

The process of requesting predicate extraction from working memory is called querying 

SVS. Figure 9 shows an example of predicate extraction in working memory. First, 

symbolic processing in Soar creates a structure describing the query (in the example, 

whether or not two blocks intersect) in the proper area of working memory. SVS then 

recognizes the query structure, calculates the desired property (in this case, detecting 

the collision), and builds a result structure in working memory. Further symbolic 

processing in Soar can recognize this result, and reasoning will continue. 

For the spatial system, there are three important kinds of relationships between objects 

that might be queried for: topology, direction, and distance. An example of each of 

these relationships is illustrated in Figure 11. Topological relationships describe how the 

surfaces of objects relate to one another. Work in qualitative spatial reasoning has 

explored these relationships (Cohn et al., 1997). While schemes exist that represent 

several possible cases of topological interaction (e.g., discrete, partially overlapping, 

proper part), the only topological information currently available in SVS is whether or 

not two objects are intersecting or not (that is, colliding). More relationships might be 

added in the future, but no tasks have yet been addressed that require more detailed 

topological information. 

Distance is similarly simple, currently the system is able to query for the distance 

between any two objects in the scene, along the closest line connecting them. In the 

Figure 11: Information derivable through spatial predicate extraction.  



50 

makes the information arguably non-qualitative, although it is certainly “less 

quantitative” than the contents of the spatial scene, as it reduces complex three-

dimensional information to a scalar quantity. However, it is extremely useful in practice. 

The common use for distance information is simple distance comparison, which can be 

done easily with Soar’s existing number-comparison functionality. The closest obstacle 

to the agent might be detected by extracting the distance from the agent to all of the 

obstacles, and comparing the distances to determine the closest. If we wanted to strictly 

evict all continuous numbers from Soar’s symbolic processing, this could be replaced 

with a “closest” extractor, but that approach seems to be unnecessarily complicated
11

.  

To support orientation relationships between objects, and determine information such 

as “object A is to the left of object B”, a final class of orientation queries is implemented. 

Following the approach of Hernandez (1994), for each object, a set of surrounding 

acceptance areas is defined. An acceptance area corresponds to a region of the world 

where all points in that region share a common orientation with the object in question. 

These regions roughly correspond to concepts like left, right, front, back, above, below, 

etc. An example of an acceptance region is shown in Figure 11, where the region 

considered to be in front of the house is indicated. All acceptance areas are calculated 

relative to a bounding box around the object, queries for relationships inside of that box 

are undefined. Three different methods of constructing acceptance areas are possible. 

As shown in the figure, standard orientation queries construct the acceptance area with 

bounding rays emanating at 45-degree angles from the corners of the object. In 

contrast, a strict orientation query would project the rays in the figure directly to the 

right, making the “front” region of the house smaller, and a general orientation query 

would project the rays up and down, making the region larger. 

All objects have an intrinsic frame of reference, and orientation queries are often 

performed relative to that frame. However, orientation queries can be performed in the 

                                                      
11

 The use of continuous numbers as part of Soar’s working memory does not have strong theoretical 

support, but as implemented, they provide practical benefits. Issues related to SVS and the role of 

numbers in Soar’s working memory are discussed in the Appendix. 
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frame of reference of any object in the scene
12

: that is, the frame of reference of a 

different object can be used to define the acceptance areas. In this way, allocentric 

orientations can be extracted by using the frame of reference of the entire scene (or of 

a compass object in the scene), and interpreting the results as cardinal directions 

(North, South, East, West, up, down). 

For some spatial queries, the 3D nature of the spatial scene can result in undesirable 

consequences when the problem is inherently two-dimensional. For example, an agent 

might want to determine how long it would take to move beneath an object that is in 

front of and above itself. In this case, simply extracting the distance will not work, since 

the vertical dimension must be ignored. In addition, if the agent is attempting to 

determine the closest obstacle to itself, it might be best to calculate the point-to-point 

distance from its centroid to the centroid of each obstacle, which can be done much 

more quickly than calculating the distance between polyhedrons. For these reasons, SVS 

supports spatial object interpretations. For most queries, the agent can specify that each 

object should be interpreted as a convex polyhedron (the default), a bounding box, a 

centroid, or two-dimensional versions of each of those types, where the projection of 

the object into its intrinsic xy-plane is used. Making shape interpretations available can 

increase the functionality of the system, and greatly speed it up when precise 

calculation over complex 3D objects is unnecessary. 

4.5 Imagery 

The information provided to Soar through perceptual item pointers and predicate 

extraction about objects that the agent can currently perceive is often not enough to 

allow general-purpose problem solving. Often, imagery must be employed. To use this 

capability, the symbolic system invokes a command which causes imagery processes to 

manipulate a concrete representation, and the results of the manipulation are 

symbolically inferred through predicate extraction. While imagery has been proposed in 

                                                      
12

 In the current implementation, this must be done through a multiple-step process (generating an image 

of the desired object with a new reference frame, and then extracting the relationship), but it should be 

eventually handled entirely in the predicate extraction system. 



52 

the past as a means for problem solving, the exact means by which images can be 

created in a task-independent manner have rarely been specified. One of the 

contributions of this work is exploring this problem. The current implementation of SVS 

inherits much of its functionality from a prior system, SRS. Two of the image creation 

processes in SVS, predicate projection and motion simulation, were previously explored 

in detail using that system (Wintermute & Laird, 2007, 2008).  

Images, once created in the spatial scene or visual buffer, are thereafter treated 

identically to structures in those memories built by perception. In the discussion below, 

the term ‘image’ will refer to the structure being created, as in “the image is placed 

adjacent to the object”, but it should be noted that once the image is placed, it becomes 

an object itself.  

4.5.1 Predicate Projection 

Creating a new spatial image often involves translating a qualitative representation of 

the image (present in symbolic working memory) to a quantitative representation in the 

scene. This problem has not been as well studied as predicate extraction 

(Chandrasekaran, 1997). We call the qualitative representation of a new image the 

description of that image. Our goal is to create a system with broad applicability, which 

requires a qualitative language for describing new images that is as expressive and 

general as possible. Broadly, there are two kinds of possible descriptions: direct and 

indirect. 

An image created with an indirect description inherits its shape from an existing object, 

in the scene or in LTM. This shape is placed in the scene based on a set of abstract 

predicates describing the position of the object. 

In SVS, the predicates currently are ‘on’, ‘at’, ‘adjacent’, and ‘facing’.  There is not a 

strong commitment to this particular set of predicates, but it is representative of the 

types of predicates than might be supported. Placing an image ‘on’ another object 

positions the image above and adjacent to that object, in the z-direction. This z-direction 

is currently that defined in the coordinate frame of the scene root, but the system could 
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be improved to allow the coordinate frame to be specified. Placing an image ‘at’ 

another object results in the image being centered at the center of that object. Placing 

an image ‘adjacent’ to another object is similar to ‘on’, but does not constrain the 

direction of adjacency. An image can be specified ‘facing’ another object. In that case, 

the intrinsic frame of reference of the image is aligned to point towards that object. 

An indirectly described object is not guaranteed to have a valid position (an image 

cannot be both ‘at’ and ‘on’ the same object, for example). Underlying processing in SVS 

attempts to interpret the set of predicates, and adds the image to the scene if it can find 

a suitable position (or report an error otherwise). In many cases, indirect descriptions 

are underspecified, and the system arbitrarily chooses one of many images meeting the 

description. A previous implementation (Wintermute & Laird, 2007) included a much 

more comprehensive scheme for indirect imagery, but used a two-dimensional spatial 

representation. The underlying processing in that system solved complicated 

computational geometry problems in order to place the image, but this approach could 

not be easily extended to the three-dimensional case. Instead of extending SVS’s 

indirect imagery power, alternative approaches are being explored to allow similar 

capabilities in the system through alternative means: the memory retrieval and motion 

simulation mechanisms (which will be covered shortly). 

In addition to indirect descriptions, SVS also supports direct descriptions. In contrast to 

indirect descriptions, a direct description is always unambiguous – it describes only one 

possible image. An example is ‘the image is the convex hull of objects A and B. For any 

diagram that has objects A and B, there is exactly one such shape. Other descriptions 

are those such as ‘the image is the intersection of objects A and B’. For any objects A 

and B in the scene, the image may or may not exist, depending on their positions in the 

diagram, but if it does exist, there is only one. Thus, a direct description describes 

exactly one image, not a category of images. 

The predicate projection processing described above is considered to be a fixed part of 

the architecture. There are currently no plans to allow new kinds of predicate projection 
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commands to be learned by the agent or provided as knowledge. However, there is not 

a strong commitment that the current library of available operations is appropriate or 

complete. It has served well for the tasks that have been addressed, but may change as 

the architecture evolves. From a theoretical point of view, the important aspect is that 

the system has this capability at all. 

4.5.2 Memory Retrieval and Image Composition 

Often, spatial images must be created based on objects in perceptual long-term 

memory. This involves the agent telling SVS to instantiate an object of a known type, at 

a known location. This is different than predicate projection—predicate projection 

works by the symbolic system describing the general required qualitative properties of 

the image, memory retrieval works by the symbolic system referring to specific items in 

long-term memory. 

Using this capability, an agent can compose a new scene out of known parts (objects 

and transformations). In addition, memory retrieval can be easily combined with 

predicate projection to create images where the shape is based on a memory, but the 

location is qualitatively described. In Figure 9, the agent is generating an image based on 

this combination. The class-id of the imagined block is provided, which implicitly 

indicates a memory retrieval. A complete predicate projection command for the 

location of the new block is not shown, but the full command would indicate that the 

new block is on the table located adjacent to block A. 

4.5.3 Motion Processing 

While the previous approaches to image creation are powerful, it is difficult to see how 

they can encode the knowledge to solve spatial problems involving motion. For 

example, consider an agent that must predict the path of a bouncing ball. It is not 

obvious how the previously-discussed imagery components can achieve this. 

Anticipating the next location of a bouncing ball cannot be easily mapped onto 

retrieving a memory of a quantitative transformation, since that would require the 

agent to have previously observed a ball with similar horizontal and vertical velocities at 
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a similar place in its bounce, and the agent would have to somehow know to retrieve 

exactly that memory. Predicate projection will not work either, as it may be necessary to 

make a prediction that is more accurate than what can be described with the available 

qualitative predicates. 

In SVS, this information can instead be encoded in the form of a continuous motion 

model. Motion models are stored in perceptual LTM, and are represented by the 

Motion Processing component in Figure 8. They can be applied to any object in the 

spatial scene, and are invoked with a step size. The model then creates an image of the 

object projected into the future for that amount of time, following its specific motion 

pattern. If the agent has a bouncing-ball motion model in its LTM, the model can track 

the ball and allow its motion to be projected into the future in imagery. Motion models 

have complete access to the contents of the spatial scene, and so can access the 

quantitative details necessary for precise simulation, and also have internal memory, 

allowing, for example, speeds of objects to be tracked based on observations over time. 

In general, motion models can transform the scene in arbitrary ways: there are currently 

no constraints on their implementation (adding more structure to the motion 

processing system is an area for future work). 

Note that motion models have much in common with the concept of concrete 

controllers discussed in Chapter II (aspect A5), as they control simulation processes 

based on information that is in Rc (the spatial scene) but not Ra (Soar working memory). 

In the previous example, the agent reasons about the movement of an object that is not 

under its direct control. However, in SVS, the same basic motion processing system is 

used to control the agent’s own low-level movement. That is, motion models can be 

concrete controllers in SVS. Those motion models that can be used as controllers are 

called motion controllers. Since motion controllers are motion models, it is necessary 

that they can be used to predict their own behavior—simulative imagery of concrete 

control (aspect A6) must be present for all motion controllers. 
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For example, a car motion controller can be used in SVS. When Soar uses the controller, 

it provides a perceptual pointer to the car object in the scene, and a pointer to a goal 

object, along with an indication of whether the motion is to be imagined or executed, 

and a time step in the imagined case. Based on the spatial scene, the controller can 

determine the body angle and position of the car. This information can be used to 

calculate a desired steering angle to set. To do this, the controller can determine the 

angle between the front of the car and the goal object, and steer in that direction, 

proportional to that difference, saturating at some maximum steering angle. When used 

in imagery mode, this angle, along with the time step, can be fed back in to a set of 

equations modeling the response of the car to the steering control, and the position and 

angle of the imagined car object can be determined. When used in execution mode, it 

can instead be output to the low-level action system. Even in execution mode, it may be 

useful to simulate the motion in parallel with execution, as this simulation can be used 

as part of a Kalman filter to assist in the control process (Grush, 2004). While this car 

controller is hypothetical, as the implemented system has not been used in real robots, 

the imagery aspects of it have been implemented and used (Wintermute, 2009a). 

In many cases, the agent uses motion models not just for single-step prediction, but for 

longer simulations. Motion simulation can occur as a sequence of steps, executed by the 

symbolic level. Between steps, qualitative information can be queried from the scene 

and reasoned over. For example, an agent might need to determine how long it will take 

for a given obstacle to reach its current location. To do this, the movement could be 

stepped forward multiple times, with predicate extraction processes monitoring the 

scene for collisions between each step. 

The motion processing system presents a broad framework for the representation of 

motion. With appropriate motion models, an agent can control and internally simulate 

its own movement. Using the same basic mechanisms, it can also simulate the 

movement of objects in the world, such as a moving obstacle in the example above, or a 

bouncing ball in another task. In certain circumstances, it might even use its own motion 
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controllers to simulate the movement of another agent. Motion simulation can even be 

used to solve problems that are not about motion in the world. Some of these 

applications are examined in detail in other work (Wintermute & Laird, 2008). 

4.6 Aspects of the Theory in Soar/SVS 

SVS, combined with the existing Soar architecture, forms an instantiation of the theory 

put forth in Chapter II. Here, the aspects of that theory are reviewed, and mapped to 

the implementation in Soar/SVS. As SVS was developed with a broader focus than this 

work, it also implements aspects that are not covered by the theory here, most 

prominently, visual processing and long-term memory. Lathrop (2008) argued for the 

utility of visual processing, but an analysis of the utility of perceptual long-term memory 

(especially in contrast with Soar’s symbolic memories) must be left to future work. 

A1. Bimodality 

- Two representations of information derived from perception are present, Ra and 

Rc. 

- Representation Rc contains more perceptual information than Ra—it makes more 

distinctions between states of the world. If Rc encodes spatial locations of 

objects in the world, it is a concrete spatial representation. 

- Processes can encode information in Ra based on Rc (through high-level 

perception processes). 

In Soar/SVS, Soar’s working memory encodes an abstract representation, and the 

spatial scene encodes a concrete spatial representation (the visual buffer encodes a 

separate concrete representation, but it is outside the scope of this work). High-level 

perception in SVS is implemented by the perceptual pointers that identify objects in 

the scene and the predicate extraction processes. 

A2. Concrete routines 

- Processes can cause changes to representation Rc based on its existing contents 

(they can locally manipulate it). 

All of the imagery mechanisms described above manipulate the scene in this way. 
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A3. Imagery 

- Concrete routines can be invoked by processing in Ra, and result in persistent 

changes to Rc. These are imagery processes. 

- Via high-level perception, results of imagery will be reflected in Ra. 

The imagery mechanisms in Soar/SVS all satisfy this description. It should be noted 

that all concrete routines in the system are imagery processes, none are initiated 

outside of Soar or cause transient results. 

A4. Simulative imagery 

- Some imagery operations simulate future states of the world in terms of Rc.  

The imagery mechanisms in Soar/SVS are expressive enough that simulation is 

possible, as will be demonstrated in later chapters. 

A5. Concrete controllers  

- External actions can be contingent on information in Rc but not in Ra. Modules 

that generate these actions are called concrete controllers. 

Motion controllers in SVS are proposed to meet this requirement, although external 

actions of this sort remain unimplemented. 

A6. Simulative imagery of concrete control 

- Some simulative imagery operations simulate the effects of concrete controllers. 

All motion controllers in SVS must have simulation capability. 

A7. Architectural representation conversion 

- High-level perception and imagery are supported by fixed (although possibly 

parameterized) mechanisms. 

Fixed mechanisms underlie the high-level perception system—no knowledge is 

involved in predicate extraction, other than to parameterize the process (determine 

the queries). Hypothetically, knowledge is involved in object recognition, as the 

agent must be able to learn to recognize new objects. However, if recognition were 

to be implemented, the process would likely be supported by architectural 

mechanisms. Similarly, in the action system, predicate projection is a fixed process 

where the only role of knowledge is to parameterize the commands in Soar, while 
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memory retrieval and motion simulation involve access to more forms of 

knowledge, but are still supported by architectural mechanisms. 

A8. Perception/action reuse 

- Some types of perceptual information arrive in Ra only via Rc. 

- Common high-level perception mechanisms operate over structures created by 

imagery and low-level perception in Rc.  

- Some imagery processes share mechanisms with those used to generate external 

actions. 

In Soar/SVS, spatial information does not enter Soar without being processed by 

SVS. All high-level perception processes apply to both imagined and perceived 

objects, and motion controllers that execute external actions can be re-used 

internally for imagery. 

  



60 

Chapter V - Reinforcement Learning Agents in Soar/SVS 

To aid in evaluating the architecture and its underlying theory, implemented agents are 

necessary. In order to reduce the factor of hand-programmed knowledge in this 

evaluation, an integration between imagery and reinforcement learning in Soar/SVS is 

described in this chapter, so that all control knowledge is learned as opposed to 

programmed. The aims of this discussion are threefold: to provide further explanation 

and evaluation of the architecture through demonstrations of implemented agents, to 

provide evidence of the benefits outlined in Chapter III, and to connect this work with 

concepts and related work in the area of reinforcement learning. 

5.1 State Abstraction and Imagery in Reinforcement Learning 

Work in reinforcement learning typically models the task being addressed as a Markov 

Decision Process (MDP). An MDP consists of a set of states, a set of actions, a function 

encoding transition probabilities from one state to another (given an action), and a 

function encoding the expected immediate reward for each transition. ����
�

 indicates the 

probability of transitioning from a state � to another state �’ with action 
, and ℛ�
� 

indicates the expected immediate reward for action 
 in state �.
13

 Here, we will assume 

that an agent is actively engaged in the problem, and has no initial knowledge of the 

transition probabilities or reward distribution. At every time step, the agent observes a 

state s
, and selects an action a
. The environment then transitions and provides the 

agent with a reward r
�� at the next time step. 

Essentially, an MDP describes a large state space, where actions probabilistically cause 

an agent to move between states and receive rewards. Each transition in an MDP must 

be conditionally independent of previous transitions, given the state the agent is 

                                                      
13

 This notation follows Sutton & Barto (1998). The notation ℛ���
�  for immediate reward is used more often 

in that book, but the two forms are equivalent: ℛ�
� = ∑ �

���
�

�� ℛ���
�  (p. 84). 
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transitioning from and the action; this is the Markov property. A reinforcement learning 

agent learns a policy (a mapping of states to action choices) to maximize its expected 

future reward. Often, a discount rate will be used, causing the agent to value earlier 

rewards more than later rewards, and the agent will instead learn to maximize expected 

future discounted reward. More detail about reinforcement learning can be found 

elsewhere (e.g., Sutton & Barto, 1998). 

The MDP formalism can provide an objective measurement of what it means to have a 

“good” state representation for a task: a good state representation makes the transition 

probabilities Markovian (they have the Markov property), and allows for policies to be 

represented with an expected future reward that is as large as possible, meaning that it 

captures all details of the world necessary to select the best action. However, it is also 

important that this state representation be compact: learning can quickly become 

intractable if the state space is large. 

These points can be seen in simple domains like the blocks world, as was touched upon 

in Section 2.2. If the agent encodes the complete spatial state of the blocks (their 

bounding coordinates in continuous numbers), the representation is Markovian and 

allows for optimal policies to be encoded. However, if the agent is solving multiple 

instances of blocks world problems where the block dimensions very minutely between 

instances, encoding the complete spatial state results in a situation such that the agent 

rarely experiences repeated states. Repeated experience is necessary for learning, so 

this agent would perform very poorly. Compact state representations lead to repeated 

experience in terms of those states, and hence faster learning. 

