
Available online at www.sciencedirect.com
www.elsevier.com/locate/cogsys

Cognitive Systems Research 19–20 (2012) 1–29
Imagery in cognitive architecture: Representation and control
at multiple levels of abstraction

Action editor: Ron Sun

Samuel Wintermute ⇑,1

Department of Electrical Engineering and Computer Science, University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109, USA

Received 22 October 2011; accepted 12 December 2011
Available online 16 February 2012
Abstract

In a cognitive architecture, intelligent behavior is contingent upon the use of an appropriate abstract representation of the task. When
designing a general-purpose cognitive architecture, two basic challenges related to abstraction arise, which are introduced and examined
in this article. The perceptual abstraction problem results from the difficulty of creating a single perception system able to induce appro-
priate abstract representations in any task the agent might encounter, and the irreducibility problem arises because some tasks are resis-
tant to being abstracted at all. The first contribution of this paper is identifying these problems, and the second contribution is showing a
means to address them. This is accomplished through the use of mental imagery.

To support imagery, a concrete (highly detailed) representation of the spatial state of the problem is maintained as an intermediate
between the external world and an abstract representation. Actions can be simulated (imagined) in terms of this concrete representation,
and the agent can derive abstract information by applying perceptual processes to the resulting concrete state. Imagery works to mitigate
the perceptual abstraction problem by allowing a given perception system to work in a wider variety of tasks, since perception can be dynam-
ically combined with imagery, and works to mitigate the irreducibility problem by allowing internal simulation of low-level control processes.

To demonstrate these benefits, an implementation is described, which is an extension of the Soar architecture. An agent in this archi-
tecture that uses reinforcement learning and imagery to play an arcade game and an agent that performs sampling-based motion plan-
ning for a car-like vehicle are described, demonstrating the perceptual abstraction and irreducibility problems and the associated use of
imagery to mitigate those problems in complex AI tasks.

Previous AI systems have incorporated imagery-like processes, however, the functional benefit of imagery in those systems has typ-
ically been characterized as the ability to perform more efficient inference through the use of a specialized representation. The use of
imagery here shows further benefits related to the perceptual abstraction and irreducibility problems, enriching the broader understand-
ing of the role of imagery in cognitive systems.
� 2012 Elsevier B.V. All rights reserved.
1. Introduction

People are confronted with a range of situations in their
everyday lives that are characterized by a need for precise
interaction with the spatial aspects of their surroundings.
As a few extreme examples, consider catching a ball, solving
1389-0417/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cogsys.2012.02.001

⇑ Tel.: +1 734 887 7624.
E-mail address: sam.wintermute@soartech.com

1 Present address: Soar Technology, Inc., 3600 Green Court, Suite 600,
Ann Arbor, MI 48105, USA
a jigsaw puzzle, or parallel parking. To catch a ball, a person
must position their hand in a place where the ball will arrive;
whether or not a given position meets this criterion depends
upon the exact velocity of the ball and the influence of grav-
ity. To solve a puzzle, a person must find which pieces fit
together, which is a property that depends on the precise
details of the shapes of both pieces. And to parallel park a
car, the complex relationship between the controls of the
car and its position on the street determines whether or
not a given action sequence will result in successful parking.

http://dx.doi.org/10.1016/j.cogsys.2012.02.001
mailto:sam.wintermute@soartech.com
http://dx.doi.org/10.1016/j.cogsys.2012.02.001

2 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
To create AI systems able to achieve this range of behav-
ior, or cognitive models capable of accounting for it in
humans, we pursue the development of a cognitive archi-
tecture. A cognitive architecture is a theory of the fixed
processes underlying intelligent behavior (Langley, Laird,
& Rogers, 2009). While it may be possible to create spe-
cial-purpose models for each particular task, working in
the context of an architecture causes a strict decomposition
of the system into task-independent aspects (architecture)
and task-dependent aspects (knowledge). Adherence to this
decomposition allows the resulting system to be more easily
extended to new tasks, as the architecture can be re-used,
and leads toward the development of a unified theory of
cognition, rather than many fragmented theories (Newell,
1990).

Here, we explore architectural structures supporting
intelligence in complex spatially-oriented tasks. An impor-
tant dimension through which these issues can be viewed is
that of abstraction. In complex spatial tasks, an agent can
benefit from using an abstract internal representation of
the structure of the task. Abstraction removes unnecessary
detail, making learning and knowledge representation
more tractable. However, the need for abstraction seems
to conflict with the need to account for the precise detail
of the spatial world. Since abstraction is a process sup-
ported by the perception and action systems of a cognitive
architecture, it is a critical issue to consider when designing
one.

The basic conflict between abstraction and precision is
analyzed in this article. As will be explained in the next sec-
tion, there are two problems inherent in designing a gen-
eral-purpose cognitive architecture capable of abstract
representation while still maintaining the spatial precision
necessary for intelligent behavior. First, the diversity of
tasks an intelligent agent must address is large, and it is dif-
ficult to create a single perception system to create appro-
priate abstract representations in all such tasks. This
difficulty is the perceptual abstraction problem. Second,
some tasks are resistant to being abstracted at all, as is
the case when the appropriate action varies continuously
as a function of the details of the environment: this is the
irreducibility problem.

Aspects of these challenges have manifested (and have
been addressed) in research in several subfields of AI,
including robotic motion planning, qualitative reasoning,
and reinforcement learning. However, the root perceptual
abstraction and irreducibility problems have not previously
been identified and studied in a general manner. Problems
of abstraction have received little emphasis in AI research
compared to other perceptual challenges such as dealing
with sensor noise and partial observability. The develop-
ment of a task-independent cognitive architecture presents
a context where abstraction challenges come to the fore-
front, though.

In this article, the perceptual abstraction and irreducibil-
ity problems are introduced, and a theory of basic architec-
tural mechanisms that can work to mitigate these problems
is proposed. The crucial aspects of the theory include the
use of both abstract and concrete (highly detailed) repre-
sentations of the state of world, continuous action control-
lers which access the concrete representation, and imagery
capability, where the concrete representation is internally
manipulated, with the results feeding back to the abstract
representation. In our terminology, “imagery” refers exclu-
sively to this sort of manipulation of concrete information,
rather than to the generic process of internally representing
(imagining) alternate states of the world, which may be
involve an abstract representation alone. The theory has
been implemented by augmenting the Soar cognitive archi-
tecture (Laird, 2008; Newell, 1990) with general-purpose
memories and processes for handling spatial information.
Agents instantiated in the architecture provide demonstra-
tions of both the operation of the architecture itself and the
benefits of the underlying theory.

The theory is inspired by psychological research in men-
tal imagery. This research has provided strong evidence
that people maintain and manipulate visual and spatial
information at a level close to that of perception, reusing
the same systems that process perceptual data to process
internally generated (imaginary) data (Kosslyn, Thomp-
son, & Ganis, 2006). This work in this article builds on
existing work on computational imagery systems, particu-
larly that of Lathrop (2008), who created a pilot implemen-
tation of a mental imagery extension for Soar, but also
drawing on other theories and systems (e.g., Barsalou,
1999; Glasgow & Papadias, 1992; Grush, 2004; Huffman
& Laird, 1992; Kurup & Chandrasekaran, 2006; Ullman,
1984).

Imagery capability has been proposed as an important
cognitive architectural component (e.g., Chandrasekaran,
2006; Lathrop, 2008). Much of the motivation for this
inclusion has been drawn from psychological research.
Arguments about the utility of imagery outside of psycho-
logical concerns—functional arguments for imagery—have
also been made (e.g., Lathrop, Wintermute, & Laird,
2011). Typically these arguments are based on research
examining benefits in terms of increased inference efficiency
afforded by imagery-like processing (Glasgow & Papadias,
1992; Huffman & Laird, 1992; Larkin & Simon, 1987), or
through demonstrations of particular domains where imag-
ery use is beneficial, such as planning to coordinate a team
of military scout robots (Lathrop & Laird, 2009). The use
of imagery presented here, as a means of mitigating the per-
ceptual abstraction and irreducibility problems, shows dif-
ferent functional benefits of imagery beyond inference
efficiency. In that way, this work contributes towards a
more thorough understanding of the role of imagery in
cognitive architecture.

To elaborate on this, prior functionality-based examina-
tions of imagery have assumed that, since abstract propo-
sitional representations and concrete perceptual
representations can in principle encode the same informa-
tion (Anderson, 1978), the primary functional role for
imagery is to allow more efficient inference. However, the

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 3
analysis here reveals that, due to the difficulty of solving the
perceptual abstraction problem, in a general-purpose
architecture, these representations will likely not be infor-
mationally equivalent. Particularly, the abstract represen-
tation alone cannot capture all relevant details of the
problem, while these details can be represented at the
concrete level. A functional role for imagery is then to com-
pensate for this informational inequivalence. Furthermore,
the irreducibility problem creates an additional role for
imagery processing, as imagery allows low-level control
processes to be internally simulated. This important con-
nection with control is missing in prior analyses of imagery.

In order to make traction in this analysis, for the tasks
studied in this article it is assumed that a concrete represen-
tation encoding spatial properties is available. General-
purpose perception in AI is an unsolved problem, so in this
work the tasks studied will use either simulated environ-
ments or limited environments where perception is possi-
ble. Nevertheless, as will be demonstrated, interesting
tasks can still be addressed, and progress can be made
towards the overall goal of a general-purpose cognitive
architecture for spatial tasks.

2. Motivation

As stated above, a cognitive architecture is a theory of
the fixed processes underlying intelligent behavior. While
most architectural theories aim to provide common frame-
work to explain all human cognitive performance and to
recreate that performance in an artificial system, individual
theories emphasize some of these aspects over others.
Broadly speaking, work with ACT-R (Anderson et al.,
2004) and EPIC (Kieras & Meyer, 1997) tends to focus
on precise modeling of human behavior in tasks like mem-
ory retrieval and perceptual-motor interaction. Similarly,
work with Soar (Laird, 2008) and Icarus (Langley & Choi,
2006) tends to focus on recreating broad characteristics of
human performance or generating AI behavior in tasks
like skill learning and execution, and work with Clarion
(Sun, 2006) emphasizes interactions between symbolic
and subsymbolic processes in human modeling and AI
contexts. However, in all cases each architecture has been
used in many different tasks with many different research
goals.

This work explores basic issues related to abstraction in
architecture design. The space of all theories upon which
an architecture might be based is huge, and not all possibil-
ities can be addressed. Therefore, here, discrete decision-
making is assumed. That is, we assume an agent’s reason-
ing process is a series of steps where potential action
choices are weighed, and one action is chosen. In addition,
we assume that this decision-making is contingent upon
symbolic information. For this work, the relevant property
of symbolic information is that, from the perspective of the
decision procedure, symbols are discrete entities that have
no intrinsic similarity to one another. Essentially, this
means that properties influencing the decision (for exam-
ple, learned values of actions) cannot be a continuous func-
tion of the agent’s internal state.

As will be explained in detail shortly, there are two basic
implications of this assumption: an agent must derive sym-
bolic information that distinguishes between situations
where one decision should be made versus another (so
the correct decision can be made), and this symbolic infor-
mation must distinguish between as few situations as pos-
sible (so equivalent situations are represented as such,
and minimal knowledge is required to make decisions).

These assumptions are fulfilled by decision-making in
Soar and the other symbolic cognitive architectures cited
above, along with table-based reinforcement learning sys-
tems (Sutton & Barto, 1998) and symbolic planning sys-
tems. They do not cover reinforcement learning with
continuous function approximation, nor systems where
the agent’s entire behavior is described by a continuous
function from input to output and there is no discrete deci-
sion among actions (e.g., a feedback rule or neural
network).

However, these assumptions do not mean that actions
must be a function of symbolic perceptions alone. Previous
perceptions and arbitrary background knowledge can be
stored and influence decisions. In addition, non-symbolic
processes can operate over symbolic information and affect
decisions. For example, reinforcement learning adjusting
control biases, memory activation influencing knowledge
retrieval (Anderson et al., 2004), or Bayesian reasoning
to infer properties from evidence (Tenenbaum, Griffiths,
& Kemp, 2006) can all fit in this framework. In addition,
the assumption that discrete decision-making is present is
not intended to mean that every aspect of the agent’s exter-
nal behavior—every detail of its motor output—must be
the direct result of a decision. Hierarchical control is neces-
sary in many spatial problems, and symbolic decision-mak-
ing at the upper level(s) of the hierarchy is sufficient to meet
these assumptions, while other methods such as feedback
control can be used at lower levels. Despite additional com-
plexity in these cases, the two basic implications remain:
symbolic information must distinguish between situations
where decisions must differ, but as few situations as possi-
ble must be distinguished.

It should be noted that these assumptions are about the
structure of the agent, and not of the task. Some tasks may
appear plainly to be a sequence of decisions, like choosing
a series of movements in a grid maze, while others may not
appear to be, such as driving a robot towards a point.
However, agents may use discrete decisions internally even
when the task doesn’t have discrete a priori “decision
points”: a robot driving toward a position may be execut-
ing a simple feedback loop between its sensors and effectors
without any higher-level internal representation, or it may
have built up a complex internal map structure, performed
a search to find a path, and invoked a hierarchical control
system.

The assumptions here serve to simplify the analysis,
not to constrain the applicability of the resulting system.

Fig. 1. A simple blocks world task.

4 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
Imagery as examined here is likely also valuable in systems
using nonsymbolic decision-making, however a full analy-
sis of that integration must remain an area for future work.

2.1. Motivating tasks

To better understand these issues, three example tasks
are introduced in this section.

In the blocks world (Fig. 1), an agent is presented with
some blocks on a table, and has a simple task of stacking
them in some specific configuration, such as block A on
block B on block C.

A straightforward way of addressing this task in a sym-
bolic agent is to use a planning language such as that used
in the STRIPS system (Fikes & Nilsson, 1971). The state is
described in terms of abstract predicates,2 as shown on the
right of the figure, and rules encode the consequences of
actions in terms of those predicates. In the simplest case,
the initial state and the goal of the problem are expressed
in similar terms, and the problem space can be searched
using a standard algorithm (e.g., iterative deepening), find-
ing a sequence of actions that lead to the goal.

An alternative approach is to use a reinforcement learn-
ing algorithm to gradually learn a policy through interac-
tion with the environment (Sutton & Barto, 1998). In this
approach, the state could again be represented in terms
of abstract predicates,3 but the goal is instead mapped onto
a reward signal. With enough trials, the agent can learn a
policy to maximize its reward, effectively solving the
problem.

In the blocks world, for an agent using either approach,
the on predicates (as shown in the figure) capture the right
aspects of the task such that an optimal plan or policy can
easily be found by an appropriate planner or learning
algorithm.

One of these agents might exist in a world where it is
repeatedly presented with problems, and must solve each
one. In realistic environments, any given instance of the
task might vary in its details: the blocks might be in slightly
different positions, they might be different colors, or be
slightly larger or smaller. However, the representation cov-
ers all of these variations of the task. This is the benefit of
an abstract representation: many underlying problem
instances are mapped to a single internal task representa-
tion. Any instance of the task where the initial state
encodes that all blocks are on the table can be solved with
the same action sequence, regardless of the exact location
of the blocks on the table, their size, color, etc.
2 Throughout this work, predicate representations will be used as
shorthand for generic symbolic representations. The use of predicates is
merely to illustrate what data is encoded in terms of symbols, it does not
imply that logical inference is used.

