
S-Assess: A Library for Behavioral Self-Assessment

Scott A. Wallace
Washington State University Vancouver

14204 NE Salmon Creek Ave.
Vancouver, WA 98686

swallace@vancouver.wsu.edu

ABSTRACT
Developing and testing intelligent agents is a complex task
that is both time-consuming and costly. This creates the
potential that problems in the agent’s behavior will be real-
ized only after the agent has been put to use. As a result,
society is left with a vexing problem: although we can cre-
ate agents that seem capable of performing useful tasks au-
tonomously, we are simultaneously unwilling to trust these
agents because of the inherent incompleteness of testing. In
this paper we present a framework that brings validation
techniques out of the laboratory and uses them to monitor
and constrain an agent’s behavior concurrent with task ex-
ecution. Applications of this framework extend well beyond
helping to ensure safe agent behavior through run-time val-
idation. They also include the ability to enforce social or
environmental policies or to regulate the agent’s autonomy.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; C.4 [Performance of Systems]: Re-
liability, availability, and serviceability

General Terms
Reliability

Keywords
Agents, self-assessment, safe behavior

1. INTRODUCTION
As our theoretical knowledge and access to computational

power increases, it is likely that there will be an increased
demand for, and an increased ability to produce autonomous
agents. However, as the task of designing agents increases
in complexity, so will the difficulty of debugging these sys-
tems and validating their behavior. Because current valida-
tion techniques rely on examining the agent’s behavior in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

number of test scenarios, they are incomplete by their very
nature. As a result, it is difficult, if not impossible, to ob-
tain complete confidence in the quality of the agent’s perfor-
mance when the domain is of any real complexity. The gap
between an agent’s promised ability to act autonomously on
our behalf and our ability to validate its correctness begs us
to ask: how much trust should be granted to unvalidated
agent technologies, and how should new technologies be in-
troduced into their operating environments without subject-
ing the environment and the agent to unnecessary risk?

To reduce the risks associated with introducing new, un-
proven, agents into their domain, we believe that it will be
critical to extend validation methods beyond the laboratory
and into the run-time environment. At another level, this
problem of run-time validation can be viewed as the more
general problem of ensuring the agent upholds a set of op-
erating constraints appropriate for its domain. Note that
by definition, this problem is trivially solved for a correctly
engineered agent. That is, a correct agent will use its own
internal preference scheme (such as would be defined by a
utility function) to determine the most appropriate behav-
ior given its current goals and operating environment. It is
only in situations where the agent’s behavior is incorrectly
or incompletely specified that the agent’s own policy will fail
to meet its operating constraints.

The research presented here is fundamentally different
from much of the work on agent systems because our default
assumption is that the agent’s knowledge is inadequate for
correctly accomplishing its task. Our goal is to establish
how to ensure correct behavior by identifying and possibly
preventing errors at run-time using high-level descriptions of
operating constraints which are external to, and possibly in
conflict with, preferences described in the agent’s knowledge
base.

The remainder of this paper begins by examining how er-
rors are introduced into an agent’s knowledge base, and how
previous work has attempted to identify and correct such er-
rors. Our analysis provides a taxonomy of approaches for ad-
dressing behavior correctness that we use to classify related
work. We develop the notion of behavioral self-assessment
in which the agent or agent architecture evaluates potential
goals and actions with respect to externally defined con-
straints to help ensure its own correctness. We then describe
a framework for behavioral self-assessment and present the
S-Assess library, an initial implementation of this frame-
work. We close the paper by describing potential uses for
our library outside of validation and potential avenues for
future work.

2. ENSURING CORRECT BEHAVIOR
In this section, we will consider how errors may be in-

troduced into agent systems and the standard approach for
detecting and correcting these errors before the agent leaves
the laboratory. We then examine potential approaches for
ensuring correct behavior once the agent has entered its op-
erating environment.

2.1 Sources of Errors
The agent design process consists of four high-level steps.

First, specifications are created for what tasks the agent
should perform and how these tasks should be performed.
Second, the specification is implemented as an agent pro-
gram. Third, the implementation undergoes an iterative
process of testing and refinement. Finally, in the fourth
stage, the agent leaves the laboratory and is put to use in
its actual operating environment. Errors are most likely to
be introduced at two of these design phases: during specifi-
cation (phase one), and during implementation (phase two).

Errors may be introduced during the specification phase
for a number of reasons. Superficially, this may be because
the specification was created hastily without sufficient de-
tail or refinement. However, as we seek to design agents
that perform increasingly complicated tasks, there is an-
other, more significant reason that errors may be introduced
at the specification phase. This is due to the fact that it can
be exceedingly difficult to precisely specify correct operating
parameters.