To make a more compact learning problem, allowing faster learning, state aggregation 

can be used
14

. Formal techniques exist for determining equivalent states in an MDP, and 

the size of a given MDP can be reduced by checking for these equivalencies and 

                                                      
14

 Function approximation is another technique used in reinforcement learning to deal with large 

continuous state spaces. Given the symbolic assumption discussed in Section 2.1, it will not be considered 

here, however, the subject will be discussed in Section 7.4. 
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aggregating equivalent states into abstract states (Ravindran & Barto, 2002; Givan et al., 

2003; Li et al., 2006). Alternatively, it is possible to take an architectural view of the 

issue, and define a perception system that implicitly aggregates states together as it 

builds an internal abstract representation. In the case of blocks world, the perception 

system can build predicates such as on(A,B) that form a state representation that is 

Markovian, allows for maximum reward to be achieved, and is minimal.  

If state abstraction results from perception in this way, in order to create an agent able 

to induce compact MDP representations in arbitrary problems, the general perceptual 

abstraction problem must be solved. As was discussed in Chapter III, the imagery 

architecture proposed here provides benefits that help mitigate the perceptual 

abstraction problem. Specifically, the architecture provides mechanisms that allow an 

agent to encode abstract properties that capture movement and nonlocal interaction 

(B1), and to allow task-specific abstract properties to be encoded by a task-independent 

perception system (B2). 

5.1.1 The Pedestal Blocks World 

To provide a concrete example of these benefits in a reinforcement learning setting, the 

pedestal blocks world task (Figure 12) outlined in Section 2.2 will be used. Here, the 

agent is presented with a table and three blocks. There are six pedestals fixed to the 

table upon which the blocks can be placed. The goal is to place the blocks on the 

pedestals in the correct order (A to the left, then B, then C to the right). The agent 

moves each block to a pedestal, first A then B then C, and then receives some reward. 

Recall that a reward of 100 is received for placing the blocks in the correct order, but 10 

 

 

 

Figure 12: A Pedestal Blocks World task instance and its optimal solution. 
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points are deducted from the reward for each empty platform to the left of C. If the 

agent places a block where it cannot fit, it receives a reward of -100 and the task ends. If 

the agent places the blocks on the pedestals without a collision, but the ordering is 

wrong, a -10 reward is received. 

An optimal policy for solving the problem is apparent: place block A on the leftmost 

pedestal where it will fit, place B on the leftmost pedestal right of A where it will fit, and 

place C similarly. However, an agent solves many instances of this task. In each instance, 

the positions and heights of the pedestals, along with the dimensions of the blocks, 

differ. Because of this, the actual moves needed to optimally solve the problem differ 

from instance to instance. Assume that the agent views the task on a computer screen, 

and interacts by pressing buttons to indicate the pedestal where each block should be 

placed. The display updates after each block is moved. This problem then has a simple 

formalization: given pixels, button choices must be output. 

5.1.2 Perceptual Abstraction in Pedestal Blocks World 

Taken at its basic definition, the problem is an MDP where each set of pixels constitutes 

an individual state. Of course, state aggregation would be very valuable here, since 

otherwise too many states would be present for learning to be tractable. 

As with the pegged blocks world task in Chapter II, a perception system providing a 

standard blocks world encoding of the state in terms of abstract predicates like 

on(A,table) or on(B,pedestal1) is inadequate, since collisions cannot be 

predicted, and the best policy would have a low expected future reward. The nonlocal 

interaction of the block with the surrounding objects at its new location is critical to 

capture in order to induce a correct state aggregation. 

Soar/SVS can use its task-independent high-level perception system to encode the 

standard blocks world on predicates by composing them out of the primitive available in 

the predicate extraction system. Details of this composition can be found elsewhere 

(Wintermute, 2009b). Predicate projection in the system can also be used to imagine 

the blocks at their new locations, and high-level perception can be applied to the 
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imagined scene to determine whether actions result in collisions. These collision 

predictions are task-specific properties of the current state. Through these means, the 

Soar/SVS agent can infer task-specific symbolic information capturing non-local 

interaction using its task-independent high-level perception system, demonstrating 

benefits B1 and B2. 

An agent has been built to use this abstract state information with reinforcement 

learning in this task. The abstract state consists of on predicates describing the current 

scene, along with predicates encoding whether or not each action will result in a 

collision (e.g., collision_if_moved(B,pedestal2)). As imagery is used to add 

information to the abstract state, this agent will be called an imagery-augmented state 

abstraction agent. 

State abstraction here is used in conjunction with a table-based Q-learning algorithm to 

learn a policy. For each state-action pair that a table-based Q-learning agent encounters, 

it learns the expected discounted future reward for taking that action and following the 

optimal policy—this is called the Q value of the action. Soar’s existing reinforcement 

learning system implements the learning algorithm (Nason & Laird, 2005).  
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To verify that the overall system works as described, experiments were run to compare 

the performance of an agent using imagery-augmented state abstraction versus an 

agent that can only encode the on predicates describing the current scene (non-imagery 

state abstraction) and an agent that takes random actions, mimicking one that learns in 

terms of the raw (unabstracted) pixel states
15

. Figure 13 shows the results of this 

experiment. 25 trials were run of 10,000 episodes each. The sizes of the blocks and 

positions of the pedestals were randomized for each episode, each was a spatially-

unique instance (both the imagery and non-imagery conditions used the same 

instances). Epsilon-greedy exploration was used, with parameters of � = 0.3, � = 0.1, 

and  � = 0.9. Total reward per episode was collected, bins of 500 adjacent episodes 

were grouped together, and reward was averaged across all trials and all episodes in the 

bin and across all trials 

As can be seen in the figure, in this case, learning using task-specific abstract 

information derived from imagery results in better performance, both in terms of 

learning speed and the quality of the final policy, when compared to similar states 

                                                      
15

 Since the task has no state repetition within an instance, and at the pixel level, each instance tested has 

a unique set of states, no learning would ever occur in a non-aggregating agent, resulting in random 

performance. 

Figure 13: Results of learning in pedestal blocks world showing advantage of 

imagery-augmented state abstraction. 
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abstracted without using imagery augmentation. Both of these approaches outperform 

learning directly in terms of concrete (pixel-based) states. Since imagery allows the 

agent to encode useful task-specific abstract properties that capture non-local 

interaction, these data demonstrate benefits B1 and B2 and provide evidence that the 

relevant aspects of the architecture are working to mitigate the perceptual abstraction 

problem. 

5.2 State Abstraction, Action Modeling, and Imagery in Reinforcement 

Learning 

The previous section demonstrated the use of the architecture in aiding reinforcement 

learning by allowing a more compact MDP representation of the problem to be induced. 

A benefit of the architecture that the previous demonstration does not cover is that 

simulative imagery allows for abstract action modeling (B3). As discussed in Section 3.3, 

the sort of action modeling imagery allows may be difficult to integrate with existing 

model-based RL techniques, as imagery predictions are often nondeterministic in terms 

of abstract states. However, the action modeling capability simulative imagery allows 

can be integrated with reinforcement learning in other ways. 

Motivation for this integration can come from the previous example in pedestal blocks 

world. The imagery agent in this task infers an abstract state by imagining the potential 

actions, and determining if collisions would occur, encoding predicates like 

collision_if_moved(B,pedestal2). These predicates were used as a means of 

describing the current state. However, they can also be interpreted as predictions about 

future states—the results of an action model. The action modeling knowledge implicit in 

these predicates is not leveraged by the agent in that section, however. 

The insight for the approach that will be taken here is that, with the above state 

representation, the agent is conditioning the value of each particular action on the 

predictions for all actions. However, a predicate like 

collision_if_moved(B,pedestal2) is much more relevant for determining the 

value of moving B to pedestal2 than it is for determining the value of another action, 
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like moving B to pedestal5. In addition, if the agent has knowledge about the state 

that will result from an action, that information can be much more relevant than 

information about the current state when considering the value of an action.  

Based on these insights, a new technique for integrating reinforcement learning with 

imagery was developed, ReLAI (Reinforcement Learning with Abstraction and Imagery; 

Wintermute, 2010). In a ReLAI agent, the value of an action is determined solely by the 

next abstract state predicted to result from that action. Technically speaking, ReLAI 

involves an aggregation of state-action pairs, rather than an aggregation of states. That 

is, individual entries in the table of values learned by Q-learning are aggregated, rather 

than states of the MDP. The aggregate (or category) that a state-action pair belongs to is 

determined by the predicted next abstract state that will result from it.  

To prevent confusion, the standard state abstraction approach used above, where Q-

learning occurs as normal but within an abstract state space, will be called direct state 

abstraction. Direct state abstraction agents may or may not use imagery augmentation 

to construct the state. State abstraction is used within ReLAI agents, but interacts 

differently with the learning algorithm.  

To see the difference between imagery-augmented direct state abstraction and ReLAI, 

consider the following circumstance: block A is on pedestal1, and blocks B and C are 

on the table, so B will be moved next. The agent predicts that moving B to pedestal2, 

pedestal3, or pedestal6 will not cause a collision, but moving to pedestal4 or 

pedestal5 will. The best action here is to move B to pedestal2. To find the learned 

value of that action, the imagery-augmented direct state abstraction agent in the 

previous section would add the imagery predictions to its current state, and look up an 

entry in its table using the complete state-action pair:  
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state=[on(A,pedestal1) on(B,table) on(C,table) 

 no_collision_if_moved(B,pedestal2)  

 no_collision_if_moved(B,pedestal3)  

 collision_if_moved(B,pedestal4)  

 collision_if_moved(B,pedestal5)  

 no_collision_if_moved(B,pedestal6)]  

action=[move(B,pedestal2)]  

A ReLAI agent, on the other hand, would look up a learned value based only on the 

predicted next abstract state for the action, or: 

[on(A,pedestal1) on(B,pedestal2) on(C,table) collision(false)]  

As is apparent, the ReLAI agent takes into account less information when looking up 

(and learning) Q values: it has a more compact learning problem. If the right information 

is captured by the predictions ReLAI uses (as will be discussed), the algorithm can learn 

the optimal policy faster than the direct state abstraction agent.  The ReLAI algorithm as 

instantiated in Soar/SVS is shown in Figure 14. 

 

for each episode 
   

  for each step in the episode 
     
    perceive the concrete state � and any reward,  

    store � in the spatial scene 
     
    for each action 
 
       
      use imagery to simulate a in the spatial scene  
       
      apply high-level perception to the imagined  

      scene, derive the next abstract state �(�’)  
       
      lookup the learned value of 
 in � based on 

      the category of (�, 
), which is �(�) 
     
    given the current action values and the  

    reward, apply a Q-learning update to the   

    category of the previous action (if any) 
     
    choose an action using epsilon-greedy policy 
   

  repeat until � is terminal 
 

repeat for all episodes 

Figure 14: The ReLAI algorithm as instantiated in Soar/SVS. 
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Figure 15 demonstrates the performance of a ReLAI agent in pedestal blocks world 

compared to the agents introduced in the previous section. Experimental details are the 

same as in the previous section. These data demonstrate that ReLAI can learn much 

faster than using the same prediction information as part of a state representation and 

using direct state abstraction. This is because ReLAI is able to leverage the benefit of 

simulative imagery to model actions (B3). Since the agent knows that prediction 

information is information about a particular action in the current state, rather than just 

a generic property of the current state, the size of the learning problem can be greatly 

reduced, resulting in faster learning. 

5.2.1 Correctness in ReLAI 

While the previous example provides empirical evidence that ReLAI allows an agent to 

learn good policies, theoretical analysis can reveal general principles about the 

technique that can move the evaluation of the technique (and the architecture that 

supports it) beyond what is possible with demonstrations alone. 

To better understand ReLAI, an analysis has been carried out to show under what 

conditions Q-learning using ReLAI will be guaranteed to converge to the optimal policy. 

Figure 15: Results of learning in pedestal blocks world showing advantage of ReLAI. 
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This analysis will be outlined here, but more detail is provided in a separate paper 

(Wintermute, 2010). 

ReLAI is a special case of Q-learning using a state-action aggregation. In a standard Q-

learning agent, assuming the problem is an MDP, given enough experience and an 

appropriate exploration policy, the agent will learn the optimal value function !∗(�, 
), 

which is defined as ℛ�
� + � ∑ ����

� $
%�� !∗(��, 
�)�� . Previous work has shown that Q-

learning with state-action aggregation converges to the optimal !∗ function under the 

same conditions when all (�, 
) pairs in the same category have the same !∗ value 

(Goetschalckx, 2009). 

Properties of a function that assigns categories to state-action pairs will be examined 

here. This function, &(�, 
), returns a symbol representing the category of (�, 
). An 

appropriate function only assigns two (�, 
) pairs to the same category if their 

respective !∗ values are the same, and will hence allow Q-learning to converge. 

Sufficient conditions such that a function &  is appropriate have been shown elsewhere 

(Wintermute, 2010). These conditions are that, for all states and actions, the reward 

received for a transition is independent of (�, 
), given &(�, 
), and that categories of 

actions in a given state are independent of the (�, 
) pair that led to that state, given 

the category of that pair. That is, Q-learning with state-action aggregation will converge 

to the correct policy if these equations are always true: 

'()(*�� = (|�*, 
*, &(�*, 
*), = '()(*�� = (|&(�*, 
*),                                               (1) 

'()&(�*��, 
) = %|�*, 
*, &(�*, 
*), =  '()&(�*��, 
) = %|&(�*, 
*),                       (2)  

Now, the special case of ReLAI can be considered: where the category of an (�, 
) pair is 

determined by the predicted next abstract state resulting from action 
 in concrete 

state �. How, then, should these abstract states relate to the underlying concrete 

states? Since Equations 1 and 2 are sufficient for appropriate (�, 
) aggregation, and 

thereby allow Q-learning to converge, we re-examine them in the situation where the 

category of (�, 
) is a correct prediction of the abstract state that will follow from it. 



71 

An abstraction function �(�) returns the abstract state corresponding to concrete 

state �. In the examples here, this function is high-level perception applied to the 

contents of the spatial scene in SVS—it is the process that converts the concrete 

representation to an abstract representation. 

Assume that predictions are correct: in all cases &(�*, 
) is what  �(�*��) would equal if 

action 
 were to be taken.
16

 Under this assumption, Equation 1 holds if and only if the 

reward received for a transition is always independent of (�, 
), given the next abstract 

state: 

'()(*�� = (|�*, 
*, �(�*��), =  '()(*�� = (|�(�*��),                                               (3) 

Similarly, under this assumption Equation 2 holds if and only if the abstract state that 

would result from taking some action 
 in �* (which is &(�*, 
)) is independent of the 

previous state and action (�*-�, 
*-�), given �(�*). This implies that the next abstract 

state must be independent of the previous (�, 
) pair, given the current abstract state 

and action: 

'()�(�*��) = %|�*-�, 
*-�, �(�*), 
*,='()�(�*��) = %|�(�*), 
*,                         (4) 

Equations 3 and 4, along with prediction correctness, can then be regarded as sufficient 

conditions for convergence with ReLAI
17

. This means that ReLAI can use abstraction 

functions where �(�*��) is not independent of �* given �(�*), but is independent of 

�*-�. This stands in contrast to direct state abstraction techniques, where �(�*��) must 

typically be independent of �* given �(�*) for guaranteed convergence (e.g., Ravindran 

& Barto, 2002; Givan et al., 2003). The ability to use state abstractions where �(�’) is 

                                                      
16

 This means that the agent correctly predicts all actions it takes, and &(�* , 
*) = �(�*��) at all times, but 

also that the agent correctly predicts actions it does not actually take. 

17
 Note, however, that Equation 4 does not strictly imply Equation 2. Equation 4 only covers actions the 

agent actually takes, not all possible actions as Equation 2 requires. There might be some abstraction 

function that, when used with a particular policy, meets Equation 4 for the actions taken, but would not 

have for other actions. However, that possibility will not be considered here. 
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not independent of � given �(�) allows for less constraint on the high-level perception 

system used to induce the abstraction function. 

Even so, these assumptions can be difficult to match. In the example pedestal blocks 

world problem as presented above, equation 3 is met, since the reward for a transition 

is completely determined by the resulting abstract state. However, equation 4 is not 

met: since the problem is deterministic, all information necessary to exactly predict 

future states is implicit in the initial state, but is not captured by the abstraction. Future 

abstract states are then never independent of any previous concrete state. A simple 

manipulation of the domain, however, reveals that ReLAI will still work in this task, as 

the data indicate. 

Consider an alternate version of the domain, where after each block is placed, the agent 

is transported to a random instance of the task sharing the same abstract state (on and 

collision predicates).  That is, after each action, the spatial details of the problems 

are randomly changed without changing the abstract state. In this alternate domain, the 

reward for a transition is still determined by the resulting abstract state, so equation 3 

still holds. In contrast to the original domain, though, the next abstract state resulting 

from a transition here is independent of the previous concrete state, given the current 

abstract state, so equation 4 is met. 

In this alternate version of the task, the optimal policy is the same: greedily place the 

blocks as far to the left as possible without collisions. In addition, viewed in terms of the 

inputs to the learning algorithm (rewards and abstract states), the experience of the 

agent in the actual domain is virtually identical to what it would experience in the 

alternate domain
18

. Since the agent would learn the optimal policy in the alternate 

                                                      
18

 The exception is that, in the real domain, there is some correlation between potential collisions for one 

block and for another, since pedestal dimensions effect both calculations. For example, assume the agent 

infers that moving blockA to pedestal2 causes a collision, and moves it to pedestal1 instead. The 

agent next considers blockB. Since the blockA/pedestal2 collision is known, it is now more likely that 

moving blockB to pedestal2 will also cause a collision, as it could be that the pedestals are very close 

together. In the alternate problem, since pedestal dimensions change after each move, this correlation is 

not present. It will be assumed that this minor difference does not substantially affect convergence. 
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domain, the optimal policies are the same, and the agent’s experiences are consistent 

with the alternate domain, the optimal policy can be learned in the actual domain. 

5.2.2 ReLAI and Perceptual Abstraction 

In addition to benefiting from action modeling (B3), ReLAI agents retain the perceptual 

abstraction-related benefits (B1 and B2) demonstrated by the imagery-augmented 

direct state abstraction agent in Section 5.1. Beyond what is demonstrated in that 

section, though, the theoretical analysis here can add to the understanding of the 

benefit of task-specific abstract property generation (B2). 

As demonstrated by both the direct state abstraction and ReLAI agents, using imagery in 

pedestal blocks world can allow the task-independent high-level perceptual system in 

SVS to infer task-specific properties (collisions in future states), resulting in better 

performance, and demonstrating benefit B2. 

Generalizing this result beyond that particular task, if state abstraction is supported by 

high-level perception, an agent architecture might have some fixed library of perceptual 

processes, for example, SVS’s predicate extraction system. Since these processes can be 

used in any task, they are task-independent. This library won’t work well in all tasks 

when used with direct state abstraction, assuming the poverty conjecture is true. 

However, when used with simulative imagery, that same library can provide further 

useful properties. Since these properties are calculated via simulations of the actions 

specific to that particular task, they can be considered task-specific properties. 

In this scheme, by encoding different properties into an abstract state, an agent induces 

an abstraction function �(�). To solve a particular task, an agent’s architecture must 

support creating an abstraction function for that task. Both imagery augmentation and 

ReLAI share a common benefit of allowing an agent with a fixed library of perceptual 

processes to address more problems than would otherwise be possible; however, 

further discussion will focus on ReLAI, since it also incorporates action modeling benefits 

(B3), and has been theoretically analyzed in more detail. 
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The theoretical results for ReLAI reveal that it can increase the usefulness of a given set 

of abstraction functions. Compared with what is needed for direct state abstraction, 

equation 4 shows that ReLAI allows an agent to use abstract states that relate in a 

fundamentally different way to the concrete states of the problem, with guaranteed 

convergence of learning to the optimal policy. Because of this, abstraction functions 

that do not meet the requirements for correct direct state abstraction in a given 

problem may meet the requirements for correct ReLAI state abstraction. 