3 In line with the symbolic decision-making assumption, reinforcement
learning here refers to table-based RL, and not RL with function
approximation. Connections between the issues discussed here and RL
function approximation will be discussed in Section 6.4.
In contrast, consider an agent using a more detailed rep-
resentation, such as continuous coordinates describing the
shapes of blocks, without a higher-level interpretation (we
will call this sort of detailed representation concrete). If
these coordinates are treated symbolically, any variation
in the blocks, however minor, will cause the agent to per-
ceive a completely different state. An agent using such a
representation has no generalization ability: it is extremely
unlikely that two blocks in different problem instances
would appear in the same precise position, so a reinforce-
ment learning agent would need to learn a unique policy
for each instance, and a planning agent would need unique
rules for each instance.

In short, an agent with the ability to induce on predi-
cates is able capture all of the right details of the blocks
world to make correct decisions, and is able to do so while
minimizing the number of distinctions made. This repre-
sentation forms the ideal case for symbolic decision-mak-
ing, as it is both compact and accurate.

2.1.1. The pedestal blocks world

To illustrate a situation where abstraction is not so sim-
ple, consider a slightly modified version of the environment
(Fig. 2). Here, the agent is presented with a table and three
blocks. There are some pedestals fixed to the table upon
which the blocks can be placed. The goal is to place the
blocks on the pedestals in the correct order (A to the left,
then B, then C to the right). The agent first moves block
A to some pedestal, then B then C.

Rather than having a single goal, this agent receives a
numerical reward proportional to the quality of its solution.
A reward of 100 is received for placing the blocks in the cor-
rect order. It is better to place the blocks as far to the left as
possible: 10 points are deducted from the reward for each
empty platform to the left of C. However, the blocks can
only be placed centered on the pedestals (otherwise they fall
off), and the pedestals may be positioned such that a certain
block cannot be placed on a certain pedestal, as a neighbor-
ing pedestal is in the way, or that two blocks cannot fit on
adjacent pedestals. If the agent places a block where it can-
not fit, it receives a reward of �100 and the task ends. If the
agent places the blocks on the pedestals without a collision,
but the ordering is wrong, a�10 reward is received. Assume
that the agent can move blocks outside of the plane shown,
so that a block can be placed under an overhanging block
without a collision during movement.

This task is not as straightforward for a symbolic agent
to address, as it is not as clear how to represent the state of

Fig. 2. A pedestal blocks world problem and its optimal solution state.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 5
the task in terms of abstract symbols. Symbols which suffi-
ciently describe the unmodified blocks world (on predi-
cates) are insufficient to distinguish between cases where
the best action is, for example, moving A to pedestal1, from
cases where the best action is to instead move A to pedes-
tal2. This is because the crucial aspect of the problem that
affects which choice is better is not captured by the given
symbols: whether or not the given action would cause a
collision.

Instead, more complex predicates are needed. A predi-
cate encoding exactly the relevant property would suffice:
for example collision_if_moved(A,pedestal1) might be true
if moving block A to pedestal1 would cause a collision.
However, note that this encodes a complex, task-specific
relationship. For example, Fig. 3 shows a situation where,
to infer collision_if_moved(C,pedestal2), the exact sizes and
positions of three blocks and three pedestals need to be
accounted for, and one of those blocks (C) is located spa-
tially far from the other objects. While one might propose
that a generic perception system could provide on informa-
tion for objects it sees, supporting blocks world tasks, the
symbolic information necessary in this task is not such a
simple, task-independent property of the environment.
This raises the issue of how a generic architecture could
support solving pedestal blocks world problems.

2.1.2. Motion planning for a nonholonomic car

In some cases, creating abstract representations is even
more difficult, due to the need for precise control.

Even in the blocks world, if a real robot is used, precise
control is necessary. In a robot, the final output of the
agent is a set of motor voltages. Since real blocks can vary
in size and shape, the actual outputs might need to be sen-
sitive to those variations. If the motor voltages are contin-
uous, as are the positions of the blocks, the problem likely
cannot be solved by symbolically mapping abstract sym-
bolic perceptions to actions.

However, in simple tasks like the blocks world, this
aspect can be ignored: low-level controllers that continu-
ously transform the details of the perceived state to output
voltages can be incorporated in the system. This is a par-
tially nonsymbolic approach to the problem, but fits within
Fig. 3. A situation in pedestal blocks world where nonlocal interactions
are important if the agent is considering moving block C to pedestal 2.
a system using symbolic representations for decision-mak-
ing: controllers can be encapsulated in modules isolated
from the rest of cognition, and the actions of the agent
can simply be viewed as selecting between controllers
(e.g., Laird, Yager, Hucka, & Tuck, 1991).

For this encapsulated controller approach to work,
though, the controllers must have symbolic characteriza-
tions: the behavior of the controllers must result in consis-
tent transitions between symbolic states. In other words,
the controllers must have performance guarantees. In the
blocks world, if a robotic gripper is controlled to move
physical blocks, the previously described approaches to
the problem will work well if the gripper controller can reli-
ably transition between states described by on predicates.

However, again, some tasks are not as straightforward.
Motion planning, as it will be considered here, is the prob-
lem of determining a sequence of control outputs to move a
robot through space to a goal position. In Fig. 4, the task is
to drive the car object to the goal region while avoiding the
gray obstacles. A line outlining the optimal path to follow
is shown. Some approaches to motion planning use encap-
sulated controllers, where the controllers are designed such
that the problem can be reduced to a search through the
symbolic states that those controllers reliably traverse
(e.g., Beeson, Modayil, & Kuipers, 2010). This works well
for particular classes of robots, such as polygonal robots
that can move in any direction, and for more complicated
robots when tight maneuvering is less important.

However, in other situations, the encapsulated controller
approach does not work. One reason for this difficulty is
that certain kinds of constraints on motion are infeasible
to capture in abstract representations, and creating an
abstract representation is necessary for the encapsulated
controller approach to work well. Nonholonomic
constraints result from systems where the number of
controllable dimensions is less than the total number of
Fig. 4. A nonholonomic car motion planning problem.

6 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
degrees of freedom. A car is nonholonomic, since its posi-
tion can be described by three parameters (its position on
the surface of the earth and the direction it is facing), but
it is only controllable in two dimensions (driving forward
and reverse, and steering left and right). The figure shows
an example where the nonholonomic constraints matter: it
is difficult to come up with an abstraction of the problem
where the path shown could have been composed by search-
ing through an abstract state space.

This situation, where precise control cannot be reduced
to transitions between symbolic states, presents another
challenge to symbolic agents, which will be addressed
shortly.

2.2. Meta-problems in architecture design

These domains provide insight into some fundamental
issues in cognitive architecture design. These issues will
be presented as meta-problems: problems that the design
of the architecture must support solving as a prerequisite
for solving external problems.

First, in order to behave intelligently in any task, the
agent needs to use its perception system to infer informa-
tion about the outside world. This leads to the first meta-
problem:

Veridical perception problem. An agent must have the

means to determine sufficient information about the true

state of the world in order to intelligently select actions.

This problem is posed mainly to clarify what this
research is not about. Much research in AI and related
fields addresses veridical perception, including research in
robotic perception and computer vision. However, the
focus here is instead on problems that arise even when
the complete state of the world is known to the agent, such
as it is in virtual environments. The previous section
described difficulties related to perception in both the ped-
estal blocks world and nonholonomic motion planning
tasks, however, these difficulties had nothing to do with
inferring the true state of the world: they had to do with
representing that information in a form such that actions
can be chosen. Even if fundamental challenges involving
noisy sensors, partial observability, etc., were completely
overcome, these difficulties would persist.

Another meta-problem is then present, related to the
need for an agent to construct appropriate abstract sym-
bols to choose actions. Any agent that performs symbolic
decision-making needs to derive symbols from its percep-
tual input that it can use to distinguish between situations
where one decision should be made versus another. If two
situations cannot be distinguished, the agent will make the
same decision in both. In addition, these symbols should
distinguish as few states as possible—they should be
abstract. If, instead of using on predicates, a blocks world
agent encoded every detail of the problem in its symbolic
representation (a concrete representation), planning or
learning would be infeasible.
Any agent architecture following the symbolic assump-
tion must then solve a problem of perceptual abstraction:

Perceptual abstraction problem. An agent must have the

means to create abstract symbolic structures from perceptual

input that can serve as the basis for intelligent action choices.

The discussion of control in the previous section moti-
vates another meta-problem. If all behavior is viewed as
mapping primitive perceptions to symbolic information,
and selecting primitive actions based on that symbolic
information, there may be no possible symbolic representa-
tion of the problem that makes all of the necessary distinc-
tions between situations and yet is abstract enough that
efficient planning or general learning is possible.

Irreducibility problem. An agent must have the means to

intelligently act in tasks where abstract, purely-symbolic rep-

resentation is not possible.

The word “irreducibility” here makes the most sense
when the task is viewed as a Markov Decision Process
(as will be elaborated in Section 4). The size of an MDP
may be “reduced” by identifying equivalent states and/or
actions and combining them (Givan, Dean, & Greig,
2003). However, at some point the MDP will reach a min-
imal size. If the minimal MDP is still very large, we call the
problem irreducible. In general, though, the problem can
occur in the context of any symbolic representation
scheme, not just MDPs.

In many cases, the irreducibility problem can be handled
by including encapsulated controllers in the architecture, as
can be done in the blocks world. In that case, at the sym-
bolic level, the actions are to choose among controllers
rather than to issue raw motor commands. However, in
other tasks, such as motion planning for a nonholonomic
vehicle, this transformation may not be possible, as there
is no apparent way to effectively divide the problem
between low-level controllers and symbolic reasoning to
choose between controllers.

The difficulty of solving these meta-problems varies
greatly with the number of tasks the agent is to address.
Solving the problems and creating an architecture capable
of supporting intelligent behavior in a single task is much
simpler than doing the same for a general-purpose architec-
ture. Here we are concerned most strongly with the general

perceptual abstraction and irreducibility problems: the ver-
sions of these problems that must be addressed by an archi-
tecture capable of supporting intelligent behavior in the
same breadth of tasks as humans.

2.3. Imagery for spatial tasks

In this article, cognitive architecture structures are intro-
duced which address the perceptual abstraction and irre-
ducibility problems by supporting simulative imagery: the
use of imagery to simulate the effects of actions. In this sec-
tion, simulative imagery is explained at a high level, details
will be covered in later sections.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 7
In the pedestal blocks world, an issue with symbolic rep-
resentation was that some important information—the cir-
cumstances under which a given action will cause a
collision or not—is difficult to capture in terms of symbols.
A predicate to capture this information was proposed (col-

lision_if_moved), however, this predicate is complex and
task-specific, and it is not obvious how a task-independent
agent could infer it. That is, it is one of the cases that make
general perceptual abstraction difficult.

The proposed solution to the difficulty of perceptual
abstraction in cases like these is to use imagery. An imagery
agent has both an internal abstract problem representation,
along with a more precise internal concrete representation:
a representation that makes as many distinctions as possi-
ble between states of the world. That is, it has internal rep-
resentations akin to both pictures and predicates. The
agent can simulate its actions in terms of the concrete rep-
resentation, and derive the resulting abstract state. In the
pedestal blocks world, the agent can imagine what would
happen if it were to move a given block onto a given ped-
estal, and detect whether a collision would result (Fig. 5).
Essentially, imagery here allows a complex, task-specific
predicate to be inferred by using a combination of simple,
task-independent mechanisms.

In nonholonomic motion planning, the selection of com-
plex control sequences cannot easily be reduced to a search
through abstract symbolic states: the problem is irreducible.
In response to this difficulty, a common approach is
sampling-based motion planning (Lindemann & LaValle,
2003). These techniques determine the reachable locations
for a robot by simulating motion from its current position.
This simulation process can be considered a form of imag-
ery. Sampling-based motion planning is often used in con-
junction with low-level controllers. For a car planning
problem, a controller can be created to steer the car toward
a point in space, and the algorithm samples possible inputs
to this controller (intermediate goal points, or waypoints)
through simulation to find a sequence that results in a short,
collision-free path reaching the goal. Imagery operations
simulating the behavior of the agent’s low-level controllers
are an essential part of the technique. In many cases, the
actual controllers used for external action can be run with
simulated inputs to allow this (e.g., Leonard et al., 2008).

With imagery, the problem is divided between a high-
level search over possible sequences of waypoints, and
low-level simulations over concrete states that determine
which further waypoints are reachable from a known state.
This differs from the encapsulated controller approach:
while the technique still has aspects of a search through
Fig. 5. Imagery in pedestal blocks world. The agent has imagined block b on pe
at right.
abstract states, the problem is not reduced to such a search.
Abstract states encoding information like “reached way-
point 12” or “collided with an obstacle” are used, but the
agent has no way of knowing what future abstract state
transitions will happen without using simulative imagery.
Put another way, the agent can use low-level controllers
whose behavior cannot be reliably characterized with sim-
ple abstract state transitions. Through the use of simulative
imagery, though, the irreducibility problem is mitigated in
these agents. A complete motion planning agent will be dis-
cussed in Section 5.
3. Imagery in cognitive architecture

The examples in the previous section informally
present some benefits of imagery processing. Here, a the-
ory for an architecture incorporating these aspects is
described, specific functional benefits afforded by the the-
ory are presented, and a computational instantiation is
described.
3.1. Theory description

Many types of AI systems fit the basic pattern that per-
ceptions are mapped to an abstract problem state, and
abstract decision-making occurs in terms of that problem
state. This is shown in Fig. 6a. In the figure, the decision
system could be a symbolic planner or a reinforcement
learning system, or something less constrained such as
Soar’s symbolic processing.

Fig. 6a labels the different parts of this generic architec-
ture. Call the direct output of the agent’s sensors Pr, for
raw perception. This signal is transformed by the percep-
tion system to create an abstract perception signal, called
Pa. The system maintains an internal abstract representa-
tion of the problem state, R, calculated as a function Pa,
possibly taking into account past observations and back-
ground knowledge. Agents of this sort typically use a
high-level representation of actions: it is rare that actions
are considered in terms like “set motor voltage to .236”,
even though that may be the final output of an embodied
agent. So, even in a simple system, there are typically dis-
tinct abstract and raw action signals, Aa and Ar, and a
motor system that creates Ar from Aa.

An architecture with imagery is shown in Fig. 6b. A con-
crete representation, Rc, is present, in addition to Ra (in the
decision system). An additional level of perceptual and
action processing has also been added. The output of
destal2 (creating an imagined copy, B’) and inferred the abstract predicates

(a) (b)

Fig. 6. A basic non-imagery architecture (left) and an imagery architec-
ture (right).

8 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
low-level perception is now provided to Rc, so it is called
Pc, for concrete perception. Rc is chiefly derived from this
signal. However, Rc is not strictly an interpretation of Pc,
but can also be manipulated. In particular, it can be manip-
ulated via imagery based on the high-level action signal Aa

from the abstract decision system. High-level perception
processes transform Rc into Pa, which is the perception sig-
nal provided to the abstract decision system. Note that this
happens independently of whether the contents of Rc are
real or imagined: the form of Pa is the same, just possibly
annotated as real or imagined.

Imagery actions may share common mechanisms with
external actions. Agents can thus simulate the results of
external actions in the imagery system. Moreover, the sys-
tem can now use actions that cause changes to the imagery
system, but do not have a corresponding external action.
These imagery actions can be used for many different
things, for example, detailed memories could be retrieved,
or geometric reasoning could be performed. For this dis-
cussion, though, we will focus on simulative imagery: using
imagery actions to predict the value of Pa a given action
would cause if it were to be executed in the environment.
Through simulative imagery, the abstract decision system
can get information about the state of the world not just
via Pa directly, but via predictions about future values of
Pa. Both these predictions and the execution of the external
actions themselves can be based upon information not
present in the current value of Pa itself, but present in Pc.

4

The properties of an architecture following this theory
can be divided into eight important aspects, as outlined
below. Each of these aspects (excluding the first) depends
on others being present (as indicated), otherwise they are
independent of one another.

A1. Bimodality

– Two representations of information derived from per-
ception are present, Ra and Rc.

– Representation Rc contains more perceptual informa-
tion than Ra—it makes more distinctions between states
of the world. If Rc encodes spatial locations of objects in
the world, it is a concrete spatial representation.

– Processes can encode information in Ra based on Rc

(through high-level perception processes).

A2. Concrete routines (Requires A1)

– Processes can cause changes to representation Rc based
on its existing contents (they can locally manipulate it).
4 As an alternative, it is possible to create a system that performs
imagery-like processing, but where there is no architectural distinction
between multiple representations. That is, a system could have a single
representation encoding a mix of concrete and abstract information, where
processing in terms of that representation might convert between the
forms. Here, though, separate representations are used to emphasize that
architectural processes in the high-level perception and action systems are
chiefly responsible for this conversion, and not task knowledge. This is
explored more fully elsewhere (Wintermute, 2010a).
A3. Imagery (Requires A1, A2)

– Concrete routines can be invoked by processing in Ra,
and result in persistent changes to Rc. These are imagery
processes.

– Via high-level perception, results of imagery are
reflected in Ra.

A4. Simulative imagery (Requires A1, A2, A3)

– Some imagery operations simulate future states of the
world in terms of Rc: they manipulate Rc such that its
resulting state is similar to a situation that might be per-
ceived in the future.

A5. Concrete controllers (Requires A1)

– External actions can be contingent on information in Rc

but not in Ra. Modules that generate these actions are
called concrete controllers.

A6. Simulative imagery of concrete control (Requires A1,

A2, A3, A4, A5)

– Some simulative imagery operations simulate the effects
of concrete controllers.

A7. Architectural representation conversion (Requires

A1)

– High-level perception and imagery are supported by spe-
cialized architectural mechanisms.

A8. Perception/action reuse (Requires A1, A7)

– Some types of perceptual information arrive in Ra only
via Rc.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 9
– Common high-level perception mechanisms operate
over structures created by imagery and low-level percep-
tion in Rc.

– Some imagery processes share mechanisms with those
used to generate external actions.

To clarify how each aspect affects the overall architec-
ture, alternative systems can be described that lack that
aspect. Some of these systems are shown in Fig. 7.

Fig. 7a shows a system including all of the aspects.
Fig. 7b demonstrates a system lacking in bimodality. This
system only represents information at one level of
abstraction.

Fig. 7c shows an example of a bimodal system without
imagery or concrete routines. Here, the high-level action
system has no connection to Rc. This is a simple hierarchi-
cal control system, where the only role of the concrete rep-
resentation is to provide more state information for
controllers in the action system.

A bimodal system can have imagery capability without
simulative imagery. Many previous computational imagery
systems address tasks that are more about high-level rea-
soning than detailed interaction with a spatial environ-
ment, such as solving geometry problems (e.g., Gelernter,
1963) or geographic reasoning (e.g., Barkowsky, 2002)
and hence lack this aspect.
(a) (b)

(e)
(d)

Fig. 7. Alternative architecture designs la
Fig. 7d shows an example of a bimodal system with con-
crete routines, but not imagery. In such a system, high-level
perception uses concrete routines as a means to derive
abstract properties. Hence, there is an arrow from that sys-
tem to Rc rather than from the action system. Such a sys-
tem can include concrete routines that simulate actions.
Concrete routines are a generalization of Ullman’s concept
of visual routines (Ullman, 1984). These are local processes
within a concrete visual representation that are used as
means to compute more abstract properties, such as edges
or connectivity between objects. In the pedestal blocks
world example in Fig. 5, the agent imagines the movement
of the blocks, creating a persistent state in the imagery sys-
tem to which it applies high-level perception to infer that
moving B to pedestal2 will cause a collision. However,
one could create a similar system where the same informa-
tion (future collisions) is calculated via the same concrete
routines (geometric operations in the concrete representa-
tion), but where the abstract decision system does not
access it by applying perception to an imagined state. In
that case, a predicate such as collision_if_moved(A,peg1)

might simply be provided by high-level perception, which
happens to use concrete routines to determine it.

Fig. 7e shows a system that encodes both concrete and
abstract representations, but does not use architectural
mechanisms to convert between them. That is, the process
(c)

(f)

cking aspects of the imagery theory.

10 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
of converting between one format and another is left to
knowledge, or the system may not differentiate between
knowledge and architecture. For example, an agent mixing
quantitative and abstract information in a common archi-
tectural memory with knowledge that converts between the
formats meets this description. This system might have all
of the other aspects in it, but they cannot be seen in the dia-
gram because they are supported by knowledge and not
architecture.

Finally, Fig. 7f shows an architecture where the imagery
system is encapsulated in a module, and not connected to
perception and action. Again, this architecture might have
every other aspect in it, but imagery processing here is dis-
tinct from perception and action as it relates to the external
world.

Reasons for preferring the proposed architecture over
these alternatives will be discussed in the next section. This
architectural theory is designed to be as general as possible
while still having the essential components of imagery. For
the analysis so far, the actual means by which perception,
action, and decision-making occur are unimportant (out-
side of the basic constraint of symbolic decision-making).
In Section 3.3, a complete implemented architecture is
described. However, this implementation serves only as
an example: the key claims of this work relate to the
broader theoretical framework outlined here.

3.2. Benefits of the theory

This architectural theory provides several benefits. Here,
we will focus on three of the most important, while a larger
set is explored elsewhere (Wintermute, 2010a).

The theory allows movement and nonlocal interaction to

be captured in terms of abstract symbolic information, miti-

gating the perceptual abstraction problem.
In order to choose an action, an agent may need to take

into account the precise movement of objects. For example,
when parking in a parking garage, one needs to consider
whether the car will collide with a pillar when turning into
a tight spot. Similarly, it can be necessary to take into
account object interactions that, from the perspective of
the current state, are non-local. The pedestal blocks world
again provides an example of this: when considering mov-
ing a block from the bin to a pedestal, it must be deter-
mined whether a collision will occur. In the current state
(when the block is in the bin), this determination involves
both properties of the moving block and properties of
objects that are spatially distant from it.

To represent these problems at an abstract level, the per-
ception system must distinguish between the relevant
states. Even if the agent has a perception system specifically
built for the task, though, this is a difficult perceptual
abstraction problem. The distinctions cannot be easily
detected by composing simple “features” of the current
visual scene detected in a bottom-up manner.

However, if actions can be simulated based on concrete
information, properties that were difficult to compute in
the original state might be simpler to compute in the simu-
lated state. In the pedestal blocks world example, once the
block is imagined in its new position, the agent need only
infer a basic property: whether or not the imagined block
collides with any other object.

The minimal aspect of the architecture necessary for this
benefit is concrete routines (A2). Note that imagery is not
necessary; a system could leverage this benefit without hav-
ing the decision system deliberately invoke simulations,
and without having persistent resulting concrete states.
For example, to address pedestal blocks world, the percep-
tion system of an imagery-less architecture like that in
Fig. 7d could provide a predicate like collision-if-moved(A,-

pedestal2) as a result of an automatic concrete simulation,
capturing a non-local interaction. The next benefit explains
why imagery might be a preferable approach, though.

The theory allows task-specific abstract properties to be

encoded by a fixed, task-independent high-level perception

system, mitigating the perceptual abstraction problem.
This benefit addresses the general perceptual abstraction

problem. How can a task-independent agent construct
abstract perceptual properties in arbitrary tasks? This is a
hard problem, since deriving abstract properties from con-
crete information is a difficult process. The simplest
approach would be to come up with a set of universal
abstract properties, which are calculated by architectural
means and are sufficient to represent all problems.

However, for spatial problems, this approach does not
seem viable. Researchers in qualitative spatial reasoning
have attempted to describe such a set of universal proper-
ties, but no set has been found. This has led to the poverty
conjecture of Forbus, Nielsen, and Faltings (1991):

“We claim there is no purely qualitative, general-pur-
pose, representation of spatial properties. That is, while
qualitative descriptions are useful in spatial reasoning,
they are not sufficient to describe a situation in a task-
independent and problem-independent fashion.”

Task-independent qualitative properties are precisely
the sort of abstract symbolic representation of perceptual
information that allow an agent to compactly represent
the state of a problem while retaining enough information
to choose appropriate actions. Assuming the poverty con-
jecture is true, something more is needed to solve the gen-
eral perceptual abstraction problem.

For solving qualitative reasoning problems, Forbus
et al. propose augmenting qualitative information with a
quantitative representation, which is similar to the
approach taken here. If imagery is present, the overall pro-
cess of perceptual abstraction can involve both imagery
and high-level perception. From an architectural point of
view, the same high-level perceptual processes allow differ-
ent symbolic information to be encoded depending on what
imagery operations were performed. Not only can more
relevant properties in particular tasks be generated (as
the previous benefit covered), but if the imagery processes
simulate actions particular to the task, the architecture is

5 Lathrop et al. also discussed the theoretical motivation for the
architecture, as is the focus here. While some of the issues presented in this
article were encountered there, that discussion was brief and example-
based, while this work provides a substantial elaboration and a grounding
in general principles.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 11
able to encode task-specific properties while retaining a
task-independent high-level perception system.

As in the pedestal blocks world example, in this work we
focus on using simulative imagery (A4) to generate these
task-specific properties. In that example, the fact that a col-
lision results from a particular action is a (task-specific)
property of the current state. As a consequence of using
simulative imagery, examples demonstrating this benefit
also tend to demonstrate the prior benefit, as the end result
is often an encoding of movement or non-local interaction.
However, non-simulative imagery can also be used to
encode new properties. For example, an agent could use
geometric imagery operations such as creating a line
between two objects to determine if a third object is
between them.

It is important to note that imagery (A3), and not con-
crete routines alone (A2), provide this benefit. That is, it is
important that the concrete routines are selected and con-
trolled by the abstract decision system, and that the result-
ing state is persistent. To allow the agent to adapt to new
tasks, the full reasoning power of the agent must be
brought to bear to select which concrete routines to apply
and how to interpret or further manipulate the results. An
architecture like that in Fig. 7d cannot support this, as the
process of selecting routines and interpreting results is iso-
lated within the perception system and disconnected from
the agent’s general-purpose knowledge in the abstract deci-
sion system.

The theory allows symbolic reasoning over continuous pro-

cesses, eliminating the need for symbolic characterization of
controller performance, mitigating the irreducibility problem.

As the action system has access to the concrete represen-
tation, low-level controllers can be used which have access
to the detailed state information therein (aspect A5). While
irreducibility in some problems can be handled entirely by
encapsulating appropriate behaviors in low-level control-
lers, this is not always the case. As with the motion plan-
ning example in the last section, sometimes controllers
cannot be built such that the problem can be reduced to
an abstract state space. However, beyond simply support-
ing concrete controllers, aspect A6 in the theory allows
for simulative imagery of concrete control. This allows
abstract symbolic processing in the agent to reason over
controllers without having a characterization of their
behavior in terms of abstract states. If the performance
of a controller can be simulated with imagery, the agent
can derive the abstract outcome of a proposed action in
the particular situation, even though that outcome might
depend on details of the situation that the agent cannot
capture in terms of abstract symbols.

This allows for much less constraint on the kinds of con-
trollers that can be used in the system. Performance is then
improved in tasks like nonholonomic motion planning,
where the problem cannot be otherwise addressed without
some loss of solution quality.

These three benefits are arguments for the inclusion of
architectural aspects A2, A3, and A6. Through prerequi-
sites, A1–A6 are covered. The benefits do not address archi-
tectural representation conversion (A7) and perception/
action reuse (A8), however, and hence could be achieved
by the systems in Fig. 7e and f. Briefly, A7 allows complex
representation conversion processes to be encapsulated in
parts of the architecture and used across many tasks, rather
than requiring them to be expressed as knowledge. The last
aspect, A8, allows for a parsimonious set of architectural
processes: the same systems that are used for perception
are useful for imagery, so the system design can be simplified
by eliminating redundant mechanisms.

3.3. The Soar/SVS architecture

In this section, the design and capabilities of the Spatial/
Visual System, or SVS, is presented. Together with the
existing Soar architecture (Laird, 2008), Soar/SVS consti-
tutes an implementation of the theory presented in the pre-
vious section. The SVS system has been under development
for several years, and a comprehensive overview of the
architectural design has been published elsewhere (Lathrop
et al., 2011).5 While all implemented agents discussed in
this work are Soar/SVS agents, it must be emphasized that
the central theoretical claims are not dependent on the
details of Soar or SVS—other implementations based in
other cognitive architectures instantiating the theory could
equivalently be used. The overall design of Soar/SVS as it
pertains to this work is shown in Fig. 8. This diagram is
decomposed in a similar way to Fig. 6b, in terms of a deci-
sion and imagery system, and the connections between
them. Soar is the decision system in this case. Agents in
Soar can be instantiated to use many different techniques
to make decisions, including planning and reinforcement
learning. Soar contains a symbolic working memory,
through which different processes and memories in Soar
communicate. This is where SVS connects to the existing
Soar system. High-level perception (via Pa) adds elements
to a special area of working memory, and high-level actions
(issued via Aa) are similarly formulated in a special area of
working memory. The Pa and Aa signals have many mean-
ingful components as shown in the diagram; these different
components will be explained shortly.

As an imagery system, SVS sits between symbolic pro-
cessing in Soar and the outside world. A complete embod-
ied agent also requires lower-level perception and action
systems to handle the actual output of sensors and input
to effectors. These systems are the source of the Pc signals
and receiver of the Ac signals, respectively.

SVS contains a spatial short-term memory, the spatial
scene, which serves as the concrete representation in this
work. The spatial scene encodes a set of labeled polyhe-

Fig. 8. SVS system design. Boxes are memories, circles are processes.

6 In the current system, motions are implemented by arbitrary C++
functions. Defining a more uniform representation and a learning
mechanism is an area for future work.

12 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
drons in two- or three-dimensional space. Additionally, the
system has a visual short-term memory, encoding 2D pixel-
array information. The visual system is not shown in the
diagram, but is discussed elsewhere (Lathrop et al., 2011).
It is an alternate manifestation of a concrete representation
with different processing characteristics than the spatial
representation, however these differences are not relevant
here. A long-term memory is also present in SVS for visual,
spatial, and motion data, called perceptual LTM.

Theoretically, the perceptions provided to SVS (Pc)
should be raw pixels from a camera, or something analo-
gous to the lowest cohesive representation in the human
visual system. As we do not address the veridical percep-
tion problem, the system does not attempt this. Rather, a
task-specific low-level perception system must directly pro-
vide the spatial state of the world spatial via Pc.