For instance, Li et al. (2006) recently presented a comprehensive theory of methods for 

direct state abstraction, describing five abstraction classes of increasing generality, and 

grouping abstraction techniques into those classes. Of those classes, the most general 

for which Q-learning convergence is guaranteed is called !∗-irrelevant. Here, the only 

requirement is that all concrete states in the same abstract state have the same !∗ 

value for all actions. However, ReLAI allows convergence with abstraction functions that 

are not !∗-irrelevant. For example, the abstraction function used in pedestal blocks 

world is in not !∗-irrelevant. All initial states of the problem are grouped together, 

regardless of whether moving A to pedestal1 will or will not cause a collision, 

situations that clearly effect the Q* value of the action move(A,pedestal1). This is an 

example of how the different relationship between concrete and abstract state spaces 

with ReLAI compared to direct abstraction allows different abstraction functions to be 

successfully used. 

While theoretically interesting, taken at face value, the formal requirements for ReLAI 

do not appear to be very practical. Even for the simple pedestal blocks world task, as 

examined above, the requirements are not strictly met
19

. However, rather than treating 

these requirements as an objective to meet, they may have more practical value as an 

ideal to approximate. While exactly satisfying the equations guarantees convergence to 

the optimal policy, a reasonable hypothesis is that, to the degree the equations are 

                                                      
19

 A simple task where the requirements for ReLAI are more straightforwardly met is presented elsewhere 

(Wintermute 2010). This task also uses a non-!∗-irrelevant abstraction function, supporting the argument 

in the previous paragraph. 
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approximated, performance will approach the optimal ideal. Further theoretical work 

may produce formal measures of approximation, but, as will be demonstrated, use of 

the equations as an informal guide to constructing state representations can lead to 

empirical gains. Roughly, a good state abstraction for use with ReLAI should capture as 

many of the details possible which determine immediate rewards leading into a state 

(for equation 3), but need not capture all information necessary to choose an action, as 

long as a one-step lookahead in abstract state space provides the necessary information 

(as equation 4 allows, since the consequences of actions can be dependent on details in 

the concrete state but missing from the abstract state). 

From these reasons, then, a given set of abstraction functions can be more useful with 

ReLAI than with direct state abstraction. Abstraction functions that do not meet the 

formal requirements for correct direct state abstraction in a given task may meet the 

requirements for ReLAI, and empirically, abstraction functions that do not work well 

with direct state abstraction may work well with ReLAI. The architectural structures 

necessary for direct state abstraction are a subset of those necessary for ReLAI, so any 

agent capable of ReLAI is also capable of direct abstraction. This means that ReLAI 

increases the breadth of tasks an agent will be able to address with a task-independent 

perception system. The reason ReLAI has this advantage over direct abstraction is that it 

captures additional task-specific abstract properties through imagery (even though 

these properties are not explicitly used in a state representation, as they are with 

imagery-augmented direct abstraction). Overall, this amounts to strong support for 

benefit B2, that imagery can mitigate the perceptual abstraction problem by allowing 

task-specific abstract properties to be encoded by a fixed perception system, increasing 

the generality of the architecture. 

There is some cost to using ReLAI compared to direct abstraction, since low-level 

imagery knowledge is necessary to simulate actions, and since imagery processing takes 

time. However, in many tasks, the benefit to be gained in terms of achieving better 

performance with a fixed perception system clearly outweighs these costs. 
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5.3 ReLAI in Complex Problems 

In this section, ReLAI in Soar/SVS is applied to complex arcade game tasks. In addition to 

providing further demonstrations of applications of ReLAI, these examples also 

demonstrate the comprehensive capabilities of the implemented architecture. 

Inspired by other work using arcade games as a source of AI problems (e.g. Agre & 

Chapman, 1987; Diuk et al., 2008), three tasks are demonstrated using games for the 

Atari 2600 system. The original Atari games are used (run in an emulator) – they have 

not been reimplemented.  

For each task, an abstract state representation computable by the high-level perception 

system in SVS has been chosen. A ReLAI agent and a direct state abstraction agent have 

been created for each task using the given representation, and their performance is 

compared. Each of these comparisons show an advantage for ReLAI, demonstrating that 

a given state abstraction can provide better performance with ReLAI than with direct 

state abstraction, even if it does not meet the formal convergence requirements of 

either technique. In addition, all ReLAI agents perform much better than random, 

providing simple demonstrations that imagery in Soar/SVS can be productively used to 

address these tasks.  

These tasks work well as demonstration domains for several reasons. First, each is much 

more complex than a blocks world task: each involves many objects, which are in 

constant motion, and which interact with the reward function in different ways (e.g., a 

player icon to be controlled, a prize to collect, or an enemy to avoid). Second, each task 

has different interesting spatial interactions from the others, so the set captures some 

of the diversity of spatial tasks, posing a challenge to address all of them using a 

common architecture. Finally, the tasks are nonarbitrary, they were invented by others 

who were not concerned with demonstrating the claims made here.  
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Additionally, viewed as demonstrations of the architecture in general, the use of 

reinforcement learning in these agents eliminates the parameter of policy knowledge 

from those demonstrations.  

All games are run in an Atari 2600 emulator. A low-level perception system has been 

constructed which segments, identifies, and tracks relevant objects based on the pixels 

output by the emulator. The recognized objects are input to SVS, where they are added 

to the spatial scene. The perception system is not completely general-purpose: human 

tuning is needed to provide game-specific parameters (including object labels), and 

some game-specific perceptual code is needed to augment what is provided by the 

generic interface. Outside of this low-level perceptual interface; however, the 

architecture is unchanged from what is presented in Chapter IV.  

The action interface is customizable, but here, all agents are allowed to choose an 

action once every 15 game frames (four per second). This value was chosen as a (very) 

rough estimate of human reaction time. The experiments here examine the quality of 

learning that the agents achieve (and not reaction speed), so the emulator is paused 

while the agent processes the perceptions and chooses an action. 

Following the algorithm in Figure 14, each ReLAI agent simulates all of its (game-

specific) action choices, and applies the (game-specific) abstraction function to each 

resulting imagined state, which is then used in the learning algorithm as the category of 

the action. In many cases, though, the imagery process can be decomposed to increase 

efficiency. The changes to the state of the game at each step can be divided into two 

categories: those changes that are caused by the agent, and those that occur 

independently of the action choice (environmental changes). Rather than inferring the 

imagery state for each action independently, an agent can first simulate the 

environmental changes, and then successively overlay that simulation with simulations 

of each of the agent’s own actions. 

To perform imagery, all of these agents rely heavily (but not exclusively) on simulating 

linear motion of objects. A linear translation motion model in SVS supports this, which 
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can be instantiated to track and project forward the motion of each relevant object
20

. By 

tracking the movement of a single object, the instantiated motion model learns its 

velocity, knowledge that it uses when a simulation of future movement is requested.  

5.3.1 Frogger II Agent 

Figure 16 shows the perceptual information provided by the emulator for the first game 

that will be addressed, Frogger II
21

 (Parker Bros., 1984). In the figure, the perceptions 

are overlaid with object outlines and category names are provided by the generic low-

level perception system. 

The agent has a simple goal of navigating the frog (bottom center of the figure) to the 

area below the raft objects at the top of the screen, without colliding with any of the 

                                                      
20

 Each such instance of the motion model is independent of the others. This is similar to a situation 

where an agent imagines two instances of the same long-term memory object. While the objects are 

based on the same LTM prototype, they are independent as instantiated in the spatial scene. 

21
 All images are copyright of their respective owners. 

Figure 16: Perceptual information in the game Frogger II, including object labels. 
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moving obstacles or leaving the play area. This is a simplification of the complete game, 

which would involve solving multiple screens, playing through multiple lives, collecting 

bonuses, etc. Without considering the rest of the game, though, this task is still very 

difficult. The frog has five actions: move in four directions, or do nothing. There is a slow 

current in the water pulling the frog to the right, so inaction still results in motion.  

The position of the frog is discrete in the vertical direction (there are 9 rows to move 

through), but many horizontal positions are possible due to the current. Most of the 

obstacles move continuously at uniform speed to the right or the left, although some 

move vertically or diagonally. Obstacles are constantly appearing and disappearing at 

the edges of the screen. This is an episodic task, and the initial state of the game differs 

across episodes (the obstacles start in different positions), so memorization of an action 

sequence will not work. Rather, a general policy must be learned. 

A reward function similar to that of the game score has been implemented: there is a 

reward of 1000 for winning (reaching the top row), and -1000 for losing (colliding with 

an obstacle or leaving the area). There is a reward of 10 for moving up, and -10 for 

moving down. At every time step, there is also a reward of -1 to encourage short 

solutions. 

To apply ReLAI in this task, imagery must be capable of simulating future states of the 

game. Motion models in SVS support this capability. All of the objects in the game can 

be assumed to be moving linearly at a constant velocity, and, as mentioned above, a 

motion model has been implemented to track and project forward such movement. For 

the movement of the frog itself, the agent has been provided with background 

knowledge in the motion model about how the frog’s controls change its position (for 

example, that an “up” action moves it 12 units in the +y direction). 

The abstract perceptions used by ReLAI in this task encode the following information in 

working memory: 



80 

- a predicate
22

 encoding the vertical position of the frog: one of the 9 rows that define 

the legal play area 

- a predicate encoding the horizontal position of the frog: a left, middle or right region 

- a predicate encoding whether or not the frog currently intersects an obstacle 

- a predicate encoding whether or not an obstacle (or screen edge) is adjacent to the 

frog in each of the four directions. 

As implemented, horizontal and vertical discretizations are achieved by augmenting the 

perceptual information in Figure 16 with objects outlining the relevant regions, and 

using predicate extraction to determine what regions the frog intersects. Collisions are 

simply detected through predicate extraction. Directional obstacle adjacency is 

determined by first using predicate extraction to determine which obstacles are located 

in the appropriate direction of the frog, and then extracting the distance from the frog 

to any matching obstacles. If the distance is less than a threshold (10 pixels, about the 

same as the inter-row distance), the obstacle is deemed adjacent in that direction. 

As a state representation, this abstraction loses potentially useful information, and is 

not Markovian (since the agent could make better decisions by remembering where it 

has seen obstacles in the past). However, it is compact, and just as important, it can be 

composed from the simple perceptual operations available in the architecture. 

The same perceptual abstraction function is used in both a direct state abstraction 

agent and a ReLAI agent. At each step, the ReLAI agent uses imagery to project forward 

the motion of the obstacles near the frog, along with the effect of each action on the 

frog. The abstract state information above is then inferred for each imagined state. In 

addition to abstract perceptions, in this task the ReLAI agent also encodes the proposed 

action as part of the abstract state. This is because perceptions about the next state 

alone cannot capture the immediate reward for the transition, as Equation 3 requires, 

                                                      
22

 As in the rest of this thesis, the term “predicate” here is simply shorthand for “symbolic structure”. 
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since moving up or down a row effects reward (not just being in a particular row). 

However, the last action taken is not useful as part of the other agent’s state, so it is not 

included there. 

For ReLAI, the requirement that the abstraction captures immediate reward (Equation 

3) is met, and the requirement that predictions are accurate comes close to being met, 

only missing a few cases where moving objects do not follow a constant velocity or 

disappear unexpectedly. The requirement on state independence (Equation 4) is not 

met: �(�*��) is not strictly independent of �*-�, given �(�*), so convergence to !∗ isn’t 

guaranteed. However, unlike state aggregation, ReLAI is robust to abstractions where 

�(�*��) is dependent on �* given �(�*), which can be beneficial. 

For example, the ReLAI agent can base its action choice on a precise prediction of 

whether or not it will collide with an obstacle in the new state �(�*��),  where the other 

agent can only base its decisions on �(�*), which includes information (obstacle 

adjacency) that can only roughly predict future collisions between moving objects. The 

concrete state �* contains enough information to predict collisions in the next state 

almost exactly, but this information is only useful to the ReLAI agent.  
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Experiments were run using the actual (emulated) game. Q-learning with epsilon-greedy 

exploration was used (parameters were � = 0.3, � = 0.1, � = 0.9). 30 trials of 6,000 

episodes each were run in each condition. Figure 17 shows the results. Here, groups of 

400 adjacent episodes were binned together; the results are averaged across all 

episodes in the bin and across all trials (each point represents 12,000 games).  

As a baseline, the graph shows the estimated performance of a random agent. Random 

performance is generalized from data collected in 1,000 task instances, not exactly the 

same instances the learning agents experience. Both of the learning agents initially 

perform randomly, however, since they learn quickly within the first bin of 400 

episodes, the graph does not reflect this.  

The graphed results do not show the ability of the agents to play the game well: epsilon-

greedy exploration means that the agent acted randomly 10% of the time (often with 

fatal results), and some of the randomly-chosen start states were unwinnable. These 

factors contributed to high variability in the data, necessitating the averaging of many 

games per data point. 

To examine the final policy, 700 games were run in each condition using the final 

policies, but without exploration and with unwinnable games filtered out. Of these, the 

Figure 17: Performance of ReLAI vs. direct state abstraction in Frogger II. 
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direct abstraction agent received an average reward of -66 and won 45% of the games, 

while the ReLAI agent received an average reward of 439 and won 70% of the games. 

The ReLAI agent clearly outperforms the direct abstraction agent: it learns a better 

policy, and learns it faster. In addition, both agents perform much better than random. 

5.3.2 Space Invaders Agent 

The second game addressed is Space Invaders (Atari, 1980). Figure 18 shows an example 

of the perceptual data provided by the emulator, overlaid with object labels provided by 

the low-level perception system. 

In Space Invaders, the player controls a ship (located at the bottom of the figure), which 

can move left and right on the ground. The ship is being attacked by aliens, which drop 

bombs while moving left and right and (gradually) downward in a regular pattern. The 

ship explodes if hit by a bomb, and the player loses a life. The player can shoot missiles 

upward toward the aliens; its goal is to kill all of the aliens by hitting them with missiles. 

Figure 18: Perceptual information in the game Space Invaders, including object labels. 



84 

All bombs and missiles take time to travel while the aliens and ship are moving – they do 

not arrive instantly, and the player cannot fire a missile if one is already in the air. Three 

static shields are located between the ship and aliens, which block bombs and missiles, 

but these gradually disintegrate when they are hit by missiles or bombs. 

The state of the world here is continuous, since the missiles and bombs move 

continuously, and each instance of the game is unique, since the positions of the aliens 

and the timing of their bombing is different in each case. 

The task addressed by the agents here is a slightly simplified version of the game, where 

it aims to kill all of the aliens on the initial screen (it does not progress through levels, 

have multiple lives, or try to kill the mothership, which is a high-value target in the full 

game). The agent receives a reward of 50 for killing an alien and -50 for losing a life (and 

ending the instance). 

The state representation used encodes the following information: 

-a predicate encoding a discretized horizontal position for the ship (15 possible values) 

-a predicate encoding whether or not there is a "clear shot" (a missile would hit an alien 

if the alien stays in place) 

-a predicate encoding whether or not there is an unshielded bomb (a bomb that will hit 

the ship if it does not move) 

-a predicate encoding whether or not there a missile (shot by the ship) is in the air 

-if a missile is in the air, a predicate encoding whether or not it aligns with an alien 

-a predicate encoding whether or not there is a falling bomb adjacent to the ships left or 

right 

-a predicate encoding whether or not the ship intersects a bomb 
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Similar to the Frogger II agents, spatial discretization is supported by augmenting low-

level perception with objects representing the regions, and checking for intersections 

with predicate extraction. For the state variable encoding clear shots, a series of 

predicate extractions are necessary. For each alien, the agent queries whether or not 

the centroid of the ship is strictly below the alien, and whether the centroid of the ship 

is strictly below a shield
23

. The ship’s centroid is used since the missile is fired from the 

center. If there is an alien above, and the shot is not blocked, a clear shot is present. 

Unshielded bombs and aligned missiles are similarly encoded with multiple direction 

queries. Adjacent falling bombs are calculated similar to adjacent objects in Frogger II, 

the bomb must be within approximately two ship-widths in the relevant direction to be 

considered adjacent. 

As with the previous tasks, linear motion projection is the primary form of imagery used 

in this task. All aliens, missiles, and bombs can be tracked and projected forward, and 

the agent has been provided with motion model knowledge about how actions move 

the ship. However, there is one aspect of the state that cannot easily be predicted with 

imagery: if an agent issues a “fire” action, in the next state, a missile will be in the air 

(possibly aligned with an alien). This is not a simple spatial consequence of the action, 

since it involves a completely new object appearing. In order to simulate the effects of 

this action, the agent has a partially-symbolic action model for this action: it knows that 

issuing a fire action will cause a missile to be in the air in the next state, and assumes 

that missile will be aligned with an alien if there is currently a clear shot (it also knows 

that this will not happen if there is already a missile in the air). The use of a 

comprehensive architecture such as Soar easily allows this sort of integration, where 

symbolic action models can be used in conjunction with imagery (Laird et al., 2010). 

                                                      
23

 As the game progresses and the shields disintegrate, the low-level perception system can lose the 

ability to recognize them, as they degrade into randomly shaped objects and split into parts. The agents 

simply ignore shields at this point. 
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Experiments were run with the same parameters as in the previous section. 12 trials of 

5,000 episodes each were run, groups of 500 adjacent episodes were binned together, 

and average reward was calculated across all trials and episodes in each bin. A random 

baseline was calculated by averaging the performance of a random agent in 1,000 

episodes. Figure 19 shows the results.  

The final policy was tested similarly to Frogger II. 720 episodes were run using the final 

policies, but without exploration. The ReLAI achieved an average reward of 683 (killing 

13 or 14 aliens out of 36), while the direct abstraction agent achieved an average 

reward of 465 (killing 9 or 10 aliens). In 6 episodes, the ReLAI agent killed all of the 

aliens, while the direct abstraction agent never achieved that level of performance. 

The performance here reflects the fact that the state representation loses relevant 

information from the concrete state of the problem, for both direct abstraction and 

ReLAI. In particular, it does not well capture the long-term motion of the objects. A 

direct state abstraction agent only has access to enough state information to line up its 

shot with the assumption that nothing will move, which does not work well here. ReLAI 

can do better, since it can take into account the short-term movement of objects. 

However, the architecture does support simulation of the complete path of missiles the 

agent fires, potentially allowing an imagery agent to line up its shots much more 

Figure 19: Performance of ReLAI vs. direct state abstraction in Space Invaders. 
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accurately. The ReLAI algorithm, however, is constrained to use imagery only for the 

immediately following state. More work is needed to determine how long-term ballistic 

predictions that can have effects many time steps into the future can be integrated with 

learning. 

That said, the data show a substantial advantage to using ReLAI rather than direct 

abstraction with the given representation, and both agents do much better than 

random.  

5.3.3 Fast Eddie Agent 

The final game addressed is called Fast Eddie (20
th

 Century Fox, 1982). In this game 

(Figure 20), the player controls a character (Eddie) who navigates a two-dimensional 

platform world. The actions available are to walk Eddie to the left or right, jump in place, 

leap to the left or right (which moves Eddie roughly ¼ of the screen in that direction), 

climb up or down a ladder, or do nothing. There are a number of monsters in the game, 

which either stand still or move quickly to the left and right (“bouncing” at the edges of 

Figure 20: Perceptual information in the game Fast Eddie, including object labels. 
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the screen), and a number of heart objects that move continuously to the left or right. 

Eddie must jump or leap to avoid the monsters and to collect hearts. In the version of 

the game used for a task here, the game terminates when Eddie collects nine hearts or 

loses a life by colliding with a monster. Like the other games, the state space here is 

continuous, and each instance is slightly different. 

The agent receives a reward of 50 whenever it collects a heart and -100 whenever it 

loses a life. For this game, the environment interface was customized to provide the 

agent with a set of actions available at each step, simplifying the problem so the agent 

does not consider moving up or down when not at a ladder or issuing actions that would 

cause Eddie to hit the edge of the screen.  