From the point of view of the decision system, the only
aspects of the underlying spatial state available are what
are encoded in Pa. Here, that includes the perceptual point-
ers, along with information available through predicate
extraction processes. A perceptual pointer is a unique
token that refers to a specific underlying visual or spatial
structure (e.g., an object in the spatial scene). SVS always
presents a set of perceptual pointers in Pa, and if a pointer
appears in Aa, SVS can dereference it to access the corre-
sponding perceptual structure.

Predicate extraction processes derive qualitative sym-
bolic information from the underlying quantitative state.
For example, the agent can detect whether or not two
objects intersect. Note that these processes do not involve
access to knowledge: there is a fixed, architectural library
of predicates that the system can extract. Along with per-
ceptual pointers, predicate extraction processes instantiate
the high-level perception system in Fig. 6. The spatial
details of the objects in the world (e.g., their coordinates
in 3D space) are not provided in Pa.
Since the information available to the symbolic system is
limited to object identities and simple qualitative proper-
ties, for complex reasoning tasks, imagery must be used.
Images, once created in the spatial scene or visual buffer,
are thereafter treated identically to structures in those
memories built by perception. To perform imagery, the sys-
tem needs mechanisms through which spatial images can
be created and manipulated. In SVS, there are three such
mechanisms. These mechanisms include memory retrieval,
which instantiates objects from long-term memory into
the spatial scene, and predicate projection, which creates
spatial objects based on qualitative descriptions created
by Soar (such as “a line between A and B”) (Wintermute
& Laird, 2007).

Another important imagery type is a motion simulation
(Wintermute & Laird, 2008). A motion simulation process
transforms the position of an object in the scene based on
some method specific to the type of motion in question.
The individual motion types are considered task knowl-
edge, rather than a fixed part of the architecture6. Using
this system, the architecture can support detailed simula-
tive imagery, even when the consequences of an action can-
not be described in terms of qualitative predicates or
created by retrieving a memory (as the other two mecha-
nisms support).

One aspect of the theory presented in the previous sec-
tion is that low-level actions share common mechanisms
with imagery, and in SVS this commonality is present in
the motion simulation system. While some motion pro-
cesses might not be tied to actions, such as might be used
to predict the path of a bouncing ball, other motion pro-
cesses can include processes where a motion is simulated
with the help of an action controller.

For example, a car motion controller can be used in
SVS. When Soar uses the controller, it provides a percep-
tual pointer to the car object in the scene, and a pointer
to a goal object. Based on the spatial scene, the controller
can determine the body angle and position of the car. This
information can be used to calculate a desired steering
angle to set. To do this, the controller can determine the
angle between the front of the car and the goal object,
and steer in that direction, proportional to that difference,
saturating at some maximum steering angle. When used in
imagery mode, this angle, along with the time step, can be
fed back into a set of equations modeling the response of
the car to the steering control, and the position and angle
of the imagined car object can be determined. When used
in execution mode, it can instead be output to the low-level
action system. Even in execution mode, it may be useful to
simulate the motion in parallel with execution, as this sim-
ulation can be used as part of a Kalman filter to assist in
the control process (Grush, 2004). While this car controller
is hypothetical, as the implemented system has not been

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 13
used in real robots, the imagery aspects of it have been
implemented and used, as will be discussed below.

The imagery components of SVS, along with controllers
such as the car controller discussed above, make up the
high-level action system in the SVS instantiation of the
imagery architecture in Fig. 6.

4. Imagery and perceptual abstraction: application to

reinforcement learning tasks

Soar/SVS supports diverse means for learning and deci-
sion-making. Among those capabilities is support for
conventional reinforcement learning algorithms, such as
Q-learning (Sutton & Barto, 1998). In order to hold the
higher-level parts of the agent fixed and focus on the issue
of perceptual abstraction, in this section agents will be
described where control and learning of task knowledge
is accomplished exclusively via reinforcement learning.

The aims of this discussion are threefold: to provide fur-
ther explanation of the theory through demonstrations of
implemented agents, to provide evidence of the benefits
outlined in Section 3.2, and to connect this work with con-
cepts and related work in the area of reinforcement
learning.

4.1. State abstraction and imagery in reinforcement learning

Work in reinforcement learning typically models the
task being addressed as a Markov Decision Process
(MDP). An MDP consists of a set of states, a set of actions,
a function encoding transition probabilities from one state
to another (given an action), and a function encoding the
expected immediate reward for each transition. Here, we
will assume that an agent is actively engaged in the prob-
lem, and has no initial knowledge of the transition proba-
bilities or reward distribution. At every time step, the agent
observes a state st, and selects an action at. The environ-
ment then transitions and provides the agent with a reward
rt+1 at the next time step.

Essentially, an MDP describes a large state space, where
actions probabilistically cause an agent to move between
states and receive rewards. Each transition in an MDP
must be conditionally independent of previous transitions,
given the state the agent is transitioning from and the
action; this is the Markov property. A reinforcement learn-
ing agent learns a policy (a mapping of states to action
choices) to maximize its expected future reward.

The MDP formalism can provide an objective measure-
ment of what it means to have a good state representation
for a task: such a representation makes the transition prob-
abilities Markovian (they have the Markov property), and
allows for policies to be represented with an expected
future reward that is as large as possible, meaning that it
captures all details of the world necessary to select the best
action. However, it is also important that this state repre-
sentation be compact: learning can quickly become intrac-
table if the state space is large.
These points can be seen in simple domains like the
blocks world, as was touched upon in Section 2.1. If the
agent encodes the complete spatial state of the blocks (their
bounding coordinates in continuous numbers), the repre-
sentation is Markovian and allows for optimal policies to
be encoded. However, if the agent is solving multiple
instances of blocks world problems where the block dimen-
sions vary between instances, encoding the complete spatial
state results in a situation such that the agent rarely expe-
riences repeated states. Repeated experience is necessary
for learning, so this agent would perform very poorly.

To make a more compact learning problem, allowing
faster learning, state aggregation can be used. Formal tech-
niques exist for determining equivalent states in an MDP,
and the size of a given MDP can be reduced by checking
for these equivalencies and aggregating equivalent states
into abstract states (Givan et al., 2003; Li, Walsh, & Litt-
man, 2006; Ravindran & Barto, 2002). Alternatively, it is
possible to take an architectural view of the issue, and
define a perception system that implicitly aggregates states
together as it builds an internal abstract representation. In
the case of blocks world, the perception system can build
predicates such as on(A,B) that form a state representation
that is Markovian, allows for maximum reward to be
achieved, and is minimal.

If state abstraction results from perception in this way,
in order to create an agent able to induce compact MDP
representations in arbitrary problems, the general percep-
tual abstraction problem must be solved. As was discussed
in Section 3, the imagery architecture proposed here pro-
vides benefits that help mitigate the perceptual abstraction
problem. Specifically, the architecture provides imagery
mechanisms that allow an agent to encode abstract proper-
ties that capture movement and nonlocal interaction, and
allow task-specific abstract properties to be encoded by a
task-independent perception system.

4.1.1. Perceptual abstraction in pedestal blocks world
To provide a concrete example of these benefits in a

reinforcement learning setting, the pedestal blocks world
task (Fig. 2) outlined in Section 2.1 will be used.

An optimal policy for solving the problem is apparent:
place block A on the leftmost pedestal where it will fit,
place B on the leftmost pedestal right of A where it will
fit, and place C similarly. However, an agent solves many
instances of this task. In each instance, the positions and
heights of the pedestals, along with the dimensions of the
blocks, differ. Because of this, the actual moves needed to
optimally solve the problem differ from instance to
instance. Assume that the agent views the task on a com-
puter screen, and interacts by pressing buttons to indicate
the pedestal where each block should be placed. The dis-
play updates after each block is moved. This problem then
has a simple formalization: given the pixels on the screen,
button choices must be output.

Taken at its basic definition, the problem is an MDP
where each set of pixels constitutes an individual state.

14 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
Of course, abstraction would be very valuable here, other-
wise too many states would be present for learning to be
tractable. Soar/SVS can use its task-independent high-level
perception system to encode the standard blocks world on

predicates by composing them out of the primitives avail-
able in the predicate extraction system, a process explained
in detail elsewhere (Wintermute, 2009a). Predicate projec-
tion in the system can also be used to imagine the blocks
at their new locations, and high-level perception can be
applied to the imagined scene to determine whether actions
result in collisions.

4.2. The ReLAI algorithm

In order to support the use of imagery information (such
as collision predictions in this task) with reinforcement
learning, an algorithm called Reinforcement Learning with
Abstraction and Imagery, or ReLAI, has been developed
(Wintermute, 2010b). ReLAI is derived from the conven-
tional Q-learning algorithm, which is included in Soar
(Nason & Laird, 2005). Fig. 9 shows pseudocode for this
algorithm as implemented in Soar/SVS, and details are dis-
cussed in the Appendix. At a high level, where Q-learning
gradually learns the expected future reward for taking a
particular action in a particular state, ReLAI instead learns
the expected future reward for going to a particular next
state. A one step lookahead via imagery is used as the basis
for determining the effects of each available action (which
next state it leads to).

In the Pedestal Blocks World, a ReLAI agent imagines
the consequences of moving each block, uses high-level per-
ception on the imagined scene to derive an abstraction of
Fig. 9. The ReLAI algorithm a
the predicted next state (including whether or not there is
a collision), and acts based on learned knowledge about
that prediction. Fig. 10 shows results from learning using
ReLAI in this task. 25 trials were run of 10,000 episodes
each. The sizes of the blocks and positions of the pedestals
were randomized for each episode, each was a spatially-
unique instance (all conditions used the same instances).
Epsilon-greedy exploration was used, with parameters of
a = 0.3, e = 0.1, and c = 0.9. Total reward per episode
was collected. Due to the large negative reward for colli-
sions, reward varied substantially from episode to episode,
especially in early episodes. Therefore, to show the overall
trends, bins of 500 adjacent episodes were grouped
together, and reward was averaged across all episodes in
the bin (and across all trials).

For comparison, a direct state abstraction agent was
also run: this is a conventional Q-learning agent using the
same high-level perceptual information as ReLAI (on and
collision predicates), but not using imagery for prediction.
A random agent is also shown, approximating one that
learns in terms of the raw (unabstracted) pixel states where
repeated states would be extremely rare. As is clear in the
graph, ReLAI learns a much better policy than direct
abstraction. This is because the ReLAI agent quickly learns
to avoid collisions, where the direct abstraction agent can
never learn to avoid them. Even though the direct abstrac-
tion agent has the perceptual capability to infer that a col-
lision has occurred, it cannot use that information usefully
to choose better actions. However, the ReLAI agent can

leverage that information, since imagery allows its percep-
tion system to infer future collisions, not just collisions that
have already occurred.
s instantiated in Soar/SVS.

Fig. 10. Results of learning in pedestal blocks world showing advantage
of ReLAI.

7 � Parker Bros., 1983.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 15
The fact that the ReLAI agent outperforms direct
abstraction here is unsurprising: it had access to better state
information about collisions. The important result is that it
was able to infer this information using the very basic high-
level perception system of Soar/SVS. These collision pre-
dictions are task-specific properties of the current state that
encode a complex non-local interaction between blocks.
Through the use of imagery as part of ReLAI, the Soar/
SVS agent is able to infer this information using its task-
independent high-level perception system, demonstrating
two of the three benefits of the theory.

The ReLAI algorithm and its relation to other work in
the area of reinforcement learning is examined in more
detail in the Appendix. As explained there, one advantage
of ReLAI in this task—allowing the high-level perceptual
system to work in a task where it otherwise could not—
can be formalized and generalized beyond this task. In gen-
eral, ReLAI allows learning to converge to the optimal pol-
icy using state abstraction mechanisms that do not capture
the state well enough to work with direct abstraction. Par-
ticularly, where direct abstraction requires that the next
abstract state is always independent of the current concrete
state given the current abstract state, in certain circum-
stances, ReLAI can work without requiring this indepen-
dence. That is, ReLAI can use state abstractions where
abstract state transitions are dependent on details not cap-
tured by the abstraction (but present in the concrete repre-
sentation). Since, in this work, state abstraction is
accomplished via the high-level perception system, this
amounts to allowing a given perceptual system to work
in tasks where it otherwise could not.

4.3. ReLAI in a complex task

While the pedestal blocks world domain provides a sim-
ple example of the application of ReLAI, the algorithm
(and the architecture supporting it) can handle much more
complex tasks. Inspired by other work using arcade games
as a source of AI problems (e.g. Agre & Chapman, 1987;
Diuk, Cohen, & Littman, 2008), an agent has been devel-
oped to play the game Frogger II for the Atari 2600 system.
The original game is used (run in an emulator) – it has not
been reimplemented.

A low-level perception system has been constructed
which segments, identifies, and tracks relevant objects
based on the pixels output by the emulator. The recognized
objects are input to SVS, where they are added to the spa-
tial scene. The perception system is not completely general-
purpose: human tuning is needed to provide game-specific
parameters (including object labels), and some game-spe-
cific perceptual code is needed to augment what is provided
by the generic interface. Outside of this low-level percep-
tual interface; however, the architecture is unchanged from
what is presented in Section 3.3.

Fig. 11 shows the perceptual information provided by
the emulator for Frogger II,7 overlaid with object outlines
and category names provided by the low-level perception
system.

The agent has a simple goal of navigating the frog (bot-
tom center of the figure) to the area below the raft objects
at the top of the screen, without colliding with any of the
moving obstacles or leaving the play area. This is a simpli-
fication of the complete game, which would involve solving
multiple screens, playing through multiple lives, collecting
bonuses, etc. Without considering the rest of the game,
though, this task is still very difficult. The frog has five
actions: move in four directions, or do nothing. There is
a slow current in the water pulling the frog to the right,
so inaction still results in motion.

The position of the frog is discrete in the vertical direc-
tion (there are 9 rows to move through), but many horizon-
tal positions are possible due to the current. Most of the
obstacles move continuously at uniform speed to the right
or the left, although some move vertically or diagonally.
Obstacles are constantly appearing and disappearing at
the edges of the screen. This is an episodic task, and the ini-
tial state of the game differs across episodes (the obstacles
start in different positions), so memorization of an action
sequence will not work. Rather, a general policy must be
learned.

A reward function similar to that of the game score has
been implemented: there is a reward of 1000 for winning
(reaching the top row), and �1000 for losing (colliding with
an obstacle or leaving the area). There is a reward of 10 for
moving up, and �10 for moving down. At every time step,
there is also a reward of �1 to encourage short solutions.

A ReLAI agent has been created for this task. The agent
chooses an action once every 15 game frames (four per sec-
ond). The experiment here examines the quality of learning
that the agent achieves (and not reaction speed), so the
emulator is paused while the agent processes the percep-
tions and chooses an action.

To apply ReLAI in this task, imagery must be capable
of simulating future states of the game. Motion models in

Fig. 11. Perceptual information in the game Frogger II, including object labels.

8 In addition to abstract perceptions, in this task the ReLAI agent also
encodes the proposed action as part of the abstract state. This is because
perceptions about the next state alone cannot capture the immediate
reward for the transition, since moving up or down a row effects reward
(not just being in a particular row), and ReLAI requires that the abstract
state representation captures the reward leading to that state (Eq. (1) in
the Appendix). However, the last action taken is not useful as part of the
direct state abstraction agent’s state, so it is not included there.
9 The requirement that the abstraction captures immediate reward (Eq.
(1)) is met, and the requirement that predictions are accurate comes close
to being met, only missing a few cases where moving objects do not follow
a constant velocity or disappear unexpectedly. The requirement on state
independence (Eq. (2)) is not met: A(st+1) is not strictly independent of

st�1, given A(st).

16 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
SVS support this capability. All of the objects in the game
can be assumed to be moving linearly at a constant veloc-
ity, and a simple motion model has been implemented to
track and project forward such movement. For the move-
ment of the frog itself, the agent has been provided with
background knowledge in the motion model about how
the frog’s controls change its position (for example, that
an “up” action moves it 12 units in the +y direction).

The abstract perceptions used in this task encode the fol-
lowing information in working memory:

– a predicate encoding the vertical position of the frog:
one of the 9 rows that define the legal play area,

– a predicate encoding the horizontal position of the frog:
a left, middle or right region,

– a predicate encoding whether or not the frog currently
intersects an obstacle,

– a predicate encoding whether or not an obstacle (or
screen edge) is adjacent to the frog in each of the four
directions.

As implemented, horizontal and vertical discretizations
are achieved by augmenting the perceptual information in
Fig. 11 with objects outlining the relevant regions, and
using predicate extraction to determine what regions the
frog intersects. Collisions are simply detected through
predicate extraction. Directional obstacle adjacency is
determined by first using predicate extraction to deter-
mine which obstacles are located in the appropriate direc-
tion of the frog, and then extracting the distance from the
frog to any matching obstacles. If the distance is less than
a threshold (10 pixels, about the same as the inter-row
distance), the obstacle is deemed adjacent in that
direction.

As a state representation, this abstraction loses poten-
tially useful information, and is not Markovian (since the
agent could make better decisions by remembering where
it has seen obstacles in the past). However, it is compact,
and just as important, it can be composed from the simple
perceptual operations available in the architecture.

To allow for a simple comparison, both a ReLAI agent
and a direct state abstraction agent have been created using
the same perceptual abstraction. Following the algorithm
in Fig. 9, at each step, the ReLAI agent uses imagery to
project forward the motion of the obstacles near the frog,
along with the effect of each action on the frog. The
abstract state information above is then inferred for each
imagined state.8 The direct abstraction agent simply infers
the abstract state of the spatial scene (which is unmodified
by imagery), and uses that as the state signal input to the
Q-learning algorithm.

For ReLAI, not all of the formal requirements for con-
vergence to the optimal policy (outlined in the Appendix)
are met.9 However, the robustness of ReLAI to abstrac-
tions where future abstract states depend on details missing
from the current abstract state (but present in the concrete
state) leads to a great advantage over direct abstraction
here. The ReLAI agent can base its action choice on a

Fig. 12. Performance of ReLAI vs. direct state abstraction in Frogger II.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 17
precise prediction of whether or not it will collide with an
obstacle in the new state, where the other agent can only
base its decisions on the current abstract state, which
includes information (obstacle adjacency) that can only
roughly predict future collisions between moving objects.
The concrete state contains enough information to predict
collisions in the next state almost exactly, but this informa-
tion is only useful to the ReLAI agent.

Experiments were run using the actual (emulated) game.
Q-learning with epsilon-greedy exploration was used
(parameters were a = 0.3, e = 0.1, c = 0.9). Thirty trials
of 6000 episodes each were run in each condition. Fig. 12
shows the results. Here, groups of 400 adjacent episodes
were binned together; the results are averaged across all
episodes in the bin and across all trials (each point repre-
sents 12,000 games).

As a baseline, the graph shows the estimated perfor-
mance of a random agent. Random performance is gener-
alized from data collected in 1000 task instances. Both of
the learning agents initially perform randomly, however,
since they learn quickly within the first bin of 400 episodes,
the graph does not reflect this.

The graphed results do not show the ability of the agents
to play the game well: epsilon-greedy exploration means
that the agent acted randomly 10% of the time (often with
fatal results), and some of the randomly-chosen start states
were unwinnable. These factors contributed to high vari-
ability in the data, necessitating the averaging of many
games per data point.

To examine the final policy, 700 games were run in each
condition using the final policies, but without exploration
and with unwinnable games filtered out. Of these, the direct
abstraction agent received an average reward of �66 and
won 45% of the games, while the ReLAI agent received
an average reward of 439 and won 70% of the games.

The ReLAI agent clearly outperforms the direct abstrac-
tion agent: it learns a better policy, and learns it faster. In
addition, both agents perform much better than random.
Using the same system, experiments have been conducted
in two further games (Space Invaders and Fast Eddie) with
similar results. For brevity, these experiments will not be
reported here, but details can be found elsewhere (Winter-
mute, 2010a).

The ReLAI agent here further demonstrates the first two
benefits listed in Section 3.2, which relate to the perceptual
abstraction problem. When the ReLAI agent does a one-
step lookahead to infer that moving up will cause it to col-
lide with a fish, it has inferred symbolic information about
the state that takes into account the precise movement of
both the frog and the fish. In that way, simulative imagery
is being used to capture movement in terms of abstract
symbolic information. Furthermore, the properties
involved are based on simulations of the particular
task—they are task-specific properties, even though the
task-independent SVS predicate extraction system is used
to infer them.
5. Imagery and irreducibility: application to motion planning

As discussed in Section 2.1, motion planning for a car-
like vehicle is a challenging problem. Recall that motion
planning in this case is the problem of determining a con-
trol sequence such that a robot can drive through its envi-
ronment to a goal location (Fig. 4).

The difficulty here is due to the need for precise control,
where the output of the agent must be sensitive to minute
variations in its input. This aspect makes the problem fun-
damentally irreducible, as it cannot be adequately solved
by choosing actions based solely on abstract states. More-
over, the most straightforward approach to handling irre-
ducibility, the use of encapsulated controllers, is
insufficient, as nonholonomic constraints make that form
of abstraction very difficult.

In this section, an agent instantiated in Soar/SVS to
address this task is introduced. This agent implements a
motion planning algorithm where imagery is used to simu-
late the effects of a low-level controller in the current situ-
ation. The purpose here is not to demonstrate a novel
approach to motion planning (the core algorithm is taken
from the literature), but rather to examine how irreducible
problems can be addressed in a cognitive architecture. The
agent provides a demonstration of the third benefit in Sec-
tion 3.2, which allows imagery to mitigate the irreducibility
problem.

5.1. The RRT algorithm

In response to the difficulty of abstraction in motion
planning, a family of motion planning algorithms has been
developed based on the principle of sampling possible tra-
jectories through simulation. RRT (Rapidly-exploring
Random Trees, LaValle & Kuffner, 2001) is a sampling-
based motion planning algorithm that works by construct-
ing a tree of reachable states of the robot, rooted at the ini-
tial state, and adding nodes until that tree reaches the goal.
Nodes are generated by extending the tree in random direc-
tions, in such a way that it will eventually reach the goal,

18 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
given enough time. Each path from the root of the tree to a
leaf represents a path that the robot could take, constantly
obeying all constraints on its motion.

The tree is constructed by the algorithm in Fig. 13, and
Fig. 14 shows an example of one iteration of the algorithm
applied to a car planning problem.

In the example, the car’s current configuration is node
X0, while previous iterations have uncovered other reach-
able configurations X1 � X4. These configurations are
linked in a tree, where each configuration is reachable from
its parent via a known control. In this case, a “control” at
the level of RRT is a selection of a low-level controller to
use, for example, a controller that greedily steers the car
toward a particular goal. The path followed by this con-
troller between each connected configuration in the tree is
shown in the figure. To add to this tree, a target configura-
tion Xr is randomly generated, as represented in the left
half of the figure. The algorithm then attempts to extend
its tree of reachable configurations to that configuration.

To extend the tree, the closest known configuration to
Xr must be determined. To do this, some metric must be
used that can approximate the “distance” between configu-
rations—that is, the metric must approximate the distance
of the shortest path the car could follow to move from one
configuration to another. In the case of car path planning,
a simple metric is the Euclidian distance between the posi-
tion of the car in the two states, with the condition that the
distance is infinite if the target state is not in front of the
source. On the left of Fig. 14, configuration X4 is the closest
to Xr given Euclidean distance alone, but since Xr is not in
front of X4, actually driving from X4 to Xr would be diffi-
cult, since the car cannot turn in place to face Xr. X2 is then
the closest configuration to Xr once the front constraint is
taken into account, and Xc in the algorithm takes on the
value of X2.

The next step in the algorithm is to extend the chosen
node towards Xr, while detecting collisions along the path.
This is shown on the right of Fig. 14. A typical approach is
to numerically integrate differential equations that describe
the vehicle dynamics to simulate motion, resulting in a
sequence of states parameterized by time. This simulation
must occur within a system capable of detecting collisions.
In the right frame of Fig. 14, the controller is invoked
starting at the configuration of X2, and the car’s motion
Fig. 13. The RRT algorithm.
is simulated driving towards Xr for some amount of time.
Since no collision occurred, the new node Xn is added to
the tree of reachable configurations. The algorithm then
continues until the tree reaches the goal.

5.2. RRT in Soar/SVS

A version of the RRT algorithm has been instantiated in
a Soar/SVS agent. The problem considered is that of plan-
ning to drive a car from an initial state to a goal region,
while avoiding obstacles in a known environment (the
agent only determines a plan, it is not connected to an
actual robot).

A complete car configuration in the version of the prob-
lem considered here consists of a position where the car is
located, the steering angle, the steering velocity (since the
steering angle cannot be instantaneously changed), and
the angle of the car body. The car motion model takes as
input the identity of a car in the scene, and the location
of a goal. By accessing the spatial scene, the model can
identify the position and body angle of the car, and the
other configuration aspects are initially assumed to be 0.

Inside the model, a system of differential equations
describe the configuration of the car as a function of the
time and goal location. When integrated, these equations
can yield a sequence of configurations parameterized by
time, allowing for simulation. The equations used here
were determined by combining a model of human move-
ment and obstacle avoidance (Fajen & Warren, 2003) with
a simple car model (LaValle, 2006). No human modeling
claims are being made with this choice of controller, rather,
the particular controller was chosen as a simple demonstra-
tion of how techniques and results based on a dynamical
systems approach to cognitive science can be tightly inte-
grated with a symbolic AI framework. In addition, it per-
forms well.10

The human model controls the intended steering angle
of the car, and this steering angle determines the next posi-
tion of the car. A constant speed is assumed. The model
locally avoids obstacles: each obstacle affects the steering
of the car, with nearer obstacles located towards the front
of the car having the most influence. This reactive obstacle
avoidance alone can solve simple problems, but more com-
plicated problems cannot be solved this way, as a solution
needs to be composed out of several distinct movement
subgoals.

The controller simulates motion towards a goal, while
maintaining the nonholonomic constraints of the vehicle.
Along with geometric models of the car and world in the
LTM of SVS, it is the low-level knowledge that was added
to the existing SVS system to implement this planner.

Symbolic Soar rules were written to perform the algo-
rithm in Fig. 13. As a metric for node distance, Euclidean
10 In other work, the local obstacle-avoiding controller here was directly
compared (with favorable results) to a similar controller that simply steers
towards the goal (Wintermute, 2009b).

Fig. 14. An example of RRT applied to car motion planning.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 19
distance was used, with the condition that the distance is
infinite where the goal is not in front of the node. SVS
predicate extraction mechanisms were used to extract dis-
tances, and to query for an in-front relationship. The
motion model described above enables simulation, and
SVS supports querying for intersections between objects
in the scene, enabling collision detection. The only new
mechanism needed in SVS to support this algorithm was
a predicate projection method to generate random goal
points in the scene, which was a simple addition.

Examples of the SVS scene during RRT planning are
shown in Fig. 15. Soar stores, as a symbolic structure in
working memory, the RRT tree. The nodes in that tree
are perceptual pointers into SVS—they point to specific
objects in the scene, which can be seen in the figure. Soar
proceeds by adding a new random point object to the
scene, and querying for the distance from each node to that
object. These distances are then compared to find the clos-
est. A motion model-based simulation is instantiated with
that node as the initial condition (creating a new car object
in the scene), and this simulation is stepped until a certain
time is reached, the goal is reached, or Soar detects a colli-
sion with an obstacle.11 In all but the last case, the termina-
tion of the simulation results in a new node being added to
the tree. In addition to moving towards random points,
with a certain probability the agent instead tries to extend
the tree directly towards the overall goal, biasing the
growth of the tree in that direction.

The agent has been tested on the problem in Fig. 15 and
other similar scenarios. For example, in the problem in the
figure, 100 trials were run, and a solution was found after
an average of 12 tree expansions. The purpose of this agent
is to serve as an existence proof that the algorithm can be
implemented in Soar/SVS, and as a demonstration of the
architecture applied to this task—the algorithm itself has
been evaluated elsewhere (LaValle & Kuffner, 2001).
11 In the implemented system, steering angle and velocity are assumed to
reset to zero between nodes, since SVS only retains shape and position
information in the scene. Minor enhancements to the architecture allowing
motion model instantiations to be preserved would be needed to allow the
agent to find paths that are truly continuous in these quantities.
5.3. Perceptual abstraction and irreducibility in motion

planning

It is interesting to note that the RRT algorithm was
developed independent of any broad architectural theories,
but instead to address a practical need. That indicates that
the approach is fundamentally valuable, its utility is not,
for example, an artifact of the symbolic assumption in Sec-
tion 2, nor of any shortcomings of the Soar architecture.
While the algorithm was not originally described in terms
of multiple representations and imagery, it easily maps
onto those concepts. Any system implementing RRT in
problems such as this requires both the means to simulate
action in terms of low-level information, and to make
abstract judgments about the outcome of that simulation,
such as “collided with an obstacle” or “reached the goal”.
In addition, information about the state of the search needs
to be maintained at multiple levels of abstraction: the agent
needs to maintain the exact quantitative values for each
configuration in its tree, but also the abstract knowledge
about the topology of the tree itself (which configurations
are reachable from which others).

This agent serves as a demonstration of the particular
benefits outlined in Section 3.2. Most prominently, it dem-
onstrates the benefits related to irreducibility. If the prob-
lem were to be addressed by a purely-symbolic system,
where raw perceptions were abstracted into states and
mapped to raw actions, even for simple robots, the maxi-
mally abstract state space would be extremely large. How-
ever, a low-level controller is used in this approach,
allowing the action space of the symbolic part of the agent
to be simplified, and working to mitigate irreducibility.

The use of low-level control alone is insufficient to miti-
gate irreducibility in this situation, though. The task cannot
be reduced to abstract symbolic reasoning about controllers
(the encapsulated controller approach), as may be possible
in simpler motion planning problems. For the nonholonom-
ic motion here, there is no simple geometrical property of the
obstacles that could be calculated to determine a small set of
reachable locations and paths a controller could follow that
could be searched over, as may be possible when planning
the motion of simpler robots. It is possible to build a conser-
vative abstract map of the world, if there are regions that are
clearly traversable, but solution quality would be lost.

Fig. 15. States of SVS Spatial Scene during RRT planning. The problem is to drive a car from lower-left to upper-right. Left: RRT tree, just before a
solution is found. Right: Sequence of car positions that solve the problem.