The abstract state used for this task is as follows: 

- a predicate encoding whether or not Eddie intersects a monster 

-a predicate encoding whether or not Eddie is near a monster 

-a predicate encoding whether or not the last action reduced the distance from Eddie to 

the closest heart 

-a predicate encoding whether or not a heart collected was collected in the last action. 

Intersections are calculated via simple predicate extraction. To determine whether 

Eddie is “near” a monster, distance is used. For stationary monsters, anything closer 

than 10 pixels (about the width of Eddie) is considered near, and for moving monsters, 

the distance is 35 pixels, allowing Eddie to keep a wider berth. The last two predicates 

are more complicated to determine and require multiple predicate extraction 

operations, in addition to some internal history maintenance.  

To determine whether the closest heart distance was reduced, it is first necessary to 

find the closest heart and the distance to it. To do this, the agent determines which level 

of the board Eddie is currently located at, and which level each heart is located at. 

Rather than using special region objects as in the other games, here, predicate 
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extraction is used. Since the floors are objects, the agent can determine which floors a 

given object is above, and which floors are closest to the top of the screen. This is 

sufficient information to infer what floor each object is on. If there is a heart on the 

same floor as Eddie, the distance to that heart is used. Otherwise, the agent first infers 

which heart is closest in floors to Eddie’s floor, and then determines the distance to the 

closest ladder adjacent to the current floor that would move Eddie towards that floor, 

and uses that distance. For example, in Figure 20, the closest heart is on the second 

floor and Eddie is on the first floor. The closest ladder to Eddie leading up is to the left of 

him, so the distance to that ladder is considered the distance to the closest heart. Once 

this distance is determined, it can be compared to that in the distance in the previous 

state to determine the value of the predicate. State transitions where Eddie moves 

between levels are handled slightly differently, but the agent is still able to accurately 

encode the predicate. 

The direct abstraction agent can simply remember whether it has collected a heart in 

the last step, as that information is provided in its perceptions. However, in the ReLAI 

case, determining whether a heart was collected in the “last” action (which is the action 

being imagined) involves a series of steps. To do so, first, the agent assumes that no 

heart was collected unless the last action was a jump or a leap. If the last action was a 

leap, the agent constructs an image of the convex hull of the agent at its previous 

location and at its current location (using predicate projection). The agent then uses 

predicate extraction to check if any heart on the same floor as Eddie lies above this hull 

object. If the last action was a jump, the agent simply checks if a heart in the same row 

lies above Eddie. This process is not entirely accurate, but works in most cases. The 

process could be made more accurate if the detailed motion of Eddie’s leaps were 

simulated, rather than the agent simply imagining the final state.  

Both of these predicates were formulated to stretch the definition of what can be 

encoded in a state predicate with ReLAI. They are backward-looking predicates, as they 

encode information about the agent’s recent history. These predicates can be 
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considered as maximally exploiting the fact that ReLAI works with state representations 

where the next abstract state resulting from a transition can depend on details not in 

the current abstract state (but in the current concrete state). Predicting future values of 

the predicates depends almost entirely on information completely missing from the 

abstract state: the locations of Eddie and the hearts. As the data (to be presented 

shortly) shows, ReLAI can greatly benefit from these predicates, where direct state 

abstraction cannot. 

Compared to the other domains, the state predicates here are more complex, leading to 

a much smaller state space. Learning is still necessary to determine a policy; however, 

compared to the other domains, in this case more task knowledge is captured by the 

state representation. Using this representation implicitly indicates that collecting a 

heart, or moving closer to one, is a relevant event that should influence the agent’s 

action choice. This property is more task-specific than simply encoding, for example, 

discretized locations for all of the objects.
24

 However, any agent that uses an abstract 

representation implicitly captures properties of the task in the choice of representation: 

for example, segmenting raw pixels into objects implicitly captures the fact that objects 

are relevant to the task. This agent is simply an example from the more task-specific end 

of the spectrum. Investigating learning of the state representation itself is an area for 

future work. 

A new motion model was necessary to model the monsters in this game: using the linear 

translation model was not accurate enough, as the monsters move quickly compared to 

Eddie and bounce of the edges of the screen, so in many cases a linear prediction would 

be wrong. The new model accounted for this bouncing behavior. Similar to the previous 

tasks, the agent was provided with background knowledge in a motion model so that 

Eddie’s movement could be reliably simulated. 

                                                      
24

 This is a different dimension of task-specificity than that added by imagery, where the given state 

abstraction is applied after an imagined action, resulting in a prediction which captures aspects of the 

(task-specific) action. 
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Experimental data was gathered in 24 trials of 1000 episodes, and is shown in Figure 21, 

with average reward binned across groups of 100 adjacent episodes and all trials. 

Parameters were � = 0.01, � = 0.1, � = 0.9. These are the same parameters as used in 

all other experiments, except the learning rate: a much lower rate (.01 vs. .3) was 

necessary since there are so few abstract states in the problem. To inspect final 

performance, 720 instances of the task were run using the 24 final policies without 

exploration. Here, ReLAI earned an average reward of 234, where direct abstraction 

earned -92. The ReLAI agent won (collected all nine hearts) in 44% of these instances. 

A baseline was also determined by testing a random-action agent in 1,000 instances of 

the task. As the data indicate, again, in this task, ReLAI is able to perform much better 

than direct abstraction with the same state information and the random agent. 

5.3.4 Summary of Video Game Experiments 

Overall, these three video game agents all serve to demonstrate that ReLAI can be 

empirically useful even when theoretical requirements are not met, and that state 

representations that meet the theoretical requirements of neither direct abstraction nor 

ReLAI can perform much better with ReLAI. The predicates used in the state 

representations of these agents also demonstrate some of the variety of complex, task-

Figure 21: Performance of ReLAI vs. direct state abstraction in Fast Eddie. 
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specific predicates that can be derived using SVS. In addition, the set of data as a whole 

reflects the fact that the theory and implementation of SVS is complete enough that 

imagery can be beneficially used in complex tasks that were not originally designed as 

evaluation domains for that purpose. 

These agents further demonstrate the benefits listed in Chapter III. With ReLAI, the 

agent predicts a set of future abstract states in order to gather enough information to 

make a decision. In that way, an inference of the value of a predicate in a predicted 

future state is really an inference of a property of the current situation
25

 that the agent 

is in. When the prediction process involves motion, then, simulative imagery is being 

used to capture movement in terms of abstract symbolic information (B1). When the 

Frogger II ReLAI agent does a one-step lookahead to infer that moving up will cause it to 

collide with a fish, it has inferred symbolic information that takes into account the 

precise movement of both the frog and the fish.  

In addition, since the simulative imagery process differs in each agent based on the 

details of how the environment of that particular game evolves at each step and how 

the agent’s actions cause movement, the properties of the current situation being 

inferred through imagery lookahead are task-specific (B2). 

As was explained above, the ReLAI algorithm implicitly captures the action modeling 

aspect of simulative imagery (B3) where other techniques such as imagery-augmented 

direct state abstraction do not. Therefore, the ReLAI agents here demonstrate that 

benefit. 

The ReLAI agents here are also strong examples of the ability simulative imagery affords 

of allowing decisions to be made with abstract information while predictions are made 

                                                      
25

 I’m using the term “situation” rather than “state” to avoid confusion with the states that play a direct 

role in the learning algorithm. For example, a ReLAI agent in pedestal blocks world might infer that 

moving A to pedestal1 would cause a collision, which is a property of the current situation, but does not 

add collision_if_moved(A,pedestal1) to its RL state representation as a direct state abstraction 

agent would. 
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with concrete information (B4). The movement of objects in all three of these games is 

easily predictable in concrete, quantitative terms. If an object moved three pixels to the 

right in the last frame, it is likely to be another three pixels to the right in the next 

frame. This is a simple regularity in all of these tasks that makes the environments very 

predictable. However, including information at that level of detail in the state 

representation used by the RL algorithm would create far too many states for efficient 

learning. Using multiple levels of abstraction and imagery allows the agents to leverage 

low-level predictability in the environment while still maintaining a compact 

representation suitable for efficient learning at the decision-making level.  
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Chapter VI – Motion Planning in Soar/SVS 

As discussed in Section 2.2, motion planning 

for a car-like vehicle is a challenging 

problem. Recall that motion planning in this 

case is the problem of determining a control 

sequence such that a robot can drive 

through its environment to a goal location 

(Figure 22).  

The difficulty here is due to the need for 

precise control, where the output of the 

agent must be sensitive to minute variations in its input. This aspect makes the problem 

fundamentally irreducible, as it cannot be adequately solved by choosing actions based 

solely on abstract states. Moreover, the most straightforward approach to handling 

irreducibility, the use of encapsulated controllers, is insufficient, as nonholonomic 

constraints make that form of abstraction very difficult. 

In this chapter, an agent instantiated in Soar/SVS to address this task is introduced. This 

agent implements an existing sampling-based motion planning algorithm, where 

imagery is used to simulate the effects of a low-level controller in the current situation. 

This agent provides a demonstration of the benefits in Section 3.3, most importantly, 

those benefits related to irreducibility, a difficulty that is not as prominent in the arcade 

game tasks of the previous chapter. The motion processing system of SVS is important 

here, as it was in the arcade game tasks, however, here the model used is much more 

complex, and is (theoretically) used for external control in addition to imagery. 

Figure 22: A nonholonomic car motion 

planning problem. 
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Additionally, the algorithm used here is more complex than the reinforcement learning 

techniques in the previous chapter. This agent therefore provides a more 

comprehensive example of how high-level processing in Soar and lower-level processing 

in SVS can be integrated in a complete agent.  

6.1 The RRT Algorithm 

In response to the difficulty of abstraction in motion planning, a family of motion 

planning algorithms has been developed based on the principle of sampling possible 

trajectories through simulation. RRT (Rapidly-exploring Random Trees, LaValle & Kuffner 

Jr, 2001) is a sampling-based motion planning algorithm that works by constructing a 

tree of reachable states of the robot, rooted at the initial state, and adding nodes until 

that tree reaches the goal. Nodes are generated by extending the tree in random 

directions, in such a way that it will eventually reach the goal, given enough time. Each 

path from the root of the tree to a leaf represents a path that the robot could take, 

constantly obeying all constraints on its motion.  
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The tree is constructed by the algorithm in Figure 23, and Figure 24 shows an example 

of one iteration of the algorithm applied to a car planning problem. 

In the example, the car’s current configuration is node ./, while previous iterations 

have uncovered other reachable configurations .� − .1. These configurations are linked 

in a tree, where each configuration is reachable from its parent via a known control. In 

this case, a “control” at the level of RRT is a selection of a low-level controller to use, for 

example, a controller that greedily steers the car toward a particular goal. The path 

followed by this controller between each connected configuration in the tree is shown 

in the figure. To add to this tree, a target configuration .2 is randomly generated, as 

represented in the left half of the Figure. The algorithm then attempts to extend its tree 

of reachable configurations to that configuration. 

make tree rooted at initial configuration 

while tree does not reach goal 

  generate random configuration -> Xr 
  or use goal configuration -> Xr  
  with some probability 

  get closest existing state to Xr -> Xc 

  extend Xc towards Xr -> Xn 

  if no collision occurred 

    add Xn to the tree, connected to Xc  

Figure 23: The RRT Algorithm. 

Figure 24: An example of RRT applied to car motion planning. 
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To extend the tree, the closest known configuration to .2 must be determined. To do 

this, some metric must be used that can approximate the “distance” between 

configurations—that is, the metric must approximate the distance of the shortest path 

the car could follow to move from one configuration to another. In the case of car path 

planning, a simple metric is the Euclidian distance between the position of the car in the 

two states, with the condition that the distance is infinite if the target state is not in 

front of the source. On the left of Figure 24, configuration .1 is the closest to .2 given 

Euclidean distance alone, but since .2 is not in front of .1, actually driving from .1 to .2 

would be difficult, since the car cannot turn in place to face .2. .3 is then the closest 

configuration to .2 once the front constraint is taken into account, and .4 in the 

algorithm takes on the value of .3. 

The next step in the algorithm is to extend the chosen node towards .2, while detecting 

collisions along the path. This is shown on the right of Figure 24.  A typical approach is to 

numerically integrate differential equations that describe the vehicle dynamics to 

simulate motion, resulting in a sequence of states parameterized by time. This 

simulation must occur within a system capable of detecting collisions. In the right frame 

of Figure 24, the controller is invoked starting at the configuration of .3, and the car’s 

motion is simulated driving towards .2 for some amount of time. Since no collision 

occurred, the new node .5 is added to the tree of reachable configurations. The 

algorithm then continues until the tree reaches the goal. 

6.2 RRT in Soar/SVS 

A version of the RRT algorithm has been instantiated in a Soar/SVS agent (Wintermute, 

2009b). The problem considered is that of planning to drive a car from an initial state to 

a goal region, while avoiding obstacles in a known environment (the agent only 

determines a plan, it is not connected to an actual robot).  

A complete car configuration in the version of the problem considered here consists of a 

position where the car is located, the steering angle, the steering velocity (since the 

steering angle cannot be instantaneously changed), and the angle of the car body. The 
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car motion model takes as input the identity of a car in the scene, and the location of a 

goal. By accessing the spatial scene, the model can identify the position and body angle 

of the car, and the other configuration aspects are initially assumed to be 0. 

Inside the model, a system of differential equations describe the configuration of the car 

as a function of the time and goal location. When integrated, these equations can yield 

a sequence of configurations parameterized by time, allowing for simulation. The 

equations used here were determined by combining a model of human movement and 

obstacle avoidance (Fajen & Warren, 2003) with a simple car model (LaValle, 2006). No 

human modeling claims are being made with this choice of controller, rather, the 

particular controller was chosen as a simple demonstration of how techniques and 

results based on the dynamical systems approach to cognitive science can be tightly 

integrated with a symbolic AI framework. In addition, it performs well.
26

 

The human model controls the intended steering angle of the car, and this steering 

angle determines the next position of the car. A constant speed is assumed. The model 

locally avoids obstacles: each obstacle affects the steering of the car, with nearer 

obstacles located towards the front of the car having the most influence. This reactive 

obstacle avoidance alone can solve simple problems, but more complicated problems 

cannot be solved this way, as a solution needs to be composed out of several distinct 

movement subgoals. 

The controller simulates motion towards a goal, while maintaining the nonholonomic 

constraints of the vehicle. Along with geometric models of the car and world in the LTM 

of SVS, it is the low-level knowledge that was added to the existing SVS system to 

implement this planner. 

Symbolic Soar rules were written to perform the algorithm in Figure 23. As a metric for 

node distance, Euclidean distance was used, with the condition that the distance is 

                                                      
26

 The local obstacle-avoiding controller here was directly compared (with favorable results) to a similar 

controller that simply steers towards the goal in (Wintermute, 2009a). 
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infinite where the goal is not in front of the node.
27

 SVS predicate extraction 

mechanisms were used to extract distances, and to query for an in-front relationship. 

The motion model described above enables simulation, and SVS supports querying for 

intersections between objects in the scene, enabling collision detection. The only new 

mechanism needed in SVS to support this algorithm was a predicate projection method 

to generate random goal points in the scene, which was a simple addition. 

Examples of the SVS scene during RRT planning are shown in Figure 25. Soar stores, as a 

symbolic structure in working memory, the RRT tree. The nodes in that tree are 

perceptual pointers into SVS—they point to specific objects in the scene, which can be 

seen in the figure. Soar proceeds by adding a new random point object to the scene, and 

querying for the distance from each node to that object. These distances are then 

compared to find the closest. A motion model-based simulation is instantiated with that 

node as the initial condition
28

 (creating a new car object in the scene), and this 

                                                      
27

 This means that the steering aspects and the body angle of randomly-generated configurations (and the 

goal configuration) are ignored when computing the distance metric. This allows random configurations 

and goals to be represented by points, rather than complete configurations. 

28
 In the implemented system, motion model instantiations are not maintained after nodes are added to 

the tree, only the object in spatial scene remains. Since steering angle and velocity are maintained in the 

model (and not the scene), these quantities are assumed to reset to zero between nodes. Minor 

enhancements to the architecture would be necessary to allow motion model instantiations to be 

preserved. 

Figure 25: States of SVS Spatial Scene during RRT planning. The problem is to drive a car 

from lower-left to upper-right. Left: RRT tree, just before a solution is found. Right: 

Sequence of car positions that solve the problem. 



100 

simulation is stepped until a certain time is 

reached, the goal is reached, or Soar detects a 

collision with an obstacle. In all but the last case, 

the termination of the simulation results in a new 

tree node being added. In addition to moving 

towards random points, with a certain probability 

the agent instead tries to extend the tree directly 

towards the overall goal, biasing the growth of the 

tree in that direction. 

The agent has been tested on the problem in 

Figure 25 and other similar scenarios. For the 

problem in the figure, 100 trials were run, and a 

solution was found after an average of 12 tree 

expansions. However, the primary purpose of this 

agent is to serve as an existence proof that the 

algorithm can be implemented in Soar/SVS, and as 

a demonstration of the architecture applied to this 

task. For those purposes, experimental data 

beyond stating that the implementation functions 

as described is largely redundant. 

6.3 Symbolic Soar Processing in RRT 

To provide an example of how higher-level Soar 

processing interacts with SVS, Figure 26 shows a 

trace of Soar’s behavior during RRT planning. 

Symbolic Soar processing is mediated through a 

large declarative symbolic structure, the working memory. Reasoning in Soar is 

accomplished through a sequence of decisions, where an operator, representing a 

specific choice of an internal or external action, is selected. Symbolic rules control which 

Figure 26: A trace of a Soar/SVS 

agent executing RRT planning. 

Initialization is shown in blue, 

iterations of the algorithm are 

shown in alternating font styles. 

 1: O: O22 (svs-build-world) 
    ... 
 9: O: O291 (rrt-plan) 
10: ==>S: S10 (operator no-change) 
11:    O: O293 (init-tss) 

12:    O: O294 (generate-projection) 
13:    O: O300 (wait-for-svs) 
14:    O: O301 (rrt-extend) 
15:    O: O303 (run-svs-simulation) 
16:    ==>S: S12 (operator no-change) 
17:       O: O343 (svs-step) 
          ... 
37:       O: O363 (svs-step) 
38:    O: O365 (register-node) 
39:    O: O366 (generate-projection) 
40:    O: O371 (wait-for-svs) 
41:    O: O372 (rrt-extend) 
42:    O: O374 (run-svs-simulation) 
43:    ==>S: S14 (operator no-change) 
44:       O: O414 (svs-step) 
          ... 

59:       O: O429 (svs-step) 
60:    O: O431 (remove-failed-sim) 
61:    O: O432 (generate-projection) 
62:    O: O437 (wait-for-svs) 
63:    O: O438 (behind-all) 
64:    O: O439 (generate-projection) 
65:    O: O444 (wait-for-svs) 
66:    O: O445 (rrt-extend) 
67:    O: O447 (run-svs-simulation) 
68:    ==>S: S16 (operator no-change) 
69:       O: O487 (svs-step) 
          ... 
82:       O: O500 (svs-step) 
83:    O: O502 (register-node) 
84:    O: O503 (generate-projection) 
85:    O: O508 (wait-for-svs) 
86:    O: O509 (rrt-extend) 

87:    O: O511 (run-svs-simulation) 
88:    ==>S: S18 (operator no-change) 
89:       O: O551 (svs-step) 
          ... 
99:       O: O561 (svs-step) 
100:   O: O563 (remove-failed-sim) 
101:   O: O567 (choose-goal) 
102:   O: O569 (rrt-extend) 
103:   O: O571 (run-svs-simulation) 
104:   ==>S: S20 (operator no-change) 
105:      O: O611 (svs-step) 
106:   O: O613 (remove-failed-sim) 
107:   ... etc. 
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operators are available at what time, choose particular operators when there are 

multiple possibilities, and change the state of working memory based on the selected 

operator. Subgoaling in Soar is achieved via impasses, which arise whenever there is 

insufficient knowledge to immediately choose an operator. 