20 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
Instead, simulative imagery is used in this agent to allow
reasoning about the controller in terms of symbolic infor-
mation, but without requiring a complete symbolic charac-
terization of the controller (the third benefit in Section 3.2).
This allows for a controller that entails a complex interac-
tion with the world—steering that continuously varies with
the exact positions of the obstacles and goal—to be rea-
soned about in terms of simple abstract information:
whether or not the car collides with an obstacle. The system
can also be viewed in terms of the first two perceptual
abstraction related benefits. The use of simulative imagery
allows motion to be captured symbolically and allows task-
specific abstract properties to be captured (for example, “if
the controller is used to seek towards the goal from this
state, it will succeed”).

6. Related work

This paper touches on many areas of research in artificial
intelligence, cognitive science, and robotics. In this section a
few of the most relevant connections that have not been
examined deeply elsewhere in the paper will be discussed.

6.1. Other Soar extensions

The most relevant existing system to SVS is SVI (Soar
Visual Imagery; Lathrop, 2008; Lathrop & Laird, 2009).
SVS inherits much of its design and code from SVI, so it
is difficult to say precisely whether or not they are different
systems. The motivation behind the design of SVI is to
“. . .explore the utility of general-purpose, intelligent sys-
tems supporting mechanisms to encode, compose, manipu-
late, and retrieve symbolic and perceptual-based
representations” (Lathrop, 2008). The basic structure of
the system is the same as SVS: it has short-term and
long-term memories for visual and spatial information,
and means by which symbolic processing can use them.
Work in SVI emphasized computational efficiencies of
depictive representations for visual imagery, while work
in SVS has addressed the broader interaction between
abstract and concrete (typically spatial) representations.

Architecturally, the chief differences between the systems
are in the interface between perceptual and working mem-
ory. SVI has a different approach to this interface, which is
elaborated in a technical report (Wintermute, 2009a). SVI’s
equivalents to the predicate extraction, predicate projec-
tion, and memory retrieval systems in SVS are also simpler,
and SVI has no direct equivalent to the motion processing
system in SVS, either for imagery or control.

Another extension to Soar for spatial processing, BiSoar,
has been created by Chandrasekaran and Kurup
(Chandrasekaran, 2006; Chandrasekaran & Kurup, 2007),
augmenting Soar with the functionality of a diagrammatic
reasoning system, DRS (Chandrasekaran, Kurup, Banerjee,
Josephson, & Winkler, 2004). This system is similar to Soar/
SVS in many ways. BiSoar focuses on processing with two-
dimensional diagrams, which are a similar representation to
the spatial scene of SVS, consisting of labeled objects in a
quantitative representation. The integration of spatial and
symbolic states is conceptually different in BiSoar, though,
as it has been proposed to include matching against spatial
objects in rules, a capability which remains unimplemented.
SVS instead commits to matching of qualitative properties
of spatial objects, rather than the objects themselves. BiSoar
also has no direct equivalent to the motion processing sys-
tem of SVS, and does not include three-dimensional pro-
cessing. BiSoar has been used to model simplification
effects (loss of detail) in the storage and recall of spatial
memories, a capability SVS lacks (as it currently lacks
means to store new long-term perceptual memories) (Kurup
& Chandrasekaran, 2007).

6.2. Robotic systems

Systems developed to support intelligent robotics often
address many of the issues discussed here. For example,
the system developed for MIT’s entry in the DARPA
Urban Challenge (Leonard et al., 2008) was referred to

12 This is demonstrated in the Appendix, it is the difference between the
ReLAI agent and the imagery-augmented direct abstraction agent in
Fig. A2.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 21
earlier as an example of real world use of the RRT motion-
planning algorithm discussed in Section 5. Along with
other robotics systems using similar algorithms, this system
can be considered as implementing part of the theory,
although these aspects are considered more as engineering
details rather than theoretical commitments.

Other systems are more directly posed as general-pur-
pose theories. The Spatial Semantic Hierarchy (Kuipers,
2000) presents a comprehensive theoretical treatment
(and implementation) of robot navigation, with a focus
on mapping. In its most recent incarnation (Beeson et al.,
2010), the system includes four main representational lev-
els, containing both metrical and topological information
about both small-scale space (space within the range of
the agent’s sensors) and large-scale space, all of which are
algorithmically constructed from sensor data. In this sys-
tem, the connections between low-level control and high-
level representation are explored in detail. Control laws
are used which can reliably transition the robot between
distinctive states, and, at higher levels of the hierarchy,
the control laws are abstracted away and the agent only
considers moving between distinctive states: this is the
encapsulated controller approach discussed in Section 2.3.

Conceptually, the metrical representations of space
could be mapped onto SVS’s spatial scene, and topological
spatial information could be incorporated in Soar’s sym-
bolic working memory. More study would be needed to
determine what would be needed for Soar/SVS to imple-
ment the details of the higher levels of SSH, though. The
SSH has a commitment to representation at multiple levels
of abstraction and hierarchical control, corresponding to
aspects of the theory here. However, it does not use imag-
ery, as higher level reasoning processes cannot invoke sim-
ulations in the lower levels.

Other robotic systems have previously implemented
capabilities that can be considered simulative imagery.
MetaToto (Stein, 1994) was a robot designed based on
the subsumption architecture (Brooks, 1986), which used
simulation in order to derive abstract information about
the structure of the world. These simulations were at a very
low level, the actual sensor readings of the robot were sim-
ulated (in contrast to SVS, which simulates in a higher-level
spatial representation). The robot represented the world in
terms of landmarks corresponding to distinctive sensor
readings, and by simulating sensor readings based on a
map of the world, it could build this representation without
actually exploring. However, this system does not appear
to have been extended beyond its navigation task.

6.3. Visual routines

The use of a concrete representation as an intermediate
in visual processing has been examined in work with visual
routines. As stated by Ullman (1984), “The general pro-
posal is that using a fixed set of basic operations, the visual
system can assemble routines that are applied to the visual
representation to extract abstract shape properties and
spatial relations”. The argument behind visual routines is
very similar to the arguments presented here regarding
imagery processing as a means to perceptual abstrac-
tion—that manipulation of a concrete representation can
allow a larger class of abstract features to be inferred.

An important difference between Ullman’s work and
that presented here is that visual routines are not regarded
as imagery processes, but rather as an intermediate stage of
perception: it is the “visual system” that assembles them,
not a deliberate cognitive process. An implication of this
difference is that an imagery agent can associate particular
routines with cognitive-level structures, like proposed
actions, where this is not possible if they are invoked
merely as a step during bottom-up perception. Essentially,
manipulating the concrete representation via imagery
allows the agent some built-in knowledge about the results
of that manipulation—if the agent has chosen to imagine
action A, it knows the resulting abstract information is
an effect of action A, rather than a more generic property
of the current state, information which it can use to its
advantage.12 Furthermore, imagery operations result in a
persistent concrete state which can serve as the basis of fur-
ther manipulations. This ability is used in the Frogger
agent. At each time step, the results of actions are simu-
lated first by imagining the motion of objects not con-
trolled by the agent (e.g., the motion of the fish), and
then sequentially overlaying that state with the imagined
consequences of each particular action (the motion of the
frog in each direction). Without a persistent imagery repre-
sentation, this decomposition would not be possible.

6.4. Reinforcement learning

Previous work in the area of reinforcement learning has
often examined the problem of learning and control in prob-
lems with large state spaces. As was discussed previously,
spatial information is inherently continuous, often entailing
very large state spaces. One approach to this issue is to use
qualitative abstractions of the low-level spatial state and
induce an abstract state space. This approach is used in Sec-
tion 4 and in other work (e.g., Stober & Kuipers, 2008).

However, other approaches to dealing with large spatial
state spaces have been investigated. Often, continuous
information is not abstracted from the states of the agent,
and rather than learning unique action or state values, the
agent instead tries to learn a function over the state ele-
ments which approximates the values. In the resulting sys-
tem, an agent experiencing a completely new state can
leverage knowledge learned in other states that are nearby
in terms of the components of the state.

A common approach to function approximation is to
use sparse coding mechanisms, such as CMAC (Sutton,
1996). CMAC overlays different tilings (discretizations)

13 This argument does not directly support imagery using a depictive
representation, only a concrete representation (one that encodes many
details). Depictive representations are concrete, but more properties are
needed for a representation to be depictive (see Kosslyn et al., 2006).
Typically, depictive representations in a computer are array-based (e.g., a
bitmap), where concrete representations, such as the spatial scene in SVS,
may not be.

22 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
over space, where any particular location will match multi-
ple tiles. Values are learned in terms of the tiles matched at
the time of the update, so reward information learned
about a given concrete state (e.g., one represented in con-
tinuous coordinates) will influence the values of states
around it. Function approximation methods like tile cod-
ing can be integrated with reinforcement learning in Soar
(e.g., Wang & Laird, 2010), and SVS could be used to
obtain qualitative tiling information; for example, “the
agent is to the right of object X and in front of object Y”

describes a location in two tilings.
Other approaches to function approximation use more

complex means of learning a value function, rather than
simply combining values associated with sets of overlap-
ping features. For example, a neural network can be used
to learn a complicated relationship between state variables
and values, as has been used in a successful agent for the
game backgammon, TD-Gammon (Tesauro, 1995).

There is a concern here, since a core motivation of the
architectural design presented here has to do with the per-
ceptual abstraction problem. If function approximation
schemes successfully deal with large state spaces without
the need for explicit abstraction, it may be that good func-
tion approximation supersedes the benefits of imagery for
dealing with large state spaces.

This does not seem to be the case, however. For example,
the TD-Gammon agent cited above uses processes that can
be viewed as simulative imagery in conjunction with func-
tion approximation. In that agent, when considering each
move, the agent first determines the consequences of that
move in terms of a low-level game board representation.
Then, for the resulting state, abstract features of the game
board are calculated. These features (along with the board
state) are the inputs of the neural network that approximates
the value of the state. This behavior fits the description of
simulative imagery, but also incorporates function approxi-
mation. Presumably both of these aspects are important for
the performance of TD-Gammon, and it can be concluded
that in this case simulative imagery and function approxima-
tion are at least partially complementary.

6.5. Imagery in psychology

A long-standing debate in psychology has been over the
nature of mental imagery. To some, this is a debate over
whether mental imagery is supported by propositional
(symbolic) or depictive (picture-like) representations
(Kosslyn et al., 2006). Others have posed the question as
whether or not experimental data can disprove that “the
process of imagistic reasoning involves the same mecha-
nisms and the same forms of representation as are involved
in general reasoning, though with different content or sub-
ject matter” (Pylyshyn, 2003), with the implication that
those mechanisms are likely propositional.

This has been a difficult issue to resolve, since, in princi-
ple, both formats are able to represent the same informa-
tion, and equivalent propositional and depictive accounts
can be formulated to account for any behavioral data.
However, other constraints can be taken into account, such
as brain data, theoretical parsimony, or efficiency, to aid in
identifying the underlying mechanisms (Anderson, 1978).

An abundance of brain data has been collected, largely
supporting the hypothesis that imagery is a distinct process
involving depictive representations (e.g., Kosslyn et al.,
2006). Computational experiments have also examined effi-
ciency characteristics of reasoning with different represen-
tational formats (e.g., Funt, 1980; Glasgow & Papadias,
1992; Huffman & Laird, 1992; Kurup & Chandrasekaran,
2006; Larkin & Simon, 1987; Lathrop, 2008; Shimojima,
1996; Tabachneck-Schijf, Leonardo, & Simon, 1997).
While not all of these works directly addressed the imagery
debate, all achieved results indicating that different repre-
sentational formats afford different efficiency characteris-
tics, supporting the hypothesis of depictive imagery.

The examination of the perceptual abstraction and irre-
ducibility problems can further inform the imagery debate.
As stated above, in principle, both abstract propositional
and concrete depictive representations are able encode
the same information. However, if the poverty conjecture
is true, the proposal that an agent could behave intelli-
gently using solely an abstract propositional representation
becomes difficult to support.

If there exists no task-independent qualitative (abstract
propositional) representation of space, an intelligent agent
will need to encode different task-specific properties as new
spatial tasks are encountered. This is what makes percep-
tual abstraction difficult. However, as demonstrated above,
imagery within a concrete representation can mitigate this
aspect of the perceptual abstraction problem. This is then
an argument supporting the hypothesis that imagery does
not use an abstract propositional format, since the func-
tional benefits of using imagery in this case derive from
the fact that it is not abstract.13 As stated by Forbus
(1993), in reference to work in qualitative spatial reasoning,

“If true, what does [the poverty conjecture] tell us about
mental imagery? It suggests that there exists a set of
commonplace tasks, such as understanding mechanical
systems and reasoning about motion through space, that
require representations that are richer than sparse prop-
ositional descriptions, whether performed by person or
machine. Thus the question of whether or not imagery
can be accounted for by sparse propositional representa-
tions comes down to whether or not the poverty conjec-
ture is true.”

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 23
The irreducibility problem, along with its proposed
solution in the form of low-level controllers and simula-
tive imagery, similarly indicates a need for imagery in a
concrete representation. In this case, in order to issue
actions that are contingent on precise details of the envi-
ronment, a concrete representation which captures all of
those details is functionally useful. Strictly speaking, a
concrete representation isn’t necessary for this capability,
as control processes can be reactive to details of
perception without constructing a coherent representation
(Brooks, 1991). However, as has been argued above, intel-
ligent reasoning about control processes may not always
be possible without the ability to simulate the results of
those control processes in the particular situation within
a concrete representation. Again, this indicates a func-
tional benefit for imagery based in a concrete (and not
abstract propositional) representation.

In both of these cases, intelligent reasoning in terms of
abstract propositions is made possible only through the
use of imagery in a concrete representation. The chief rea-
son for the use of imagery is not that the imagery represen-
tation allows for more efficiency, but rather that the
problem cannot be represented well in terms of abstract
information alone. This is either because a task-indepen-
dent architecture without imagery would not be able to
make the relevant abstract distinctions, or because the
problem is fundamentally irreducible to a form where it
can be reasoned about in terms of abstract propositional
information alone.

Essentially, creating a detailed, task-independent theory
capable of addressing complex problems leads to func-
tional arguments that provide support for the hypothesis
that imagery is not supported by an abstract propositional
representation. While the analysis here supports the use of
a concrete representation in general, rather than specifically
a concrete depictive representation, given the evidence
from brain imaging studies, depictive representation is a
good hypothesis for how concrete representation might
be manifested in the brain.

7. Conclusion

This work examined issues related to abstraction in cog-
nitive architecture. Starting from an assumption that
abstract symbolic information is used to choose actions,
two meta-problems were defined that an architecture must
address: the problem of creating appropriate abstract sym-
bolic structures which can serve as the basis for intelligent
action choices (perceptual abstraction), and the problem of
dealing with tasks where abstract, purely-symbolic repre-
sentation is impossible (irreducibility).

To mitigate these problems, a comprehensive theory was
proposed, and the Soar/SVS architecture, which follows
the theory, was introduced. Several agents running in this
architecture were examined, demonstrating the benefits of
the underlying theory. These benefits, and the evidence
supporting them, will be summarized here:
The theory allows movement and nonlocal interaction to

be captured in terms of abstract symbolic information, miti-

gating the perceptual abstraction problem.
This benefit is demonstrated in all of the agents. In the

pedestal blocks world, nonlocal interactions (block colli-
sions in future states) are captured implicitly in the predic-
tions of the ReLAI agent for the same task. In the Frogger
agent, movement of multiple objects is captured by the
ReLAI agents, again, implicitly via the predictions of
future states. In the RRT planning agent, the movement
of the car under the influence of the low-level controller
is captured symbolically, as the tree of configurations only
includes those that are reachable without collision, a prop-
erty deriving from the details of that movement.