Each line in the figure shows the name of the operator chosen at that decision, or that 

an impasse was entered (indicated by a ==>). More details about symbolic Soar 

processing can be found in (Lehman et al., 2006), and more detail about how SVS 

interacts with Soar’s working memory can be found in (Wintermute, 2009b). 

Each iteration of the algorithm starts with a decision to either generate a random point 

to use as a goal (seen as a generate-projection decision), or a decision to try and 

extend the tree towards the overall goal (seen as a choose-goal decision in the last 

iteration). After deciding on the location to extend towards (a target), the agent must 

determine which existing state (which node in the tree) should be extended toward that 

state. This involves predicate extraction queries: orientation queries are set up so that 

the in-front-of relationship is checked between each node in the tree (which is a 

pointer to an actual car object in the scene) and the target object, along with distance 

queries between those. From Soar’s perspective, these queries are performed in parallel 

for all objects. Of all of the nodes for which the orientation query matches, that with the 

shortest distance is chosen. If a random point is generated that is not in front of any 

node, it is rejected, this is the behind-all operator in the third iteration. The wait-

for-svs operator selected at several points in the trace is an artifact of the way the 

current implementation of SVS interfaces to working memory and is unimportant for 

this discussion. 

After finding a node to extend, the agent uses a motion model to simulate the car 

driving towards the target. This is set up through the rrt-extend operator. SVS 

includes task-independent library rules to allow easy creation of motion simulations. 

Here, the agent specifies to simulate moving the car towards the target, until either a 

maximum time is reached (the common case for a successful extension), or a predicate 
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extraction query matches, detecting that the car has collided with an obstacle or 

reached the goal. As the motion model used avoids obstacles, the perceptual pointers to 

the obstacles in the problem must also be provided to the SVS motion simulation 

process. After the relevant queries are set up, the operators run-svs-simulation 

and svs-step (part of the SVS library) take over. Based on the results of the 

simulation, the image of the car at its new location is either added as a new node (if the 

extension was successful), or removed from the scene (if a collision occurred). This 

continues until the overall goal is reached, at which point the agent removes all of the 

non-solution nodes in the tree (as seen on the right of Figure 25). The agent halts at this 

point. In a more complete agent, the plan would then be executed by moving the robot 

towards these locations. 

6.4 Perceptual Abstraction and Irreducibility in Motion Planning 

Now that the agent has been described, it is worth revisiting the principles introduced 

the earlier chapters, to see how this system demonstrates the benefits of the theory. 

First, it is important to note that the algorithm here was developed by other 

researchers, completely independent of any broad architectural theories, but instead to 

solve a practical engineering need. That indicates that the approach is fundamentally 

valuable, its utility is not, for example, an artifact of the symbolic assumption in Chapter 

II, nor of any shortcomings of the Soar architecture. While the algorithm was not 

originally described in terms of multiple representations and imagery, it easily maps on 

to those concepts. Any system implementing RRT in problems such as this requires both 

the means to simulate action in terms of low-level information, and to make abstract 

judgments about the outcome of that simulation, such as “collided with an obstacle” or 

“reached the goal”. In addition, information about the state of the search needs to be 

maintained at multiple levels of abstraction: the agent needs to maintain the exact 

quantitative values for each configuration in its tree, but also the abstract knowledge 

about the topology of the tree itself (which configurations are reachable from which 

others).  
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This agent serves as a demonstration of the particular benefits outlined in Section 3.3. 

Most prominently, it demonstrates the benefits related to irreducibility. Motion 

planning, in general, is an irreducibly large problem. If the problem were to be 

addressed by a purely-symbolic system, where raw perceptions were abstracted into 

states and mapped to raw actions, even for simple robots, the maximally abstract state 

space would be extremely large. However, a concrete controller is used in this 

approach, allowing the action space of the symbolic part of the agent to be simplified, 

and working to mitigate irreducibility (B5). 

Concrete control alone is insufficient to mitigate irreducibility in this situation, though. 

The task cannot be reduced to abstract symbolic reasoning about concrete control (the 

encapsulated controller approach), as may be possible in simpler motion planning 

problems. For the nonholonomic motion here, there is no simple geometrical property 

of the obstacles that could be calculated to determine a small set of reachable locations 

and paths a controller could follow that could be searched over, as may be possible 

when planning the motion of simpler robots (e.g., a visibility graph (Lozano-Pérez & 

Wesley, 1979)). It is possible to build a conservative abstract map of the world, if there 

are regions that are clearly traversable, but solution quality would be lost. 

Instead, simulative imagery is used in this agent to allow reasoning about the controller 

in terms of symbolic information, but without requiring a complete symbolic 

characterization of the controller (B6). This allows for a controller that entails a complex 

interaction with the world—steering that continuously varies with the exact positions of 

the obstacles and goal—to be reasoned about in terms of extremely simple abstract 

information: whether or not the car collides with an obstacle.  

The system can also be viewed in terms of the perceptual abstraction related benefits. 

The use of simulative imagery allows motion to captured symbolically (B1), allows task-

specific abstract properties to be captured (B2, for example, “if the controller is used to 

seek towards the goal from this state, it will succeed”), and allows action modeling (B3), 

since the agent knows that the result of a particular simulation is a property of a 
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particular action choice (controller selection) in the current state, rather than just 

another property of the current state. 
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Chapter VII - Related Work 

This thesis touches on many areas of research in artificial intelligence, cognitive science, 

and robotics. This chapter contains a survey of related work, with an emphasis on 

systems that have influenced the theory and broad architectural design, rather than 

prior work related to particular aspects of the implementation or experiments (some of 

which has been noted in previous chapters). 

Related work is divided into rough categories; however, some of the approaches 

described here could fit in multiple categories.  

7.1 Qualitative Spatial Reasoning 

Much work in the past has focused on attempts to build useful abstract representations 

of spatial information. Researchers in Qualitative Spatial Reasoning study this problem. 

An influential system here is the MD/PV model of Forbus (1983). A major result of this 

line of work, the poverty conjecture, was discussed earlier. Beyond this, the model itself 

provides some useful insights. It consists of a Metric Diagram (MD) and Place 

Vocabulary (PV). The metric diagram is similar to the spatial representation in SVS, it 

typically contains a set of labeled objects represented quantitatively. This diagram is 

used to build a task-specific place vocabulary, which consists of “contiguous regions of 

space where some important property (e.g., in contact with a gear, inside a well) is 

constant”. Systems can be studied by looking at their dynamics in terms of the place 

vocabulary, for example determining if two balls moving through space could possibly 

collide by looking at their trajectories through the places. In a large project, the 

framework was successfully used to model the mechanisms of a clock (Forbus et al., 

1991).  

A place vocabulary can be viewed as an abstract state space, and since the metric 

diagram is used to generate the place vocabulary, the approach is very similar to the 
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imagery agents used here. However, the MD/PV model has been applied in very 

different tasks than those addressed here. In general, qualitative reasoning work has 

focused on tasks like understanding a large system: for example, predicting that a 

bouncing ball could eventually wind up in a pit. These are very different from the spatial 

control tasks addressed here.  In addition, MD/PV is not proposed in detailed 

architectural terms: there is no comprehensive proposal for what task-independent 

representations and mechanisms are necessary for an agent to use the MD/PV approach 

in arbitrary tasks it may encounter. 

In spite of the poverty conjecture, work in qualitative representations of space that can 

be used in a task-independent manner has progressed. Useful systems have been 

developed, even if they cannot capture every important interaction in every domain. As 

discussed in Section 4.4, the direction relationships that can be queried in SVS are based 

on the “acceptance area” approach of Hernandez (1994). Previous versions of the 

system (Wintermute & Laird, 2007) have allowed the agent to extract topological 

relationships based on the Region Connecting Calculus (Cohn et al., 1997); the current 

version does not support a complete set of relationships, but this is something likely to 

be added in the future. Qualitative representations like these are usually discussed in 

the context of formal methods for reasoning with that information, which are not used 

in any of the SVS agents developed so far (although they could be implemented as 

knowledge in Soar). 

7.2 Cognitive Architectures 

There have been several previous cognitive architecture approaches toward addressing 

spatial tasks. 

7.2.1 Other Soar Extensions 

The most relevant existing system to SVS is SVI (Lathrop, 2008; Lathrop & Laird, 2009). 

SVS inherits much of its design and code from SVI, so it is difficult to say precisely 

whether or not they are different systems. All of the agents developed for SVI could 

theoretically be adapted to SVS, but this has not been done, as the interface to symbolic 
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working memory has changed substantially. The motivation behind the design of SVI is 

to “…explore the utility of general-purpose, intelligent systems supporting mechanisms 

to encode, compose, manipulate, and retrieve symbolic and perceptual-based 

representations” (Lathrop, 2008).  The basic structure of the system is the same as SVS: 

it has short-term and long-term memories for visual and spatial information, and means 

by which symbolic processing can use them. In general, SVI was more directly inspired 

by psychological theories of imagery (Kosslyn et al., 2006), while SVS emphasizes 

increasing functionality, but both systems are concerned with both areas to some 

degree. Work in SVI also emphasized computational efficiencies of depictive 

representations for visual imagery, while work in SVS has addressed the broader 

interaction between abstract and concrete (typically spatial) representations. 

Architecturally, the chief differences between the systems are in the interface between 

perceptual and working memory. SVI’s equivalents to the predicate extraction, 

predicate projection, and memory retrieval systems in SVS are simpler, and SVI has no 

direct equivalent to the motion processing system in SVS, either for imagery or control. 

SVI also has a different approach to interfacing with Soar’s working memory, which is 

elaborated in a technical report (Wintermute, 2009b). 

SVS also inherits substantially from SRS (Wintermute and Laird, 2007, 2008). Again, the 

chief theoretical components of the system remain intact, although some older agents 

would need to be rewritten due to interface changes. SVS is more directly simply a 

newer version of SRS, so it will not be covered in more detail here. 

Another extension to Soar for spatial processing, BiSoar, has been created by 

Chandrasekaran and Kurup (Chandrasekaran, 2006; Chandrasekaran & Kurup, 2007), 

augmenting Soar with the functionality of a diagrammatic reasoning system, DRS 

(Chandrasekaran et al., 2004). This system is similar to Soar/SVS in many ways. BiSoar 

focuses on processing with two-dimensional diagrams, which are a similar 

representation to the spatial scene of SVS, consisting of labeled objects in a quantitative 

representation. In BiSoar, the state of the diagram is conceptually an extension of 
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working memory, as in SVS (although, in both cases, the systems are external to Soar 

and connected over the i/o links). The integration of spatial and symbolic state 

conceptually differs in BiSoar, though, as it has been proposed to include matching 

against spatial objects in rules, a capability which remains unimplemented. SVS instead 

commits to matching of qualitative properties of spatial objects, rather than the objects 

themselves. BiSoar has been used to model simplification effects (loss of detail) in the 

storage and recall of spatial memories, a capability SVS lacks (as it currently lacks means 

to store new long-term perceptual memories) (Kurup & Chandrasekaran, 2007).  

The equivalents to SVS’s predicate extraction and projection processes in DRS (and 

presumably also in BiSoar) are also notably different. In DRS, routines can be defined by 

providing a logical description of the desired property or diagram object. For example, 

an image of a region behind a curve object c relative to a point object p can be created 

by the system, based on a formal definition of the region similar to “the region contains 

all points q such that there is a point a which is on c between q and p”. This statement 

can be broken down to primitives and automatically solved, allowing the system to 

compute the region (Banerjee & Chandrasekaran, 2007). Extraction predicates can be 

similarly described, which simply return true or false instead of creating a new object in 

the diagram. In contrast, in SVS, the focus has been on providing a small library of useful 

predicate extraction and projection routines, and allowing the agent itself to compose 

them together to get more complex properties, if needed. 

BiSoar also has no direct equivalent to the motion processing system of SVS, and does 

not include three-dimensional processing. 

ADAPT (Adaptive Dynamics and Active Perception for Thought) is a robotics architecture 

based in part on Soar that includes specialized spatial processing (Benjamin et al., 2004, 

2006). This processing is chiefly used in the aide of comprehending sensor input. A 

world model, similar to the spatial scene in SVS, is used, where the agent builds a 

representation of its current hypothesis about the contents of the world. For example, if 

it has evidence from sensors that it is in front of a chair, it will imagine a chair. This 
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model is used to confirm or rule out hypotheses about the world, by checking if further 

sensor input is consistent or inconsistent with the current imagined scene. Interestingly, 

this spatial representation is not connected to sensors (as has been proposed for SVS), 

but rather is connected only to Soar, which mediates all sensor data and chooses what 

to imagine in the world model, reflecting the designers strong commitment to active 

perception. The world model is also proposed to be used for “comprehension through 

generation”, where potential future states of the world are simulated in order to 

comprehend the current state. This is essentially simulative imagery, but it is unclear 

precisely how and to what degree the capability is implemented.  

7.2.2 ACT-R 

The ACT-R cognitive architecture includes visual processing in its current form 

(Anderson et al., 2004). In addition, two proposals have been put forth to augment ACT-

R with spatial representations (Gunzelmann & Lyon, 2006; Harrison & Schunn, 2003). In 

general, research in ACT-R emphasizes precise predictions in terms of human 

performance and timing, and the architecture reflects this. Where Soar has a symbolic 

working memory of unbounded size, ACT-R allows only a relatively small amount of 

information to be accessed by the central production system, contained in a few buffers 

specific to particular cognitive processes: for example, memories retrieved from long-

term memory are placed in the declarative retrieval buffer, and only one such memory 

can be there at a time. These limitations often drive timing predictions. 

ACT-R includes an “imaginal” buffer; however, this buffer is not used for imagery as 

defined here (i.e., aspect A3 in Chapter III). Rather, this buffer is used to store temporary 

problem state information (Anderson, 2005). Like all buffers in ACT-R, the information 

stored there is propositional, and typically abstract. While the argument for the use of 

imagery here has focused on the bimodal aspects of imagery, given constraints on the 

capacity of working memory, the use of the memories in SVS as temporary scratchpads 

could also become valuable, reflecting use similar to ACT-R’s imaginal buffer. 
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The ACT-R visual system provides a simple symbolic interface to the central production 

system representing ‘where’ (through a visual location buffer) and ‘what’ information 

(through a visual object buffer). These modules mimic the timing of human perception, 

and are based on the EPIC cognitive architecture (Kieras & Meyer, 1997). This emphasis 

on timing results in a visual system that is not directly similar to that in SVS, which has 

no attention mechanisms, and instead focuses on the internal representation of visual 

data. 

ACT-R/S (Harrison & Schunn, 2003) adds two more systems to ACT-R’s visual processing, 

the manipulative and configural systems. The manipulative system represents detailed 

3d information about the objects near the agent (which it could potentially manipulate), 

while the configural system represents the approximate positions of objects in space 

relative to the agent. Roughly, the configural and manipulative systems here correspond 

to the object and transformation information encoded in the spatial scene of SVS.  At 

least the configural system of ACT-R/S has been demonstrated to perform a version of 

imagery; however, nothing published about the system has discussed imagery in the 

manipulative system, which would be closer to the type of imagery used by SVS. 

The proposed extension of Gunzelmann and Lyon (2006) similarly defines a number of 

new modules: a visual egocentric buffer, which encodes information about objects 

relative to the position of the agent, a visual environmental buffer, which encodes 

locations of object relative to environmental landmarks, a spatial buffer and associated 

module which supports querying processes similar to predicate extraction, and an 

episodic buffer, which captures cohesive memories of the agent visual experiences. This 

proposed system would support imagery. In the theory, memories can be retrieved in 

the episodic buffer, and spatial imagery transformations are possible: production rules 

can manipulate the egocentric buffer, and the spatial module will propagate those 

changes to the visual object and location buffers. These processes are roughly 

analogous to the memory retrieval and predicate projection systems in SVS. However, 



111 

the architecture here does not have a clear distinction between concrete and abstract 

representations, so it is difficult to draw a deep comparison between the systems. 

7.3 Robotic Systems 

Systems developed to support intelligent robotics often address many of the issues 

discussed in this thesis. For example, the system developed for MIT’s entry in the DARPA 

Urban Challenge (Leonard et al., 2008) was referred to earlier as an example of real-

world use of the RRT motion planning algorithm discussed in Chapter VI. This system can 

be viewed as having most of the aspects listed in Chapter III. It represents the state of 

the world at multiple levels of abstraction (A1): a Navigator module choose routes based 

on lanes, intersections, and road segments, while a Motion Planner module takes goal 

locations from the Navigator and performs RRT planning over a more concrete 

“drivability map” representation. As explained above, RRT planning can be viewed as a 

form of simulative imagery (A4). The system included low-level controllers for driving 

the car (A5), and the system uses those same controllers offline during motion planning 

(A8). While this system, like many others, implements aspects of the theory, it not 

proposed nor implemented as a general-purpose architecture, and these aspects are 

considered engineering details rather than theoretical commitments. The remainder of 

the related work here will focus on robotics systems that are posed more generally. 

The Spatial Semantic Hierarchy (Kuipers, 2000) presents a comprehensive theoretical 

treatment (and implementation) of robot navigation, with a focus on mapping. In its 

most recent incarnation (Beeson et al., 2010), the system includes four main 

representational levels, containing both metrical and topological information about 

both small-scale space (space within the range of the agent’s sensors) and large-scale 

space, all of which are algorithmically constructed from sensor data. In this system, the 

connections between low-level control and high-level representation are explored in 

detail. Control laws are used which can reliably transition the robot between distinctive 

states, and, at higher levels of the hierarchy, the control laws are abstracted away and 
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the agent only considers moving between distinctive states: this is the encapsulated 

controller approach discussed in Chapter II.  

 Conceptually, the metrical representations of space could be mapped onto SVS’s spatial 

scene, and topological spatial information could be incorporated in Soar’s symbolic 

working memory. More study would be needed to determine what would be needed for 

Soar/SVS to implement the details of the higher levels of SSH, though. While the SSH 

does not use imagery in the sense defined here, it does share a commitment to 

representation at multiple levels of abstraction and hierarchical control, corresponding 

to aspects A1 and A5 of the theory here. 

Other robotic systems have previously implemented capabilities that can be considered 

simulative imagery. MetaToto (Stein, 1994) was a robot designed based on Brooks’ 

subsumption architecture (Brooks, 1986), which used simulation in order to derive 

abstract information about the structure of the world. These simulations were at a very 

low level, the actual sensor readings of the robot were simulated (in contrast to SVS, 

which simulates in a higher-level spatial representation). The robot represented the 

world in terms of landmarks corresponding to distinctive sensor readings, and by 

simulating sensor readings based on a map of the world, it could build this 

representation without actually exploring. 

The robot here represents the world at multiple levels of abstraction (in terms of sensor 

data and a “landmark graph”) (A1), and has controllers that operate over the lowest-

level sensor data (A5). The agent is able to derive the abstract consequences of using 

these controllers (landmarks reached) through low-level simulation (A6). There is also a 

strong commitment to the reuse of the perception and action systems for real and 

imagined situations (A8). 

The theory behind MetaToto is also interesting. Stein claims “our view suggests that 

cognition is simply the robotic architecture applied to imagined stimuli”. Certainly, this 

form of reasoning is powerful, but in SVS cognition is by no means “simply” reduced to 

simulation: abstract knowledge and processes also play prominent roles. 
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Two general-purpose robotics architectures, 4D/RCS (Madhavan et al., 2006) and 

Polyscheme (Cassimatis et al., 2004) include the capability for functionality like 

simulative imagery. In both cases, though, the architecture is considered in very 

different terms than that presented here, as a set of many interconnected specialized 

modules. There are fixed commitments to the way modules connect, and to some 

degree, the internal processing. But there are not commitments at the level of, for 

example, a common task-independent language to communicate between spatial and 

symbolic information, as in Soar/SVS. In addition, simulative imagery is not heavily 

analyzed in the context of these architectures as a distinct process. Rather, it is 

considered one of many ways that predictions about the consequences of actions can 

be generated. 

7.4 Reinforcement Learning 

Previous work in the area of reinforcement learning has often examined the problem of 

learning and control in problems with large state spaces. As was discussed previously, 

spatial information is inherently continuous, often entailing very large state spaces. One 

approach to this issue is to use qualitative abstractions of the low-level spatial state and 

induce an abstract state space. This approach is used in Chapter V and in other work 

(e.g., Stober & Kuipers, 2008). 

However, other approaches to dealing with large spatial state spaces have been 

investigated. Often, continuous information is not abstracted from the states of the 

agent, and rather than learning unique action or state values, the agent instead tries to 

learn a function over the state elements which approximates the values
29

. In the 

resulting system, an agent experiencing a completely new state can essentially leverage 

knowledge learned in other states that are “nearby” in terms of the values of the state.  

                                                      
29

 Formally, state abstraction and state-action abstraction can be viewed as special cases of function 

approximation, following the definition in (Sutton & Barto, 1998). However, we will treat the approaches 

as separate here, since these abstractions have interesting properties missing from general function 

approximation (such as the ability to generate a reduced MDP in the case of state abstraction, as 

discussed in Chapter V). 



114 

A common approach to function approximation is to use sparse coding mechanisms, 

such as CMAC (Sutton, 1996). CMAC overlays different tilings (discretizations) over 

space, where any particular location will match multiple tiles. Values are learned in 

terms of the tiles matched at the time of the update, so reward information learned 

about a given concrete state (e.g., one represented in continuous coordinates) will 

influence the values of states around it. Function approximation methods like tile coding  

can be integrated with reinforcement learning in Soar (e.g., Wang & Laird, 2010), and 

SVS could be used to obtain qualitative tiling information; for example, “the agent is to 

the right of object X and in front of object Y” describes a location in two tilings.  

Other approaches to function approximation use more complex means of learning a 

value function, rather than simply combining values associated with sets of overlapping 

features. For example, a neural network can be used to learn a complicated relationship 

between state variables and values, as has been used in a successful agent for the game 

backgammon, TD-Gammon (Tesauro, 1995, see also Sutton & Barto, 1998 ch. 11). 

There is a concern here, since the motivation of the architectural design presented here 

has to do with the perceptual abstraction problem. If function approximation schemes 

successfully deal with large state spaces without the need for explicit abstraction, it may 

be that good function approximation supersedes the benefits of imagery for dealing 

with large state spaces. 

This does not seem to be the case, however. For example, the TD-Gammon agent cited 

above uses processes that can be viewed as simulative imagery in conjunction with 

function approximation. In that agent, when considering each move, the agent first 

determines the consequences of that move in terms of a low-level game board 

representation. Then, for the resulting state, abstract features of the game board are 

calculated. These features (along with the board state) are the inputs of the neural 

network that approximates the value of the state. This behavior fits the description in 

Chapter III of bimodality (A1) and simulative imagery (A4), but also incorporates 

function approximation. As TD-Gammon is the result of a long line of research, 
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presumably all of these aspects are important for its performance, and it can be 

concluded that simulative imagery and function approximation are at least partially 

complementary. 

7.5 Grounded Cognition 

A source of influence in the design of the architecture has been theories of grounded 

cognition. Barsalou (2008) states: 

“Grounded cognition rejects traditional views that cognition is computation on 

amodal symbols in a modular system, independent of the brain’s modal systems 

for perception, action, and introspection. Instead, grounded cognition proposes 

that modal simulations, bodily states, and situated action underlie cognition.” 

Of course, this point of view is not completely reflected in the architecture here. Indeed, 

the architecture is rooted in Soar, which is a prominent example of the amodal symbolic 

view of cognition that is “rejected” by these theories (e.g., Newell, 1990). However, the 

system retains and uses perceptual-level information during cognition, with the 

perception and action systems internally used in this process. In that way, the system 

bears a resemblance to theories such as Barsalou’s (1999) proposal for a perceptual 

symbol system and Grush’s (2004) emulation theory of representation.  

The implementation has shown that the existing symbolic Soar architecture is 

compatible with non-symbolic processing in SVS. This is because Soar is largely a theory 

of high-level decision making, complementary to the processing in SVS that identifies 

properties and makes inferences but does not choose actions or control high-level 

processing. From this point of view, information in Soar’s working memory can be 

considered as symbolic aspects of underlying representations in the memories of SVS. 

Specifically, perceptual pointers can be viewed directly in this way: a perceptual pointer 

can be manipulated like any other symbol, but retains its underlying non-symbolic 

structure. However, other symbols are used in the system that are not grounded in 

perceptual representations (amodal symbols).  
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For example, the pedestal blocks world agent discussed in Section 5.1 makes a series of 

imagery-based predictions about whether or not each action will result in a collision 

between blocks (e.g., collision_if_moved(B,pedestal2)). As implemented, for 

each possible action, the agent imagines the state resulting from a block movement, 

and constructs a symbolic structure to store the results of the simulation (encoding 

whether or not a collision occurred). Importantly, after storing this symbolic result, the 

underlying perceptual-level representation is no longer necessary, and is removed. As 

no equivalent perceptual-level structure exists, the symbolic prediction is now amodal, 

and does not meet Barsalou’s (1999) description of a perceptual symbol structure. Once 

predictions for all actions are computed (up to six of them), the agent uses this set of 

symbolic information as the basis to choose an action. This is a relatively small set of 

symbolic structures, encoding only the relevant aspects of the situation.  

However, if all symbolic structures were required to be perceptually grounded at all 

times, the agent would need to retain, until the action is chosen, the complete 

perceptual-level detail that caused each abstract symbolic prediction result to occur. 

This agent would then be required to represent all possible action outcomes 

simultaneously in imagery. In general, as they lack in unnecessary detail, amodal 

(ungrounded) symbols are more efficient means of representing information. While this 

agent benefits from representing some information at the perceptual level (supporting 

the main claims of this thesis), requiring all information to have grounding at that level 

would be a hindrance. 

There is then a substantial functional benefit to avoiding the use of perceptual-level 

representations when amodal symbolic structures are sufficient to capture all of the 

necessary details of the situation. In Soar/SVS, the processing necessary to manipulate 

and use amodal symbolic structures is a subset of that needed to manipulate and use 

grounded structures, so a compelling argument would be needed to eliminate this 

capability. 
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Related to discussions of the role of amodal versus grounded representations, 

connections between this work and the imagery debate in psychology will be discussed 

in the next chapter. 
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Chapter VIII - Discussion and Conclusion 

In this chapter, the claims put forth in earlier chapters are revisited and discussed in 

light of the overall collection of experimental results. Then, connections between this 

work and psychological research are discussed. Future directions for research are 

indicated, and the main body of the dissertation is concluded. 

8.1 Claims Revisited 

The overall goal of this thesis has been to work towards a task-independent cognitive 

architecture to support intelligent behavior in spatial tasks. Starting from an assumption 

that abstract symbolic information is used to choose actions, in Chapter II, two meta-

problems were defined that the architecture must address: the problem of creating 

appropriate abstract symbolic structures which can serve as the basis for intelligent 

action choices (perceptual abstraction), and the problem of dealing with tasks where 

abstract, purely-symbolic representation is impossible (irreducibility). 

To mitigate these problems, a comprehensive theory was proposed in Chapter III. Three 

high-level claims were made about this theory: that it allows for improved performance 

in individual spatial tasks, that it allows for improved generality, and that it can be 

practically implemented and used. The theory was mapped to eight specific functional 

benefits, each of which supports one or more of the claims, and relies upon a particular 

architectural aspect. Performance or generality improvement was claimed compared to 

a hypothetical similar architecture lacking that aspect. 

The Soar/SVS architecture, which follows the theory, was introduced in Chapter IV. 

Several agents running in this architecture were introduced. In Chapter V, reinforcement 

learning agents were presented which were applied to a simple blocks world problem 

and three arcade games, and in Chapter VI, a motion planning agent was covered. 
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In this section, the claims and benefits are re-examined in the light of the collection of 

experimental results presented since their introduction. 

B1. Concrete routines allow movement and nonlocal interaction to be captured in 

terms of abstract symbolic information, mitigating the perceptual abstraction 

problem. 

This benefit is demonstrated in all of the agents. In the pedestal blocks world, nonlocal 

interactions (block collisions in future states) are captured explicitly as predicates in the 

imagery-augmented direct abstraction agent, and implicitly in the predictions of the 

ReLAI agent for the same task. In the arcade game agents, in all cases, movement of 

multiple objects is captured by the ReLAI agents, again, implicitly via the predictions of 

future states. In the RRT planning agent, the movement of the car under the influence of 

the low-level controller is captured symbolically, as the tree of configurations only 

includes those that a reachable without collision, a property deriving from the details of 

that movement. 

The imagery-augmented abstraction and ReLAI agents, in their comparison to the direct 

state abstraction agents, also provide direct evidence that capturing movement truly is a 

benefit. When the same state information is used, but movement is not captured via 

either technique, the agents perform much worse. 

This benefit is attributed to concrete routines in the architecture: the ability for a 

concrete representation to be locally manipulated. Here, these concrete routines are 

invoked through imagery, although that aspect is not strictly necessary for the benefit. 

These agents provide good examples of properties that would be very difficult to 

capture without this aspect. For instance, the reachability of two configurations in the 

RRT planning agent is determined here through a long concrete simulation process. If 

there was no coherent concrete representation that could be locally manipulated in this 

way, it is difficult to see how the agent could infer this long-term reachability 

information. 
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B2. Imagery allows task-specific abstract properties to be encoded by a fixed, task-

independent high-level perception system, mitigating the general perceptual 

abstraction problem.   

This benefit is demonstrated by the set of examples, both individually and collectively. 

The SVS architecture in Chapter IV includes a fixed, task-independent high-level 

perception system, which all of the agents presented use to capture task-specific 

abstract properties. In each case, the imagery system is dynamically combined with the 

high-level perception system to generate properties that take into account the spatial 

details of the actions available in the particular task. 

In addition, the theoretical examination of ReLAI provides further evidence that this 

capability truly works to mitigate the general perceptual abstraction problem. A high-

level perception system that cannot induce an abstraction function to meet the formal 

requirements of direct state abstraction might be able to induce such a function that 

works with ReLAI. For example, SVS’s predicate extraction system cannot induce an 

abstraction of pedestal blocks world that allows optimal performance with direct state 

abstraction, but can induce an abstraction that works with ReLAI. Imagery capability has 

thus increased the coverage, in terms of number of tasks, of a particular high-level 

perception system, achieving progress towards general perceptual abstraction. 

This benefit is attributed to imagery, rather than concrete routines alone, since, as was 

stated in Section 3.3, “the full reasoning power of the agent must be brought to bear to 

select which concrete routines to apply and how to interpret or further manipulate the 

results”. This is demonstrated by all of the agents. In each case, symbolic Soar rules have 

been created which specify exactly how the agent should manipulate the spatial scene 

via imagery, and how the results should be interpreted, via predicate extraction, into 

abstract properties. If concrete routines alone were to be used for similar capability, 

task-specific knowledge would need to be present somewhere within the perception 

system of the agent, so the agent could apply different sequences of routines as 

appropriate in different tasks. 
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Even if such a scheme could be created to allow task-specific sets of concrete routines 

to be used, learning would be a problem.  Since the rules that specify these operations 

in the approach here are essentially no different than other Soar rules, potentially, they 

could be learned by Soar’s symbolic learning mechanisms. While much more research is 

needed to make an agent that can learn to compose its own state representations via 

imagery and perception, the path for this research is much clearer than the alternative, 

where this composition must be handled in an isolated module in the perception 

system. 

B3. Simulative imagery provides the agent with the ability to abstractly model actions 

that are non-deterministic at the abstract level. 

This benefit is demonstrated by the ReLAI and RRT agents, all of which use imagery 

predictions as non-deterministic action models. That is, they utilize the knowledge that 

an imagery prediction is a prediction of a future state resulting from a particular action, 

rather than simply an inference about the current state. In particular, the comparison of 

ReLAI to imagery-augment direct state abstraction in the pedestal blocks world (Figure 

13) clearly shows this difference, and demonstrates that action modeling provides a 

separate benefit beyond B1. 

Simulative imagery is necessary for this benefit. These agents all take advantage of the 

non-deterministic nature of the model predictions, and non-deterministic prediction 

would not be possible in a system that only represented the problem at one level of 

abstraction. In extreme cases, agents use abstract state representations that are almost 

completely worthless for serving as the basis of an action model, and rely entirely on 

imagery for that capability. The backward-looking state predicates in the Fast Eddie 

agent are an example of this, and the RRT agent has a similar character. That agent uses 

an abstract state representation, but essentially the only properties encoded are 

whether or not certain configurations are reachable or not from other configurations. 

An abstract action model in terms of that information would not work well at all, since 

nothing in that state representation can be used to predict future state transitions. 
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The RRT agent also provides the clearest demonstration of why simulative imagery, 

rather than concrete routines alone, is necessary to fully achieve this benefit. Simulative 

imagery creates persistent changes in the concrete representation, and without that 

capability, imagery-based action modeling steps cannot be chained together. The RRT 

agent needs to model actions many steps in the future, so it needs the concrete results 

of previous action modeling operations—the car objects stored in the spatial scene 

during planning—to be persistent. If each car object was transient, and the changes to 

the scene disappeared once the agent inferred that a particular configuration was 

reachable, it would be impossible for that agent to create plans requiring intermediate 

configurations. 

B4. Simulative imagery allows decisions to be made using an abstract representation 

while predictions are made using a concrete representation, allowing each process to 

use the representation that allows the most efficiency. 

This benefit is demonstrated by all of the agents here that make predictions: the ReLAI 

and RRT agents. The benefit of abstraction for decision-making, if not apparent, is 

demonstrated in tasks like the pedestal blocks world. As shown in Figure 12, if a 

concrete representation is used for decision making in tasks like this, no learning is 

possible, since repeated concrete states are never encountered. This is an extreme 

example of the inefficiency of making decisions based on concrete information. 

For making predictions, all of the ReLAI arcade game agents benefit from the fact that 

many aspects of the dynamics in those games can be easily approximated by linear 

translation of objects through space at a constant speed. With concrete information, it 

is simple to track and project forward this type of motion, but more abstract 

representations would lose this regularity. For example, consider using probabilistic 

abstract action models in those tasks. Leaving aside the issue of lost accuracy inherent 

in that approach (compared to precise imagery predictions), creating or learning 

abstract action models would be very difficult compared to what is necessary for the 

concrete models used here. The agent (or programmer) would have to observe many 
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abstract state transitions to determine, for example, the probability that the frog in 

Frogger II will collide with an obstacle in the next state if there is an obstacle above it in 

the current state and it issues an “up” action. In contrast, for a concrete action model, it 

is suitable simply to monitor the speeds of the objects in question and project them 

forward, an approach that requires very little learning or programming. 

The RRT agent similarly demonstrates this. Since the motion in question is the result of a 

control process over concrete information, it is simple to predict the motion in terms of 

that same information.  

B5. Concrete control allows continuous control processes to be used in conjunction 

with abstract symbolic reasoning, mitigating the irreducibility problem. 

and B6. Simulative imagery of concrete control allows symbolic reasoning over 

continuous processes, eliminating the need for symbolic characterization of controller 

performance, further mitigating the irreducibility problem. 

Both of these benefits were demonstrated by the RRT agent exclusively, since the other 

agents did not address precise control. As is discussed more fully in Section 6.4, the 

motion planning task here is fundamentally irreducible. Concrete controllers simplify the 

action space of the agent, and simulative imagery of concrete control allows the agent 

to use a controller that entails a complex interaction with the environment, as it locally 

steers toward a goal while being biased away from obstacles. 

B7. Architectural representation conversion encapsulates complex, common 

processes, rather than requiring task-specific knowledge. 

This benefit is demonstrated through the collection of agents presented here. The SVS 

architecture includes processes that are used by every agent. For example, every agent 

requires object collisions and distances to be detected, capabilities supported by the 

predicate extraction system of SVS. For arbitrarily-shaped convex polyhedrons, as SVS 

supports, these calculations entail solving fairly complex computational geometry 

problems. However, the predicate extraction system encapsulates the processes, and 
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each agent does not need task knowledge for how to calculate intersections or 

distances between objects. 

For shared imagery operations, all of the arcade game ReLAI agents use the same basic 

linear-translation motion model, which does not need to be reprogrammed for each 

task. It does need parameters for each object, which can be either provided directly or 

learned as the agent observes the motion, but the processing beyond setting 

parameters is architectural and does not need to be provided by task knowledge. The 

car controller used by the RRT agent can be considered task knowledge; however, its 

operation is supported by architectural mechanisms in SVS that interface motion models 

to working memory and the spatial scene. The predicate projection system in SVS is also 

task-independent and architectural; however, it was demonstrated in only a single task 

here (the pedestal blocks world). 

B8. Perception/action reuse provides for a parsimonious set of architectural 

processes. 

The implementation of the architecture itself demonstrates this benefit. It would be 

possible to come up with a functionally identical system that does not use common 

architectural elements when dealing with the outside world and when dealing with 

imagery, but the implementation here indicates that this is unnecessary. The predicate 

extraction system does not consider whether the objects it operates over are real or 

imagined, allowing exactly the same high-level perception mechanisms to operate in 

real or imagined scenes. For instance, determining the state in the ReLAI and direct 

abstraction arcade game agents often involves the exact same predicate extraction 

processes in the architecture, but operating over perception in the direct abstraction 

case and imagery in the ReLAI case. 

If the RRT agent were to be hooked up to an actual robot, it would similarly 

demonstrate reuse in the action system. As implemented, the agent simulated a 

controller that could (theoretically) be used for real actions, mimicking an approach 
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used by other systems (e.g., Leonard et al., 2008) which do reuse controllers for external 

action and imagery. 

Taken as a whole, the set of theoretical aspects (A1-A8) leads to a set of benefits (B1-

B8). Some of these aspects, via the benefits, lead to improvements in task performance, 

and some lead to improvements in generality. An architecture including all of the 

aspects has been implemented, and has been used to solve spatial problems while 

demonstrating each of the benefits. 

8.2 Perceptual Abstraction, Irreducibility, and the Imagery Debate 

A long-standing debate in psychology has been over the nature of mental imagery. To 

some, this is a debate over whether mental imagery is supported by propositional 

(symbolic) or depictive (picture-like) representations (Kosslyn et al., 2006). Others have 

posed the question as whether or not experimental data can disprove that “the process 

of imagistic reasoning involves the same mechanisms and the same forms of 

representation as are involved in general reasoning, though with different content or 

subject matter” (Pylyshyn, 2003), with the implication that those mechanisms are likely 

propositional. 

This has been a difficult issue to resolve, since, in principle, both formats are able to 

represent the same information, and equivalent propositional and depictive accounts 

can be formulated to account for any behavioral data. However, other constraints can 

be taken into account, such as brain data, theoretical parsimony, or efficiency, to aid in 

identifying the underlying mechanisms (Anderson, 1978). 

An abundance of brain data has been collected, largely supporting the hypothesis that 

imagery is a distinct process involving depictive representations (e.g., Kosslyn et al., 

2006). Computational experiments have also examined efficiency characteristics of 

reasoning with different representational formats (e.g., Funt, 1980; Glasgow & 

Papadias, 1992; Huffman & Laird, 1992; Kurup & Chandrasekaran, 2006; Larkin & Simon, 

1987; Lathrop, 2008; Shimojima, 1996; Tabachneck-Schijf et al., 1997). While not all of 
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these works directly addressed the imagery debate, all achieved results indicating that 

different representational formats afford different functional benefits, supporting the 

hypothesis of depictive imagery. 