This benefit derives from the ability for the concrete rep-
resentation in the architecture to be locally manipulated by
imagery. These agents provide good examples of properties
that would be very difficult to capture without this aspect.
For instance, the reachability of two configurations in the
RRT planning agent is determined here through a long
concrete simulation process. If there was no coherent con-
crete representation that could be manipulated, it is diffi-
cult to see how the agent could infer this long-term
reachability information.

The theory allows task-specific abstract properties to be

encoded by a fixed, task-independent high-level perception

system, mitigating the perceptual abstraction problem.
This benefit is demonstrated by all of the agents, both

individually and collectively. The SVS architecture includes
a fixed, task-independent high-level perception system,
which each of the agents use to capture task-specific
abstract properties. In each case, using task knowledge,
the imagery system is dynamically combined with the
high-level perception system to generate properties that
take into account the spatial details of the actions available
in the particular task.

In addition, the theoretical examination of ReLAI pro-
vides further evidence that this capability truly works to
mitigate the general perceptual abstraction problem. A
high-level perception system that cannot induce an abstrac-
tion function to meet the formal requirements of direct
state abstraction might be able to induce such a function
that works with ReLAI. For example, SVS’s predicate
extraction system cannot induce an abstraction of pedestal
blocks world that allows optimal performance with direct
state abstraction, but can induce an abstraction that works
with ReLAI. Imagery capability has thus increased the cov-
erage, in terms of number of tasks, of a high-level percep-
tion system, achieving progress towards general perceptual
abstraction.

A possible concern here is that the decrease in task-
dependence in the perception system is accompanied by
an increase in task-dependence in the imagery system.
While the theory allows task-specific imagery components,
such as the car controller in the motion planning agent, the
need for these components is still greatly reduced from
what would be needed in an imagery-less system. This is

Fig. A1. Results of learning in pedestal blocks world showing advantage
of imagery-augmented state abstraction.

24 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
due to the compositionality of imagery: the system is able
to combine atomic concrete operations in novel ways,
allowing a small set of primitives to cover many tasks
(Wintermute & Laird, 2007). Furthermore, while motion
prediction requires precise task-specific models, these mod-
els can often be parameterized versions of a generic models,
where the parameters are learned in a process isolated in
the motion system. This is the case in the video game
agents, where a simple linear motion model is able to be
track and predict motion for many objects moving at differ-
ent speeds in different directions.

The theory allows symbolic reasoning over continuous

processes, eliminating the need for symbolic characterization

of controller performance, mitigating the irreducibility
problem.

This benefit was demonstrated by the RRT agent. As is
discussed in Section 5.3, the motion-planning task here is
fundamentally irreducible. Low-level controllers simplify
the action space of the agent, and simulative imagery of
control allows the agent to use a controller that entails a
complex interaction with the environment, as it locally
steers toward a goal while being biased away from obsta-
cles. As a result, the agent is able to act intelligently in
an irreducible task.

While the implemented agents have provided demon-
strations of the theoretical claims, the main contribution
of this work has been the theory itself and the concepts
behind it. Compared to prior work, the theory here leads
to a difference in the broad way perceptual-level represen-
tation and imagery are understood in the context of a cog-
nitive system. Rather than viewing imagery primarily as a
more efficient means for addressing particular tasks or as
a means to model human imagination, here, it is an integral
part of the basic process of capturing the right details of the
state of the outside world, and of using those details to con-
trol actions. The constraint of using a common architecture
for all tasks, combined with the intrinsic difficulty of repre-
senting some tasks, leads to a functional niche that is filled
by imagery.

Appendix A. Theoretical discussion of Reinforcement

Learning with Abstraction and Imagery (ReLAI)

In Section 4, the ReLAI algorithm is introduced in the
context of the examination of perceptual abstraction in
complex tasks. Readers familiar with work in the area of
reinforcement learning may be interested in a more thor-
ough examination of the relation of this work to other
work in that field, and in the formal justification behind
the claim that the algorithm relaxes constraints on percep-
tual abstraction. That detail is provided in this Appendix.

Before addressing the details of ReLAI, it is informative
to first describe a simpler imagery-based RL algorithm,
where imagery is simply used to infer predicates to include
in the current abstract state. In the pedestal blocks world,
this abstract state can consist of on predicates describing
the current scene, along with predicates encoding whether
or not each action will result in a collision (e.g., colli-

sion_if_moved(B,pedestal2)). This agent will be called an
imagery-augmented state abstraction agent.

This abstract state representation is used in conjunction
with a table-based Q-learning algorithm to learn a policy.
For each state-action pair that a table-based Q-learning
agent encounters, it learns the expected discounted future
reward for taking that action and following the optimal
policy—this is called the Q value of the action.

To verify that the overall system works as described,
experiments were run to compare the performance of an
agent using imagery-augmented state abstraction versus
an agent that can only encode the on predicates describing
the current scene (non-imagery state abstraction) and an
agent that takes random actions, approximating one that
learns in terms of the raw (unabstracted) pixel states where
repeated states would be extremely rare. Fig. A1 shows the
results of this experiment. 25 trials were run of 10,000 epi-
sodes each. The sizes of the blocks and positions of the ped-
estals were randomized for each episode, each was a
spatially-unique instance (both the imagery and non-imag-
ery conditions used the same instances). Epsilon-greedy
exploration was used, with parameters of a = 0.3, e = 0.1,
and c = 0.9. Total reward per episode was collected, bins
of 500 adjacent episodes were grouped together, and
reward was averaged across all trials and all episodes in
the bin and across all trials.

As can be seen in the figure, unsurprisingly, learning
using task-specific abstract information derived from imag-
ery results in better performance, both in terms of learning
speed and the quality of the final policy, when compared to
similar states abstracted without using imagery augmenta-
tion. Both of these approaches outperform learning directly
in terms of unrepeated concrete (pixel-based) states. Since
imagery allows the agent to encode useful task-specific
abstract properties that capture non-local interaction, these
data provide evidence that the relevant aspects of the archi-
tecture are working to mitigate the perceptual abstraction
problem. In this case, imagery is simply used as a means
for RL state aggregation: versus the original concrete-state
MDP, the MDP with imagery-augmented states is much

Fig. A2. Results of learning in pedestal blocks world showing advantage
of ReLAI.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 25
more compact but still captures the important details of the
problem.

However, there is room for improvement with this algo-
rithm. The agent uses imagery to make predictions about
the consequences of its actions, but those predictions are
treated as properties of the current state, and not as prop-
erties of the actions the agent is choosing between. For
example, if the agent infers collision_if_moved(B,pedestal2),
it does not differentiate that this information is relevant to
the action of moving B to pedestal2, and not as relevant for
the other actions under consideration. The action modeling
knowledge implicit in these predictions is not leveraged.

While simulative imagery is performing action model-
ing, standard techniques for integrating action modeling
and RL (model-based RL techniques) are not appropriate
here. This is because the result of a prediction, from the
perspective of the decision system, is non-deterministic.
There is not enough information in the abstract state to
reliably predict what the outcome of an action will be, even
though that information may be present in the concrete
state of the imagery system. This is a problem for model-
based RL techniques applied to the abstract state space,
which typically rely dynamic programming: the assumption
that predictions made for a given state remain applicable
when that state is later encountered is false.

Based on these insights, ReLAI was developed. In a
ReLAI agent, the value of an action is determined solely
by the next abstract state predicted to result from that
action. Technically speaking, ReLAI involves an aggrega-
tion of state-action pairs, rather than an aggregation of
states. That is, individual entries in the table of values
learned by Q-learning are aggregated, rather than states
of the MDP. The aggregate that a state-action pair belongs
to is determined by the predicted next abstract state that
will result from it. The aggregate of a state-action pair is
called a category, and indicated by C(s,a). The abstract
state corresponding to concrete state s is indicated by
A(s). When ReLAI predicts correctly, then, C(s,a) = A(s0).

To prevent confusion, the standard state abstraction
approach used above, where Q-learning occurs as normal
but within an abstract state space, will be called direct state
abstraction. Direct state abstraction agents may or may not
use imagery augmentation to construct the state. State
abstraction is used within ReLAI agents, but interacts dif-
ferently with the learning algorithm.

To see the difference between imagery-augmented direct
state abstraction and ReLAI, consider the following cir-
cumstance: block A is on pedestal1, and blocks B and C

are on the table, so B will be moved next. The agent pre-
dicts that moving B to pedestal2, pedestal3, or pedestal6

will not cause a collision, but moving to pedestal4 or ped-

estal5 will. The best action here is to move B to pedestal2.
To find the learned value of that action, the imagery-aug-
mented direct state abstraction agent in the previous sec-
tion would add the imagery predictions to its current
state, and look up an entry in its table using the complete
state-action pair:
state=[on(A,pedestal1) on(B,table) on(C,table)
no_collision_if_moved(B,pedestal2)
no_collision_if_moved(B,pedestal3)
collision_if_moved(B,pedestal4)
collision_if_moved(B,pedestal5)
no_collision_if_moved(B,pedestal6)]
action=[move(B,pedestal2)]
A ReLAI agent, on the other hand, would look up a
learned value based only on the predicted next abstract
state for the action, or:
[on(A,pedestal1) on(B,pedestal2) on(C,table)
collision(false)]
As is apparent, the ReLAI agent takes into account less
information when looking up (and learning) Q values: it
has a more compact learning problem. If the right infor-
mation is captured by the predictions ReLAI uses (as
will be discussed), the algorithm can learn the optimal
policy faster than the direct state abstraction agent.
The ReLAI algorithm as instantiated in Soar/SVS is
shown in Fig. 9.

Fig. A2 demonstrates the performance of a ReLAI
agent in pedestal blocks world compared to the agents
introduced in the previous section. Experimental details
are the same as in the previous section. These data dem-
onstrate that ReLAI can learn much faster than using the
same prediction information as part of a state representa-
tion and using direct state abstraction. This is because
ReLAI is able to leverage the action modeling knowledge
implicit in its imagery operations. Since the agent knows
that prediction information is information about a partic-
ular action in the current state, rather than just a generic
property of the current state, the size of the learning
problem can be greatly reduced, resulting in faster
learning.

26 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
A.1. Correctness in ReLAI

While the previous example provides empirical evidence
that ReLAI allows an agent to learn good policies, theoret-
ical analysis can reveal general principles about the tech-
nique that can move the evaluation of the technique (and
the architecture that supports it) beyond what is possible
with demonstrations alone.

To better understand ReLAI, an analysis has been car-
ried out to show under what conditions Q-learning using
ReLAI will be guaranteed to converge to the optimal pol-
icy (Wintermute, 2010b). The result of this analysis is a set
of three conditions that result in guaranteed convergence.

First, predictions must be correct: in all cases C(st,a)
must be what A(st+1) would equal if action a were to be
taken. This means that the agent correctly predicts all
actions it takes, and C(st,at) = A(st+1) at all times, but also
that the agent correctly predicts actions it does not actually
take. Note that this sort of predictability does not mean
that transitions must be deterministic: the predicted con-
crete state may be wrong, as long as it falls within the same
abstract state as the actual next state. Transitions within
either or both of the concrete and abstract state spaces
can be probabilistic.

Second, the reward received for a transition must always
be independent of (s,a), given the next abstract state:

Prfrtþ1 ¼ rjst; at;Aðstþ1Þg ¼ Prfrtþ1 ¼ rjAðstþ1Þg ð1Þ
Finally, the next abstract state must be independent of the
previous (s,a) pair, given the current abstract state and
action14:

PrfAðstþ1Þ ¼ xjst�1; at�1;AðstÞ; atg
¼ PrfAðstþ1Þ ¼ xjAðstÞ; atg ð2Þ

An important implication of these conditions is that Re-
LAI can use abstraction functions where A(st+1) is not
independent of st given A(st), but is independent of st�1.
This stands in contrast to direct state abstraction tech-
niques, where A(st+1) must typically be independent of st

given A(st) for guaranteed convergence (e.g., Givan et al.,
2003; Ravindran and Barto, 2002). The ability to use state
abstractions where A(s0) is not independent of s given A(s)
allows for less constraint on the high-level perception sys-
tem used to induce the abstraction function.

Even with this reduced constraint, these assumptions can
be difficult to satisfy. In the example pedestal blocks world
problem as presented above, Eq. (1) is met, since the reward
for a transition is completely determined by the resulting
abstract state. However, Eq. (2) is not met: since the prob-
lem is deterministic, all information necessary to exactly
predict future states is implicit in the initial state, but is
14 There is a minor aspect necessary for the proof not captured here: Eq.
(2) must hold under all possible policies, not just the policy actually
followed. There might be some abstraction function that, when used with
a particular policy, meets Eq. (2) for the actions taken, but would not have
for other actions. That possibility will not be considered here.
not captured by the abstraction. Future abstract states are
then never independent of any previous concrete state. A
simple manipulation of the domain, however, reveals that
ReLAI will still work in this task, as the data indicate.

Consider an alternate version of the domain, where after
each block is placed, the agent is transported to a random
instance of the task sharing the same abstract state (on and
collision predicates). That is, after each action, the spatial
details of the problems are randomly changed without
changing the abstract state. In this alternate domain, the
reward for a transition is still determined by the resulting
abstract state, so Eq. (1) still holds. In contrast to the ori-
ginal domain, though, the next abstract state resulting from
a transition here is independent of the previous concrete
state, given the current abstract state, so Eq. (2) is met.

In this alternate version of the task, the optimal policy is
the same: greedily place the blocks as far to the left as pos-
sible without collisions. In addition, viewed in terms of the
inputs to the learning algorithm (rewards and abstract
states), the experience of the agent in the actual domain
is virtually identical to what it would experience in the
alternate domain.15 Since the agent would learn the opti-
mal policy in the alternate domain, the optimal policies
are the same, and the agent’s experiences are consistent
with the alternate domain, the optimal policy can be
learned in the actual domain.

A.2. ReLAI and perceptual abstraction

The theoretical background here can add to the under-
standing of the imagery benefit of task-specific abstract
property generation.

As demonstrated by both the imagery-augmented direct
state abstraction and ReLAI agents, using imagery in ped-
estal blocks world can allow the task-independent high-
level perceptual system in SVS to infer task-specific proper-
ties (collisions in future states), resulting in better perfor-
mance. Generalizing this result beyond that particular
task, if state abstraction is supported by high-level percep-
tion, an agent architecture might have some fixed library of
perceptual processes, for example, SVS’s predicate extrac-
tion system. Since these processes can be used in any task,
they are task-independent. This library won’t work well in
all tasks when used with direct state abstraction, assuming
the poverty conjecture is true. However, when used with
simulative imagery, that same library can provide further
useful properties. Since these properties are calculated via
simulations of the actions specific to that particular task,
they can be considered task-specific properties.
15 The exception is that, in the real domain, there is some correlation
between potential collisions for one block and for another, since pedestal
dimensions effect both calculations. In the alternate problem, since
pedestal dimensions change after each move, this correlation is not
present. As is apparent in the data, this minor difference does not
substantially affect learning.

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 27
In this scheme, by encoding different properties into an
abstract state, an agent induces an abstraction function
A(s). To solve a particular task, an agent’s architecture
must support creating an abstraction function for that
task.