The architecture here also demonstrates an efficiency benefit of processing with 

different representations (B4). Beyond this, though, the examination of the perceptual 

abstraction and irreducibility problems can add to the imagery debate. As stated above, 

in principle, both abstract propositional and concrete depictive representations are able 

encode the same information. However, if the poverty conjecture is true, the proposal 

that an agent could behave intelligently using solely an abstract propositional 

representation becomes difficult to support.  

If there exists no task-independent qualitative (abstract propositional) representation of 

space, an intelligent agent will need to encode different task-specific properties as new 

spatial tasks are encountered. This is what makes perceptual abstraction difficult. 

However, as demonstrated above, imagery within a concrete representation can 

mitigate this aspect of the perceptual abstraction problem (B2). This is then an 

argument supporting the hypothesis that imagery does not use an abstract 

propositional format, since the functional benefits of using imagery in this case derive 

from the fact that it is not abstract.
30

 As stated by Forbus (1993), in reference to the 

MD/PV model discussed in Section 7.1, 

“If true, what does [the poverty conjecture] tell us about mental imagery? It 

suggests that there exists a set of commonplace tasks, such as understanding 

mechanical systems and reasoning about motion through space, that require 

representations that are richer than sparse propositional descriptions, whether 

performed by person or machine. Thus the question of whether or not imagery 

can be accounted for by sparse propositional representations comes down to 

whether or not the poverty conjecture is true.” 

                                                      
30

 This argument does not directly support imagery using a depictive representation, only a concrete 

representation (one that encodes many details). Depictive representations are concrete, but more 

properties are needed for a representation to be depictive (see Kosslyn et al., 2006). Typically, depictive 

representations in a computer are array-based (e.g., a bitmap), where concrete representations, such as 

the spatial scene in SVS, may not be. 
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The irreducibility problem, along with its proposed solution in the form of concrete 

control and simulative imagery, similarly indicates a need for imagery in a concrete 

representation. In this case, in order to issue actions that are contingent on precise 

details of the environment, a concrete representation which captures all of those details 

is functionally useful. Strictly speaking, a concrete representation isn’t necessary for this 

capability, as control processes can be reactive to details of perception without 

constructing a coherent representation (Brooks, 1991). However, as has been argued 

above, intelligent reasoning about control processes may not always be possible 

without the ability to simulate the results of those control processes in the particular 

situation within a concrete representation. Again, this indicates a functional benefit for 

imagery based in a concrete (and not abstract propositional) representation. 

In both of these cases, intelligent reasoning in terms of abstract propositions is made 

possible only through the use of imagery in a concrete representation. The chief reason 

for the use of imagery is not that the imagery representation allows for more efficiency, 

but rather that the problem cannot be represented well in terms of abstract information 

alone. This is either because a task-independent architecture without imagery would 

not be able to make the relevant abstract distinctions, or because the problem is 

fundamentally irreducible to a form where it can be reasoned about in terms of abstract 

propositional information alone. 

Essentially, creating a detailed, task-independent theory capable of addressing complex 

problems leads to functional arguments, beyond efficiency of processing in particular 

representational formats, that provide support for the hypothesis that imagery is not 

supported by an abstract propositional representation. While the analysis here supports 

the use of a concrete representation in general, rather than specifically a concrete 

depictive representation, given the evidence from brain imaging studies, depictive 

representation is a good hypothesis for how concrete representation might be 

manifested in the brain. 
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8.3 Soar/SVS as a Cognitive Model 

Beyond the connection to the imagery debate, the work here could also be applied 

more directly to investigate cognitive modeling in spatial tasks. The Soar/SVS 

architecture has been presented as an AI system, but it could be adapted for use as a 

more precise cognitive model. 

The architecture here does not include the timing, attention, capacity, imagery 

accuracy, or imagery maintenance constraints that would be needed for precise 

modeling. In addition, most of the agents presented here do not capture human-like 

reasoning in their tasks. A human playing an Atari game likely would be unable to 

imagine the consequences of each action four times per second, and a person would not 

use an algorithm like RRT to plan motions. 

However, the purpose of these agents has been to provide straightforward 

demonstrations of the underlying functional benefits of the mechanisms of the 

architecture. When constraints are added, the approaches used in these 

demonstrations become infeasible, but the essential underlying benefits will remain. An 

agent using symbolic representations to make decisions encounters the perceptual 

abstraction and irreducibility problems regardless of what additional timing constraints, 

memory capacity constraints, etc., are present. If the architecture includes some version 

(however limited) of the aspects discussed here, the agent can likely get a functional 

benefit from using them. 

For example, if the human cognitive architecture is roughly similar to a constrained 

version of what is presented here, it is reasonable to predict that a human attempting to 

achieve optimal behavior in the pedestal blocks world task would imagine the 

consequences of actions in order to avoid collisions. This is a prediction that arises from 

a few very basic premises: 

(1) actions are chosen on the basis of some representation that can be 

approximated by abstract  symbolic structures 
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(2) the human visual system cannot infer future block collisions in a bottom-up 

manner 

(3) some representation that can be approximated by a concrete spatial 

representation is present 

(4) imagery capability is present, and can be used to infer future block collisions to a 

useful degree of accuracy 

(5) the subject is suitably motivated to perform well, and has a reasonable amount 

of time to choose each action 

Similar predictions about the use of imagery in control tasks based on this work have 

been published elsewhere (Laird et al., 2010; Wintermute & Laird, 2009), however, to 

date, no experimental data has been collected. A line of research collecting human data 

in tasks like this could be useful not only to test the basic hypothesis that imagery will be 

used in problems where abstraction is difficult, but a rich collection of data could also 

constrain and help refine the details of the underlying architecture. 

It should be noted that predictions here define “imagery” as it is defined in Chapter III, 

in terms of processing within a concrete representation. This contrasts with other 

definitions of imagery, such as imagery involving processing in a depictive 

representation (which is a specific form of concrete representation), or imagery as 

defined by subjective reports of “imagining” something. Imagery processing as defined 

here could be manifested in behavior independently of whether or not “imagining” is 

reported or brain activation indicating a depictive representation is present. For 

example, reaction time should be slower for action choices that require an intervening 

imagery operation than those that do not (which choices fall into which category being a 

prediction emerging from the details of the architecture). More experimental work is 

needed to determine the degree to which these definitions of imagery, and the data 

collected to support them, overlap. 
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8.4 Contributions 

The main contributions of this thesis include the following: 

The identification of meta-problems inherent in designing symbolic decision-making 

architectures 

The veridical perception, perceptual abstraction, and irreducibility problems provide a 

useful decomposition of some of the issues behind creating a symbolic architecture 

capable of general intelligence. The problem of architecture design has not been 

decomposed this way in prior work. 

The identification of imagery as a means to mitigate the perceptual abstraction 

problem 

While previous systems have used imagery, its primary functional role has been as a 

more efficient means of inferring certain spatial properties compared to an equivalent 

symbolic representation. Here, instead, the use of imagery as a means to infer symbolic 

properties that the perception system of the agent would otherwise be unable to 

encode is demonstrated. 

The identification of continuous control and imagery as means to mitigate the 

irreducibility problem 

The existing technique of integrating symbolic reasoning with encapsulated continuous 

controllers is analyzed here with respect to the irreducibility problem. In addition, the 

existing technique of motion planning through control simulation is analyzed with 

respect to the irreducibility problem and the concept of simulative imagery. 

In both of these cases, the analysis allows the prior work to be understood as means of 

mitigating the irreducibility problem in a general architecture. In addition, the analysis 

allows the potential for the principles behind the prior approaches to be generalized to 

apply outside of particular tasks. 
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A comprehensive, generally-stated, theory for integrating imagery and control in a 

symbolic cognitive architecture 

Chapter III outlines the essential aspects of a theory incorporating imagery and 

continuous control into an architecture in such a way that perceptual abstraction and 

irreducibility can be mitigated.  

This theory also serves to precisely define what is meant by “imagery”. The definition of 

imagery here emphasizes the relationship between processing in terms of 

representations at different levels of abstraction as the defining characteristic of 

imagery. This way of defining imagery differs from previous accounts, which typically 

instead emphasize either human subjective experience, the type of content in the 

representation (e.g., visual or spatial information), or the “depictiveness” of the 

representation as defining characteristics of imagery. 

An analysis of specific functional benefits afforded by the architectural theory 

The theory has been mapped onto eight specific functional benefits. These benefits 

more precisely describe how the theory works to mitigate the perceptual abstraction 

and irreducibility problems, but also motivate why the particular integration scheme of 

the theory is appropriate. 

An implemented, functional architecture embodying the general theory 

Actually implementing the general theory requires a large number of details to be 

worked out that are left unspecified in the theory. The architecture presented here, 

Soar/SVS, outlines a candidate implementation of the theory that specifies all details. 

While the description here only outlines the broad construction of Soar/SVS, the fact 

that a running system exists demonstrates that all of those details can be (and have 

been) worked out. 

The symbolic reasoning components of the implementation are directly inherited from 

the Soar architecture. The design of the SVS extension to Soar is in many ways a 
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refinement of Scott Lathrop’s SVI system. However, SVS has important components that 

are completely novel, such as the motion processing system, and others that are 

substantial elaborations of SVI, such as the predicate projection system. 

An integration of reinforcement learning and imagery, including theoretical analysis 

and a working implementation 

The ReLAI algorithm represents a novel integration of reinforcement learning and 

imagery. Outside of architectural concerns, the algorithm is useful in cases where 

abstraction is difficult, but concrete, short-term predictions can be made. ReLAI has 

been theoretically analyzed in order to better understand the conditions under which it 

can result in convergence to the optimal policy. In addition to the algorithm itself, this 

work includes an analysis connecting the architectural principles presented earlier (e.g., 

perceptual abstraction) to related theoretical work describing Markov Decision 

Processes. 

The ReLAI algorithm has also been implemented in the Soar/SVS architecture, and 

positive results are shown for its application in four different problems. 

Demonstrations of imagery agents for complex problems, instantiated in a task-

independent architecture and analyzed with reference to the functional benefits of 

the theory 

The Soar/SVS architecture, using the ReLAI algorithm, has been applied to three 

different arcade game tasks. These agents demonstrate that simulative imagery is 

usable and useful in complex tasks that were not designed as imagery evaluation 

domains. More specifically, they demonstrate that the ReLAI algorithm works in those 

tasks, and even more specifically, they demonstrate that the Soar/SVS architecture is 

complete enough that agents for those tasks can be instantiated within it. These agents 

were also analyzed to provide case studies of the particular benefits of the underlying 

architectural theory. 
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A demonstration of sampling-based motion planning instantiated in a task-

independent architecture, analyzed with reference to the functional benefits of the 

theory 

Motion planning algorithms have typically been developed and used outside of cognitive 

architectures. The implementation of the RRT algorithm here maps some aspects of the 

algorithm onto Soar/SVS architectural processes, while some aspects are embodied as 

knowledge. This demonstrates that an agent instantiated in Soar/SVS can use this 

algorithm, or the principles behind it (simulation of control), in order to aid in planning 

its actions. Moreover, the agent provides a case study which demonstrates the benefits 

of the underlying architectural theory, particularly those benefits related to handling 

irreducibility. 

An analysis of the implications of the work here as applied to cognitive modeling and 

the imagery debate 

Psychological research on mental imagery served as a source of inspiration in this work, 

and, through the above contributions, led to advancements in the functionality of 

symbolic cognitive architectures. To reflect this progress back to psychology, the results 

here were analyzed to determine how they might inform future cognitive models and 

the imagery debate.  

8.5 Future Work 

This research indicates many directions for future work, some of which have been 

indicated as they have come up in prior sections. Here, a few of these directions will be 

discussed in detail.  

Continuing the direction of prior work analyzing the processes of predicate projection 

and motion simulation in isolation (Wintermute & Laird, 2008, 2007), the memory 

retrieval and image composition process described in Section 4.5.2 could be further 

elaborated and enhanced. A technical report (Wintermute, 2009b) covers some of the 

open questions in this area. Particularly, the question of how inter-object 
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transformations are used and stored could use further study, along with the interaction 

of mental imagery and episodic memory (Nuxoll & Laird, 2007). This interaction should 

provide functional benefits, as the agent can compactly store the symbolic structure of 

the scene, and later recall it to derive further information not originally encoded. In 

addition, it will move Soar towards a comprehensive theory about the role of imagery 

and object prototypes (Posner & Keele, 1968) in memory. 

Other means of interaction between spatial memory in SVS and symbolic memory and 

Soar also need to be investigated. Currently, the system has no good way of reasoning 

about spatial information that is not object-based. For example, places and gateways 

are not “objects”, but can be usefully used to allow reasoning about empty space in the 

environment (Beeson et al., 2010). Similarly, an agent may find it useful to recognize 

locations in space that allow for interaction, such as the location on a  door handle 

where it can be gripped to open the door (Klingbeil et al., 2008): roughly, these are 

similar to affordances (Greeno, 1994). It is currently unclear if this sort of entities 

(places, gateways, affordances) should be represented in the system differently than 

objects currently are, or if they could somehow emerge from the system without being 

explicitly represented. These entities seem to relate to properties of how multiple 

objects in space relate to each other, so it is possible they could be algorithmically 

calculated based on the objects in the scene.  

Outside of the implementation in Soar/SVS, this work has introduced a broader 

theoretical architecture to account for the perceptual abstraction and irreducibility 

problems. An important (but difficult) direction for future work is to extend this theory 

to cover the remaining meta-problem, the veridical perceptual problem. This would 

involve proposing further architectural aspects
31

 to support processes such as 

identifying what objects exist along with their spatial details, and instantiating that 

theory in an implemented architecture, such as a future version of SVS. 

                                                      
31

 Lathrop has proposed a rough sketch for these aspects as part of his work with SVI (Lathrop, 2008). 
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Progress is being made in robotic perception, enough that robots using internal spatial 

representations are becoming common in research environments. However, recognizing 

objects (beyond walls and obstacles) remains a challenge. Ideally, SVS would be able to 

internally retrieve the previously-learned complete 3d structure of an object based only 

on vision from one direction, but that remains at the fringe of (if not beyond) what is 

currently possible. However, it is possible that defining higher-level parts of the system 

can provide guidance on how low-level perception could be improved. For example, 

knowledge could play a strong role in disambiguating perception, or adjusting behavior 

to better handle inadequate perception. This is an interaction that may not be 

adequately present in systems that study perception in isolation from cognition. 

Studying this interaction is a focus of the ADAPT project (Benjamin et al., 2004) 

discussed in Section 7.2. 

8.6 Conclusion 

The goal of this thesis has been to investigate cognitive architectural structures to 

support intelligence in spatial tasks. This has led to a general-purpose architecture, 

extending Soar to support processing at multiple levels of abstraction through spatial 

imagery and continuous control. Theoretically, this work has addressed two 

fundamental issues in creating a general-purpose cognitive architecture: the perceptual 

abstraction and irreducibility problems. More practically, it has increased the breadth of 

problems Soar is able to address, and the performance it is able to achieve in those 

tasks. While it is difficult to predict the trajectory of future research, I hope that this 

work is a step on the path toward a solid computational understanding of human-level 

intelligent behavior. 
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Appendix: Quantities and Symbolic Representation 

From the perspective of the development of the Soar architecture, a broad theme in this 

work has been the investigation of how Soar can handle problems where quantitative 

information is important. Soar has had long-standing support for quantitative numerical 

processing within working memory; however, this sort of processing has often been 

considered a programming convenience, rather than a theoretically important aspect of 

the architecture. In this appendix, the work here with imagery is used to inform a 

discussion of how the theory and implementation of quantitative processing in Soar 

might be progressed in future work. In addition, the current integration of quantitative 

processing informs a discussion of how the integration of SVS might be improved in the 

future.
32

 

Soar supports the use of integers and floating-point numbers in its working memory. 

These quantities can be compared on the left hand side of rules, for example, a rule can 

be written to match only when some quantity A is greater than B. Soar can also 

mathematically manipulate quantities on the right hand side of rules, for example, a rule 

can be written to add a number C to working memory which is the result of A multiplied 

by B. This processing can be viewed very simply, as a useful but theoretically unfounded 

means for Soar agents to solve math problems, providing architectural processing that 

can replace the symbol manipulation. For example, a purely-symbolic model of multi-

column subtraction (e.g., Rosenbloom et al., 1991) could be replaced by a single rule 

that calls the subtraction function on its right-hand side.  

However, quantitative processing is also useful for tasks where the agent is not 

externally dealing with literal numbers. For example, an agent might use quantities in 

                                                      
32

 This appendix assumes some level of familiarity with the details of the Soar architecture beyond what is 

presented in this document. 
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working memory to encode distances to objects it can perceive, which are then 

compared to find the closest object to the agent. Taking a broader perspective, then, 

this processing can instead be viewed as a generic means of handling quantitative 

information, which is not necessarily connected with the external symbols (words and 

characters) people use to represent quantities. 

It is informative to compare imagery processing in Soar/SVS to the existing quantitative 

processing in Soar. In SVS, quantitative information describing spatial properties, rather 

than being explicitly represented in symbolic working memory, is instead represented 

there by perceptual pointers. When perceptual pointers are processed by the symbolic 

aspects of Soar, they are treated as any other symbolic structure. However, symbolic 

processing can compose queries and imagery commands for SVS that include perceptual 

pointers. When a query is processed by SVS, the underlying quantitative information is 

accessed, the relevant property is calculated, and (typically) a qualitative symbolic result 

is created in working memory. When an imagery command is processed, similarly, the 

underlying quantitative information associated with the perceptual pointer(s) is 

accessed, a new object is added to the scene, and a perceptual pointer for that result is 

added to working memory, which can then serve as the basis for further processing.  

With some caveats (outlined below), the quantitative numerical processing existing in 

Soar can be viewed in a similar light, as “mathematical imagery”. In this conception, 

“number pointers” exist in working memory. These are arbitrary symbolic structures 

that are processed like any other such structure. Number pointers as implemented 

happen to have human-readable string representations like “1.342”, but that is as 

arbitrary as symbol3511 from the perspective of the symbolic processing system. 

Mathematical predicate extraction is possible, allowing symbolic structures to be 

created describing qualitative relationships between number pointers (e.g., greater-

than, less-than, equal-to). Comparisons on the left-hand sides of rules support 

this. Mathematical imagery is possible, where specialized processing accesses the 

underlying representations associated with a set of number pointers, and creates a new 
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number pointer in working memory associated with the result of the specified 

“imagery” operation. This capability is supported via the mathematical right-hand side 

functions in Soar. Mathematical imagery operations supported by Soar then include 

addition, subtraction, multiplication, and division. 

From this perspective, there are four differences between the implementation of 

mathematical imagery and spatial imagery. 

(1) The underlying quantitative information differs. Mathematical imagery involves 

single numbers, where spatial imagery primarily involves polyhedrons in 3d space. 

(2) The integration of quantitative processing with Soar’s decision cycle differs. 

Mathematical predicate extraction is implicitly invoked as rules are matched, such as if a 

rule includes a less-than condition, and mathematical imagery is captured through right-

hand side functions. Spatial predicate extraction and imagery are instead mediated 

through working memory: rules set up declarative predicate extraction query or imagery 

command structures, and the results are added to working memory by SVS. 

(3) The integration of quantitative content with Soar’s symbolic memories differs. For 

mathematical imagery, these memories store the actual underlying quantities, rather 

than simply number pointers. If the agent computes that the result of multiplying 3.2 

times 8.1 is 25.92, working memory will store that exact value (meaning rules could 

match against it), and a chunk, semantic memory, or episodic memory created for this 

event will store the exact quantities involved. In the spatial imagery case, though, if the 

agent imagines the convex hull of two shapes, resulting in a new shape, the symbolic 

memories will only encode the string values of the perceptual pointers, not the 

underlying quantitative structures involved. 

The storage of complete quantitative content in working memory also results in an 

imperfection in the analogy of quantities in working memory as similar to perceptual 

pointers. A perceptual pointer can track an object whose quantitative details change 

over time (e.g., a moving object), where the identity of the “number pointer” would 
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necessarily change as the underlying quantity changes. However, this is not a great 

difficulty, as it is easily remediated through a level of symbolic indirection. For example, 

the following structure might be used in working memory: 

(number N1) 

(N1 ^id addend ^value 12.5) 

In this case, the id augmentation, rather than the value itself, fulfills a role similar to 

an SVS perceptual pointer. If the value is later changed, it can still be accessed via the 

associated id, which stays constant.  