The theoretical results for ReLAI reveal that it can
increase the usefulness of a given set of abstraction func-
tions. Compared with what is needed for direct state
abstraction, Eq. (2) shows that ReLAI allows an agent to
use abstract states that relate in a fundamentally different
way to the concrete states of the problem, with guaranteed
convergence of learning to the optimal policy. Because of
this, abstraction functions that do not meet the require-
ments for correct direct state abstraction in a given prob-
lem may meet the requirements for correct ReLAI state
abstraction.

For instance, Li et al. (2006) recently presented a com-
prehensive theory of methods for direct state abstraction,
describing five abstraction classes of increasing generality,
and grouping abstraction techniques into those classes.
Of those classes, the most general for which Q-learning
convergence is guaranteed is called Q*-irrelevant. Here,
the only requirement is that all concrete states in the same
abstract state have the same Q* value for all actions, where
Q* is the value Q-learning would converge to given enough
experience in the unabstracted problem. However, ReLAI
allows convergence with abstraction functions that are
not Q*-irrelevant. For example, the abstraction function
used in pedestal blocks world is not Q*-irrelevant. All ini-
tial states of the problem are grouped together in a single
abstract state, regardless of whether moving A to pedestal1

will or will not cause a collision, situations that clearly
effect the Q* value of the action move(A,pedestal1). This
is an example of how the different relationship between
concrete and abstract state spaces with ReLAI compared
to direct abstraction allows different abstraction functions
to be successfully used.16

While theoretically interesting, taken at face value, the
formal requirements for ReLAI do not appear to be very
practical. Even for the simple pedestal blocks world task,
as examined above, the requirements are not strictly
met.17 However, rather than treating these requirements
as an objective to meet, they may have more practical value
as an ideal to approximate. While exactly satisfying the
equations guarantees convergence to the optimal policy, a
reasonable hypothesis is that, to the degree the equations
are approximated, performance will approach the optimal
16 One might argue that the “true” state used by the algorithm is the
perceived abstraction combined with the imagery predictions. Formally,
that is not the case (that would be imagery-augmented direct state
abstraction). Regardless, the point relates to the abstraction function—the
high-level perception system—not to the final set of information induced
that could be regarded as being “about the state”. The same non-Q*-
irrelevant abstraction function can be applied in the current and imagined
concrete states, allowing it to induce more information “about the state”.
17 A simple task where the requirements for ReLAI are more straight-

forwardly met is presented elsewhere (Wintermute, 2010b).
ideal. Further theoretical work may produce formal mea-
sures of approximation, but, as demonstrated in Sec-
tion 4.3, use of the equations as an informal guide to
constructing state representations can lead to empirical
gains. Roughly, a good state abstraction for use with
ReLAI should capture as many of the details possible
which determine immediate rewards leading into a state
(for Eq. (1)), but need not capture all information neces-
sary to choose an action, as long as a one-step lookahead
in abstract state space provides the necessary information
(as Eq. (2) allows, since the consequences of actions can
be dependent on details in the concrete state but missing
from the abstract state).

From these reasons, then, a given set of abstraction
functions can be more useful with ReLAI than with direct
state abstraction. Abstraction functions that do not meet
the formal requirements for correct direct state abstraction
in a given task may meet the requirements for ReLAI, and
empirically, abstraction functions that do not work well
with direct state abstraction may work well with ReLAI.
The architectural structures necessary for direct state
abstraction are a subset of those necessary for ReLAI, so
any agent capable of ReLAI is also capable of direct
abstraction. This means that ReLAI increases the breadth
of tasks an agent will be able to address with a task-inde-
pendent perception system. Overall, this amounts to strong
support that imagery can mitigate the perceptual abstrac-
tion problem by allowing task-specific abstract properties
to be encoded by a fixed perception system, increasing
the generality of the architecture.

There is some cost to using ReLAI compared to direct
abstraction, since low-level imagery knowledge is necessary
to simulate actions, and since imagery processing takes
time. However, the prime concern of this work relates to
the design of the underlying cognitive architecture. In
many tasks, the benefit to be gained in terms of achieving
better performance with a fixed perception system clearly
outweighs these costs.
References

Agre, P. E., & Chapman, D. (1987). Pengi: An implementation of a theory
of activity. In Proceedings of the sixth national conference on artificial

intelligence (Vol. 278).
Anderson, J. R. (1978). Arguments concerning representations for mental

imagery. Psychological Review, 85(4), 249–277.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., &

Qin, Y. (2004). An integrated theory of the mind. Psychological

Review, 111(4), 1036–1060.
Barkowsky, T. (2002). Mental representation and processing of geographic

knowledge: A computational approach. Lecture notes in artificial

intelligence (Vol. 2541). Springer.
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain

Sciences, 22(04), 577–660.
Beeson, P., Modayil, J., & Kuipers, B. (2010). Factoring the mapping

problem: Mobile robot map-building in the hybrid spatial semantic
hierarchy. International Journal of Robotics Research, 29(4), 428–459.

Brooks, R. (1986). A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1), 14–23.

28 S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29
Brooks, R. A. (1991). Intelligence without representation. Artificial

Intelligence, 47, 139–159.
Chandrasekaran, B. (2006). Multimodal cognitive architecture: Making

perception more central to intelligent behavior. In Proceedings of the

AAAI national conference on, artificial intelligence (pp. 1508–1512).
Chandrasekaran, B., Kurup, U. (2007). A bimodal cognitive architecture:

Explorations in architectural explanation of spatial reasoning. Pro-

ceedings of the AAAI spring symposium on control mechanisms for

spatial knowledge processing in cognitive/intelligent systems. Presented
at the AAAI spring symposium on control mechanisms for spatial
knowledge processing in cognitive/intelligent systems.

Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson, J. R., &
Winkler, R. (2004). An architecture for problem solving with
diagrams. Diagrammatic reasoning and inference. Lecture notes in

artificial intelligence (Vol. 2980, pp. 151–165). Berlin: Springer-Verlag.
Diuk, C., Cohen, A., & Littman, M. L. (2008). An object-oriented

representation for efficient reinforcement learning. Proceedings of the

25th international conference on machine learning (pp. 240–247). New
York: ACM.

Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering,
obstacle avoidance, and route selection. Journal of Experimental

Psychology: Human Perception and Performance, 29(2), 343–362.
Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the

application of theorem proving to problem solving. Artificial Intelli-

gence, 2(3–4), 189–208.
Forbus, K. D. (1993). Image and substance. Computational Intelligence,

9(4), 377–378.
Forbus, K. D., Nielsen, P., & Faltings, B. (1991). Qualitative spatial

reasoning: The CLOCK project. Artificial Intelligence, 51(1–3),
417–471.

Funt, B. V. (1980). Problem-solving with diagrammatic representations.
Artificial Intelligence, 13, 201–230.

Gelernter, H. (1963). Realization of a geometry-theorem proving machine.

Computers and thought. Cambridge, MA: MIT Press (pp. 134–152).
Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model

minimization in Markov decision processes. Artificial Intelligence,

147(1), 163–224.
Glasgow, J., & Papadias, D. (1992). Computational imagery. Cognitive

Science, 16(3), 355–394.
Grush, R. (2004). The emulation theory of representation: Motor control,

imagery, and perception. Behavioral and Brain Sciences, 27(03),
377–396.

Huffman, S., & Laird, J. E. (1992). Using concrete, perceptually-based
representations to avoid the frame problem. Proceedings of the AAAI

spring symposium on reasoning with diagrammatic representations.
Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC

architecture for cognition and performance with application to
human–computer interaction. Human–Computer Interaction, 12,
391–438.

Kosslyn, S. M., Thompson, W., & Ganis, G. (2006). The case for mental

imagery. New York: Oxford University Press.
Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence,

119(1–2), 191–233.
Kurup, U., & Chandrasekaran, B. (2006). Multi-modal cognitive archi-

tectures: A partial solution to the frame problem. Proceedings of The

28th annual conference of the cognitive science society. Presented at the
28th annual conference of the cognitive science society.

Kurup, U., & Chandrasekaran, B. (2007). Modeling memories of large-
scale space using a bimodal cognitive architecture. Proceedings of the

eighth international conference on cognitive modeling (pp. 267–272).
Laird, J. E. (2008). Extending the soar cognitive architecture. Proceedings

of the first conference on artificial general intelligence (pp. 224–235).
Amsterdam: IOS Press.

Laird, J. E., Yager, E. S., Hucka, M., & Tuck, C. M. (1991). Robo-soar:
An integration of external interaction, planning, and learning using
soar. Robotics and Autonomous Systems, 8(1–2), 113–129. doi:10.1016/
0921-8890(91)90017-F.
Langley, P., & Choi, D. (2006). A unified cognitive architecture for
physical agents. In Proceedings of AAAI-06.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures:
Research issues and challenges. Cognitive Systems Research, 10(2),
141–160. doi:10.1016/j.cogsys.2006.07.004.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth
ten thousand words. Cognitive Science, 11(1), 65–100.

Lathrop, S. D. (2008). Extending cognitive architectures with spatial and

visual imagery mechanisms (PhD Thesis). University of Michigan.
Lathrop, S. D., & Laird, J. E. (2009). Extending cognitive architectures

with mental imagery. Proceedings of the second conference on artificial

general intelligence.
Lathrop, S. D., Wintermute, S., & Laird, J. E. (2011). Exploring the

functional advantages of spatial and visual cognition from an
architectural perspective. Topics in Cognitive Science, 3(4), 796–818.
doi:10.1111/j.1756-8765.2010.01130.x.

LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.
LaValle, S. M., & Kuffner, J. J. Jr, (2001). Randomized kinodynamic

planning. The International Journal of Robotics Research, 20(5), 378.
Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., et al.

(2008). A perception-driven autonomous urban vehicle. Journal of

Field Robotics, 25(10). doi:10.1002/rob.20262.
Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of

state abstraction for MDPs. Proceedings of the ninth international

symposium on artificial intelligence and mathematics (pp. 531–539).
Lindemann, S. R., & LaValle, S. M. (2003). Current issues in sampling-

based motion planning. Proceedings of the international symposium of

robotics research. Springer.
Nason, S., & Laird, J. E. (2005). Soar-RL: Integrating Reinforcement

Learning with Soar. Cognitive Systems Research, 6(1), 51–59.
doi:10.1016/j.cogsys.2004.09.006.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA, USA:
Harvard University Press.

Pylyshyn, Z. W. (2003). Mental imagery: In search of a theory. Behavioral

and Brain Sciences, 25(02), 157–182.
Ravindran, B., & Barto, A. G. (2002). Model minimization in hierarchical

reinforcement learning. Proceedings of the 5th international symposium

on abstraction, reformulation and approximation (pp. 196–211).
Shimojima, A. (1996). On the efficacy of representation (PhD Thesis).

Indiana University.
Stein, L. A. (1994). Imagination and situated cognition. Journal of

Experimental and Theoretical Artificial Intelligence, 6(4), 393–407,
10.1.1.18.8192.

Stober, J., & Kuipers, B. (2008). From pixels to policies: A bootstrapping
agent. Proceedings of the 7th IEEE international conference on

development and learning (pp. 103–108).
Sun, R. (2006). The CLARION cognitive architecture: Extending cogni-

tive modeling to social simulation. Cognition and multi-agent interac-

tion: From cognitive modeling to social simulation.
Sutton, R. S. (1996). Generalization in reinforcement learning: Successful

examples using sparse coarse coding. Advances in Neural Information

Processing Systems, 8, 1038–1044, 10.1.1.51.4764.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An

introduction. MIT Press.
Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997).

CaMeRa: A computational model of multiple representations. Cogni-

tive Science, 21(3), 305–350. doi:10.1016/S0364-0213(99)80026-3.
Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based

Bayesian models of inductive learning and reasoning. Trends in

Cognitive Sciences, 10(7), 309–318.
Tesauro, G. (1995). Temporal difference learning and TD-gammon.

Communications of the ACM, 38(3), 58–68. doi:10.1145/
203330.203343.

Ullman, S. (1984). Visual routines. Cognition, 18(1–3), 97.
Wang, Y., & Laird, J. E. (2010). Efficient value function approximation

with unsupervised hierarchical categorization for a reinforcement
learning agent. Proceedings of the 2010 international conference on

http://dx.doi.org/10.1016/0921-8890(91)90017-F
http://dx.doi.org/10.1016/0921-8890(91)90017-F
http://dx.doi.org/10.1016/j.cogsys.2006.07.004
http://dx.doi.org/10.1002/rob.20262
http://dx.doi.org/10.1016/j.cogsys.2004.09.006
http://dx.doi.org/10.1016/S0364-0213(99)80026-3
http://dx.doi.org/10.1145/203330.203343
http://dx.doi.org/10.1145/203330.203343

S. Wintermute / Cognitive Systems Research 19–20 (2012) 1–29 29
intelligent agent technology. Presented at the 2010 international
conference on intelligent agent technology.

Wintermute, S. (2009a). An overview of spatial processing in soar/SVS

(Technical Report No. CCA-TR-2009-01). University of Michigan
Center for Cognitive Architecture.

Wintermute, S. (2009b). Integrating Action and Reasoning through
Simulation. Proceedings of the second conference on artificial general

intelligence (pp. 192–197). Presented at the AGI-09, Amsterdam –
Beijing – Paris: Atlantis Press.

Wintermute, S. (2010a). Abstraction, imagery, and control in cognitive

architecture (PhD Thesis). University of Michigan, Ann Arbor.
Wintermute, S. (2010b). Using imagery to simplify perceptual abstraction

in reinforcement learning agents. Proceedings of the twenty-fourth
AAAI conference on artificial intelligence (pp. 1567–1573). Menlo Park:
AAAI Press.

Wintermute, S., & Laird, J. E. (2007). Predicate projection in a bimodal
spatial reasoning system. Proceedings of the twenty-second AAAI

conference on artificial intelligence (AAAI-07) (pp. 1572–1577). Pre-
sented at the AAAI-07, Vancouver, BC: AAAI Press.

Wintermute, S., & Laird, J. E. (2008). Bimodal spatial reasoning with
continuous motion. Proceedings of the twenty-third AAAI conference

on artificial intelligence (AAAI-08) (pp. 1331–1337). Presented at the
AAAI-08, Chicago, IL: AAAI Press.

	Imagery in cognitive architecture: Representation and control at multiple levels of abstraction
	Introduction
	Motivation
	Motivating tasks
	The pedestal blocks world
	Motion planning for a nonholonomic car

	Meta-problems in architecture design
	Imagery for spatial tasks

	Imagery in cognitive architecture
	Theory description
	Benefits of the theory
	The Soar/SVS architecture

	Imagery and perceptual abstraction: application to reinforcement learning tasks
	State abstraction and imagery in reinforcement learning
	Perceptual abstraction in pedestal blocks world

	The ReLAI algorithm
	ReLAI in a complex task

	Imagery and irreducibility: application to motion planning
	The RRT algorithm
	RRT in Soar/SVS
	Perceptual abstraction and irreducibility in motion planning

	Related work
	Other Soar extensions
	Robotic systems
	Visual routines
	Reinforcement learning
	Imagery in psychology

	Conclusion
	Theoretical discussion of Reinforcement Learning with Abstraction and Imagery (ReLAI)
	Correctness in ReLAI
	ReLAI and perceptual abstraction

	References