 (4) Quantities resulting from mathematical imagery can be directly output (reported) by 

the agent, while it would be much more difficult to create an agent that can report the 

quantitative details of objects resulting from spatial imagery. For example, it is trivial to 

make an agent that uses right-hand side functions to calculate, for example, that 1.23 

times 51.67 is 63.551, and adds a string to its output asserting so. There is no 

straightforward equivalent to this capability for spatial imagery. 

This analysis leads to five questions that could be addressed in further work: 

Should imagery be integrated at the rule level, rather than mediated through working 

memory? 

The integration of quantitative numerical processing at the rule level works well, and 

results in simpler agent development, as knowledge is not needed to set up queries and 

to parse responses. Spatial imagery could be similarly set up in this way, where 

predicate extractions are evaluated as part of matching the left-hand side of a rule, and 

imagery operations are set up as right-hand side functions that return a perceptual 

pointer to the result. 

However, predicate extraction and imagery operations can take much more time to 

execute than it takes to compare numbers or perform basic arithmetic. This integration 

could then substantially slow down the rule-matching phases of Soar’s decision cycle. At 

a higher level, though, the total number of operations the agent needs to perform may 
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not necessarily change, but might simply be moved into a different part of the decision 

cycle. Much like it is possible to create symbolic rules that are difficult for Soar to match, 

it is possible to set up predicate extraction operations that take a long time to process. 

This would remain true whether those operations were invoked by a query built in 

working memory or were directly encoded in the left-hand side of a rule. 

Future development of SVS may change this, though. The current memory-mediated 

integration of SVS could easily be adapted for asynchronous processing, where complex 

operations would occur over multiple decisions, allowing the agent to remain reactive 

during those operations. Rule-level integration could not as easily support asynchronous 

processing. 

In addition, a flaw in the scheme used for quantitative numerical processing in Soar is 

that rules involving comparisons and mathematical functions cannot be learned by the 

architecture. Soar’s chunking mechanism, which learns new rules, cannot create rules 

with these features. In contrast, rules used to build declarative command and query 

structures are (in principle) learnable by the architecture. In that way, the SVS interface 

scheme is more in line with that aspect of the Soar theory, indicating that it should be 

retained. 

How should imagery structures be integrated with symbolic structures? 

In principle, there is no reason the architecture could not be modified to store 

quantitative spatial structures with its symbolic memories, as is currently done with 

numbers. However, this does not seem to be a worthwhile approach. To completely 

mimic the numeric scheme, every detail of every object (including its shape and position 

in space) in the spatial scene would have to be stored every time an episodic memory is 

stored. In addition, if a rule was learned through chunking, it might test one or more 

complete spatial structures in its conditions and produce one in its actions. 

Since there are so many details in the spatial representation, it would be unlikely that 

any real object would reappear with the same quantitative details. This means that the 
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amount of information stored in episodic memory would grow much faster than it does 

now. In addition, chunks would be created that match against complete quantitative 

structures. These chunks would only very rarely match (outside of situations where an 

episodic memory has been retrieved of the situation that resulted in the chunk). 

SVS currently includes a perceptual LTM independent of Soar’s long-term symbolic 

memories. This LTM currently has no theory for learning, but does store complete 

quantitative structures. These structures are considered to be prototypes 

representative of object classes, though, rather than instances. Objects in the spatial 

scene are labeled with perceptual pointers to associated long-term memory prototypes. 

While much further work is needed to fully integrate SVS with symbolic learning in Soar, 

a proposed scheme is as follows: 

- Perceptual LTM should be considered an extension of Soar’s symbolic semantic 

memory, but augmented with spatial details 

- Soar’s episodic memory should capture perceptual pointers only, and not spatial 

structures 

- Agents should deliberately recall spatial aspects of episodic memories by using 

imagery to compose a scene, retrieving its components as prototypes from 

perceptual LTM 

- Imagery processing should not be reduced to rules via chunking  

In this scheme, only limited learning over spatial information is possible, but it has the 

advantage of requiring much less storage space than alternatives. 

Should quantitative numerical processing gain theoretical status?  

As was mentioned, quantitative processing in Soar is often regarded as a programming 

convenience rather than an important part of the theory. A useful research direction to 

consider is to bring quantitative processing into the Soar theory, possibly substantially 

changing the implementation along the way. Newell  (1988, 1990) argued that a “basic 

quantitative code” is necessary to represent quantities in working memory to account 
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for phenomena such as perceptual judgments (which are often modeled as evidence 

accumulating to meet a threshold), and since perceptual and motor interfaces likely deal 

with quantitative information: 

“It is easy to show that an architectural mechanism is required [for the basic 

quantitative code], since the issue is the transduction from perceptual signals, 

which are clearly quantitative (intensity, direction), to symbols in Soar's 

representation, and from such symbols to motor signals, which again are clearly 

quantitative (force, direction).” (Newell, 1990, p. 437) 

However, these particular needs might be superseded with SVS, since the quantitative 

connections between perception and action can be mediated through SVS, rather than 

working memory, and since the predicate extraction system might internally handle 

accumulation of evidence, only adding the result to working memory once a threshold is 

reached.  

Regardless of this, the use of quantities in working memory certainly seems to provide a 

functional benefit in some cases, and a detailed investigation into the subject would be 

valuable. One possible avenue for this is to expand on the analogy above, and consider 

quantitative numerical processing as another form of imagery. Others have suggested 

that amodal imagery operating on individual quantities might be a useful addition to 

Soar (Hines, 2010). This research could lead to, for example, an investigation of what 

operations lead to improved performance and generality, as this thesis presents for 

spatial imagery. If this approach were taken, it would make sense to consider handling 

mathematical and spatial imagery in similar ways. That is, the answers to the above 

questions might also apply to mathematical imagery in addition to spatial imagery. 

Should quantitative processing in Soar be eliminated in favor of SVS? 

Finally, as mentioned above, much of the value of mathematical processing in Soar has 

been superseded by SVS processing. Previous agents utilized this processing for 

capabilities now supported by SVS, for example, determining distances between points 
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in space. In addition, other mathematical problems could likely be solved via analogies 

to spatial problems. As mentioned in Section 4.4, though, even when SVS is used, it is 

still useful to represent some information quantitatively in working memory so that 

comparisons can later be made (in that case,  between distances). However, a minor 

change to the architecture could provide equivalent functionality in SVS without the 

need for quantities in working memory. Therefore, a detailed examination of whether 

some or all of this processing should be eliminated as redundant would be valuable. 

 



144 

References 

Agre, P. E., & Chapman, D. (1987). Pengi: An implementation of a theory of activity. In 

Proceedings of the Sixth National Conference on Artificial Intelligence. 

Anderson, J. R. (1978). Arguments concerning representations for mental imagery. 

Psychological Review, 85(4), 249–277.  

Anderson, J. R. (2005). Human Symbol Manipulation Within an Integrated Cognitive 

Architecture. Cognitive Science, 29(3), 313-341. 

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). 

An integrated theory of the mind. Psychological Review, 111(4), 1036-1060.  

Banerjee, B., & Chandrasekaran, B. (2007). Representations and Strategies for Solving 

Spatial Problems with Diagrams. In Proceedings of IEEE Symposium on Visual 

Languages and Human-Centric Computing (pp. 183-188).  

Barkowsky, T. (2002). Mental Representation and Processing of Geographic 

Knowledge: A Computational Approach. Lecture Notes in Artificial Intelligence 

(Vol. 2541). Springer. 

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 

22(04), 577-660. 

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645. 

Beeson, P., Modayil, J., & Kuipers, B. (2010). Factoring the mapping problem: Mobile 

robot map-building in the Hybrid Spatial Semantic Hierarchy. International 

Journal of Robotics Research, 29(4), 428-459. 

Benjamin, D. P., Lyons, D., & Lonsdale, D. (2004). ADAPT: A Cognitive Architecture 

for Robotics. In Proceedings of ICCM-2004.  

Benjamin, D. P., Lyons, D., & Lonsdale, D. (2006). Embodying a cognitive model in a 

mobile robot. In Proceedings of SPIE (Vol. 6384, p. 638407). Presented at 

Intelligent Robots and Computer Vision XXIV: Algorithms, Techniques, and 

Active Vision, Boston, MA. 

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of 



145 

Robotics and Automation, 2(1), 14-23. 

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139-

159. 

Cassimatis, N. L., Trafton, J. G., Bugajska, M. D., & Schultz, A. C. (2004). Integrating 

cognition, perception and action through mental simulation in robots. Robotics 

and Autonomous Systems, 49(1-2), 13-23. 

Chandrasekaran, B. (1997). Diagrammatic representation and reasoning: some 

distinctions. In Proceedings of the AAAI Fall Symposium on Diagrammatic 

Reasoning.  

Chandrasekaran, B. (2006). Multimodal Cognitive Architecture: Making Perception 

More Central to Intelligent Behavior. Proceedings of the AAAI National 

Conference on Artificial Intelligence, 1508-1512. 

Chandrasekaran, B., & Kurup, U. (2007). A Bimodal Cognitive Architecture: 

Explorations in Architectural Explanation of Spatial Reasoning. In Proceedings of 

the AAAI Spring Symposium on Control Mechanisms for Spatial Knowledge 

Processing in Cognitive / Intelligent Systems.  

Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson, J. R., & Winkler, R. (2004). An 

Architecture for Problem Solving with Diagrams. In Diagrammatic Reasoning 

and Inference, Lecture Notes in Artificial Intelligence (Vol. 2980, pp. 151-165). 

Berlin: Springer-Verlag. 

Cohn, A. G., Bennett, B., Gooday, J., & Gotts, N. M. (1997). Qualitative Spatial 

Representation and Reasoning with the Region Connection Calculus. 

GeoInformatica, 1(3), 275-316. 

Diuk, C., Cohen, A., & Littman, M. L. (2008). An object-oriented representation for 

efficient reinforcement learning. In Proceedings of the 25th International 

Conference on Machine Learning (pp. 240-247). New York: ACM. 

Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstacle 

avoidance, and route selection. Journal of Experimental Psychology: Human 

Perception and Performance, 29(2), 343-362. 

Forbus, K. D. (1983). Qualitative reasoning about space and motion. In Mental Models 

(pp. 53-73). Hillsdale, New Jersey: Lawrence Erlbaum. 



146 

Forbus, K. D. (1993). Image and substance. Computational Intelligence, 9(4), 377-378. 

Forbus, K. D., Nielsen, P., & Faltings, B. (1991). Qualitative spatial reasoning: the 

CLOCK project. Artificial Intelligence, 51(1-3), 417-471. 

Funt, B. V. (1980). Problem-solving with diagrammatic representations. Artificial 

Intelligence, 13, 201–230. 

Gelernter, H. (1963). Realization of a Geometry-Theorem Proving Machine. In 

Computers and Thought (pp. 134-152). Cambridge, MA: MIT Press. 

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in 

Markov decision processes. Artificial Intelligence, 147(1), 163–224. 

Glasgow, J., & Papadias, D. (1992). Computational imagery. Cognitive Science, 16(3), 

355-394. 

Glasgow, J. (1995). A formalism for model-based spatial planning. In Spatial 

Information Theory: A Theoretical Basis for GIS (pp. 501-518).  

Goetschalckx, R. U. (2009). On the Use of Domain Knowledge in Reinforcement 

Learning (PhD Thesis). Leuven, Belgium: Katholieke Universiteit Leuven. 

Greeno, J. G. (1994). Gibson's Affordances. Psychological Review, 101(2). 

Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and 

perception. Behavioral and Brain Sciences, 27(03), 377-396. 

Gunzelmann, G., & Lyon, D. R. (2006). Mechanisms for Human Spatial Competence. In 

Proceedings of Spatial Cognition V. 

Harrison, A. M., & Schunn, C. D. (2003). ACT-R/S: Look Ma, no "cognitive-map"! In 

Proceedings of the Fifth International Conference on Cognitive Modeling (pp. 

129-134). 

Hernández, D. (1994). Qualitative Representation of Spatial Knowledge. Lecture Notes 

in Artificial Intelligence (Vol. 804). Springer-Verlag. 

Hines, J. (2010). ODE imagery?. Message to the soar-group mailing list. Retrieved from 

http://sourceforge.net/mailarchive/message.php?msg_name=AANLkTilul7KhCux

-ga_gBmEEcIN4upc0ETV90Sm-DUlR%40mail.gmail.com 

Huffman, S., & Laird, J. E. (1992). Using Concrete, Perceptually-Based Representations 

to Avoid the Frame Problem. In Proceedings of the AAAI Spring Symposium on 

Reasoning with Diagrammatic Representations. 



147 

Kieras, D. E., & Meyer, D. E. (1997). An Overview of the EPIC Architecture for 

Cognition and Performance with Application to Human-Computer Interaction. 

Human-Computer Interaction, 12, 391-438. 

Klingbeil, E., Saxena, A., & Ng, A. Y. (2008). Learning to Open New Doors. In 

Proceedings of the AAAI 17th Annual Robot Workshop and Exhibition. 

Kosslyn, S. M., Thompson, W., & Ganis, G. (2006). The Case for Mental Imagery. New 

York: Oxford University Press. 

Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artificial Intelligence, 119(1-2), 

191-233. 

Kurup, U., & Chandrasekaran, B. (2006). Multi-modal Cognitive Architectures: A Partial 

Solution to the Frame Problem. In Proceedings of The 28th Annual Conference  of 

the Cognitive Science Society.  

Kurup, U., & Chandrasekaran, B. (2007). Modeling Memories of Large-scale Space 

Using a Bimodal Cognitive Architecture. In Proceedings of the Eighth 

International Conference on Cognitive Modeling (pp. 267-272). 

Laird, J. E. (2008). Extending the Soar Cognitive Architecture. In Proceedings of the 

First Conference on Artificial General Intelligence. 

Laird, J. E., Xu, J., & Wintermute, S. (2010). Using Diverse Cognitive Mechanisms for 

Action Modeling. In Proceedings of ICCM-2010.  

Laird, J. E., Yager, E. S., Hucka, M., & Tuck, C. M. (1991). Robo-Soar: An integration 

of external interaction, planning, and learning using Soar. Robotics and 

Autonomous Systems, 8(1-2), 113-129.  

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is (Sometimes) Worth Ten 

Thousand Words. Cognitive Science, 11(1), 65-100. 

Lathrop, S. D. (2008). Extending Cognitive Architectures with Spatial and Visual 

Imagery Mechanisms (PhD Thesis). University of Michigan. 

Lathrop, S. D., & Laird, J. E. (2007). Towards Incorporating Visual Imagery into a 

Cognitive Architecture. In Proceedings of the Eighth International Conference on 

Cognitive Modeling. 

Lathrop, S. D., & Laird, J. E. (2009). Extending Cognitive Architectures with Mental 

Imagery. In Proceedings of the Second Conference on Artificial General 



148 

Intelligence. 

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press. 

LaValle, S. M., & Kuffner Jr, J. J. (2001). Randomized Kinodynamic Planning. The 

International Journal of Robotics Research, 20(5), 378. 

Lehman, J. F., Laird, J., & Rosenbloom, P. (2006). A Gentle Introduction to Soar: 2006 

Update. Retrieved from 

http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf 

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., et al. 

(2008). A perception-driven autonomous urban vehicle. Journal of Field 

Robotics, 25(10).  

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state 

abstraction for MDPs. In Proceedings of the Ninth International Symposium on 

Artificial Intelligence and Mathematics (pp. 531–539). 

Lindemann, S. R., & LaValle, S. M. (2003). Current issues in sampling-based motion 

planning. In Proceedings of the International Symposium of Robotics Research. 

Springer. 

Lozano-Pérez, T., & Wesley, M. A. (1979). An algorithm for planning collision-free 

paths among polyhedral obstacles. Communications of the ACM, 22(10), 560-570. 

Madhavan, R., Messina, E., & Albus, D. J. (2006). Intelligent Vehicle Systems: A 

4D/RCS Approach. New York: Nova Science Publishers. 

Nason, S., & Laird, J. E. (2005). Soar-RL: integrating reinforcement learning with Soar. 

Cognitive Systems Research, 6(1), 51-59.  

Newell, A. (1988). The Basic Quantitative Code: Statement of the Problem. Retrieved 

from http://shelf1.library.cmu.edu/cgi-

bin/tiff2pdf/newell/box00009/fld00552/bdl0001/doc0001/newell.pdf 

Newell, A. (1990). Unified theories of cognition. Cambridge, MA, USA: Harvard 

University Press. 

Nuxoll, A., & Laird, J. E. (2007). Extending cognitive architecture with episodic 

memory. Proceedings of the AAAI National Conference on Artificial Intelligence, 

1001. 

Pinker, S. (1984). Visual cognition: an introduction. Cognition, 18(1-3). 



149 

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of 

Experimental Psychology, 77(3), 353-363. 

Pylyshyn, Z. W. (2003). Mental imagery: In search of a theory. Behavioral and Brain 

Sciences, 25(02), 157-182. 

Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. 

Cognition, 80(1-2), 127-158.  

Ravindran, B., & Barto, A. G. (2002). Model minimization in hierarchical reinforcement 

learning. In Proceedings of the 5th International Symposium on Abstraction, 

Reformulation and Approximation (pp. 196–211). 

Rosenbloom, P. S., Laird, J. E., Newell, A., & McCarl, R. (1991). A preliminary analysis 

of the Soar architecture as a basis for general intelligence. Artificial Intelligence, 

47(1-3), 289-325. 

Shimojima, A. (1996). On the efficacy of representation (PhD Thesis). Indiana 

University. 

Stein, L. A. (1994). Imagination and situated cognition. Journal of Experimental and 

Theoretical Artificial Intelligence, 6(4), 393-407.  

Stober, J., & Kuipers, B. (2008). From pixels to policies: A bootstrapping agent. In 

Proceedings of the 7th IEEE International Conference on Development and 

Learning (pp. 103-108). 

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples 

using sparse coarse coding. Advances in Neural Information Processing Systems, 

8, 1038-1044.  

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT 

Press. 

Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A 

computational model of multiple representations. Cognitive Science, 21(3), 305-

350.  

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of 

inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309–318. 

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of 

the ACM, 38(3), 58-68.  



150 

Ullman, S. (1984). Visual routines. Cognition, 18(1-3), 97. 

Wang, Y., & Laird, J. E. (2010). Efficient Value Function Approximation with 

Unsupervised Hierarchical Categorization for a Reinforcement Learning Agent. 

In Proceedings of  the 2010 International Conference on Intelligent Agent 

Technology.  

Wintermute, S. (2009a). Integrating Reasoning and Action through Simulation. In 

Proceedings of the Second Conference on Artificial General Intelligence.  

Wintermute, S. (2009b). An Overview of Spatial Processing in Soar/SVS (Technical 

Report No. CCA-TR-2009-01). University of Michigan Center for Cognitive 

Architecture. 

Wintermute, S. (2010). Using Imagery to Simplify Perceptual Abstraction in 

Reinforcement Learning Agents. In Proceedings of the the Twenty-Fourth AAAI 

Conference on Artificial Intelligence. 

Wintermute, S., & Laird, J. E. (2007). Predicate Projection in a Bimodal Spatial 

Reasoning System. In Proceedings of the Twenty-Second AAAI Conference on 

Artificial Intelligence.  

Wintermute, S., & Laird, J. E. (2008). Bimodal Spatial Reasoning with Continuous 

Motion. In Proceedings of the Twenty-Third AAAI Conference on Artificial 

Intelligence. 

Wintermute, S., & Laird, J. E. (2009). Imagery as Compensation for an Imperfect 

Abstract Problem Representation. In Proceedings of the 31st Annual Conference 

of the Cognitive Science Society. 

 

 

 