Take, for example, the TacAir-Soar project [7] in which
the design goal is to build agents to fly tactical military air-
craft as part of a simulated training exercise. The ultimate
purpose of the simulation is to train human pilots for situ-
ations that may occur in the real world (where teams will
consist entirely of humans). As a result, it is critical that
agents used in the training simulation produce behavior con-
sistent with that of human experts. The problem, however,
is that the best specification for expert pilot behavior ex-
ists in the minds of expert pilots. It is not codified in any
complete manner, and because the domain experts are not
necessarily skilled at describing the reasoning behind their
actions, it can be extremely difficult for them to externalize
a correct specification.

Clearly, without a correct and complete design specifica-
tion, it is unlikely that the agent’s behavior will be correct
and complete. Note however that for all tasks we are likely
to want to perform, there is a specification of correctness,
even if it exists solely in the designer’s mind.

In addition to the specification phase, errors are also likely
to be introduced during the implementation phase because
the task of creating an executable system from a design
specification is non-trivial. Large knowledge based agents
may take several man years to develop and represent many
thousands of lines of executable code. As the complexity
of these implementations increases, the probability that er-
rors will be introduced via simple programming mistakes
rises quickly. Regardless of the quality of the original spec-
ification, it is exceedingly likely that all but the most triv-
ial agents will have some programming errors in the early
phases of testing and refinement.

2.2 Detecting Errors in the Laboratory
Currently, most agent development projects operate under

the implicit assumption that critical errors can be removed

before the agent leaves the laboratory. Most agent systems
are designed around the iterative processes of testing and
refinement. As the agent system nears completion, testing
becomes more sophisticated: the focus typically turns to
case-based validation in which the agent’s behavior is eval-
uated in a number of test scenarios.

During validation, domain experts and knowledge engi-
neers examine the agent’s behavior in each test scenario
looking for errors and correcting the agent’s knowledge as
required. Two critical properties of this validation process
deserve to be explicitly highlighted.

The first critical property in this approach is the assump-
tion that the humans supervising testing will be able to
identify errors when they occur. As a result, this means
that some specification for correct agent behavior must ex-
ist, even if only within the designer’s mind. This reinforces
our earlier assertion to the same effect and paves the way
towards a method for detecting errors automatically.

The second critical property of the validation process is
that case based testing is incomplete by its very nature.
In order to ensure that the agent’s behavior is free of er-
rors, testing would need to examine all possible situations.
Clearly, this is infeasible. In most non-trivial task domains
the number of environment states is extremely large if not
infinite. Even with a careful examination of equivalence rela-
tions among states, time and cost restrictions often prevent
developers from dedicating adequate resources to testing.
The net result of this second property is that although stan-
dard in the community, case based testing is insufficient to
guarantee agents will behave correctly once they leave the
laboratory.

3. MONITORING RUN-TIME BEHAVIOR
The discussion above highlights the inadequacies of cur-

rent testing approaches and the need to extend validation
beyond the laboratory. The main challenge in such an effort
will be creating a framework that can adequately identify
errors without direct human supervision. However, our re-
inforced belief that specifications for correct agent behavior
exist, even if they have not been properly codified or imple-
mented, suggests that this approach is possible.

Working on this belief, one can identify a simple method
for extending validation to the agent’s operating environ-
ment. We simply need to represent the operating constraints
within a high-level behavior model and compare the agent’s
behavior to this high-level model as the task is being per-
formed. In the following subsections, we categorize potential
approaches to performing this simple run-time monitoring.
We examine the relationship of previous work to this taxon-
omy of approaches, and motivate the design decisions that
lie beneath our behavior assessment framework. Later, in
Section 5.1 as we describe our implementation, we examine
appropriate choices for a high-level behavioral model paying
particular attention to specifications that may be difficult for
domain experts to articulate.

3.1 Potential Approaches
We distinguish potential approaches to run-time behavior

monitoring along two dimensions. The first dimension is the
time at which monitoring occurs. The second dimension is
the relationship of the monitoring system (or subsystem) to
the agent. Each approach represents a point in this two
dimensional space, with distinct assets and liabilities. We

begin with an overview of the taxonomy and each approach
it covers. As we develop the categories we briefly present
the assets and liabilities of each approach from a theoretical
perspective, and from the perspective of previous work.

Along the time dimension, we distinguish between moni-
toring that occurs at plan-time and monitoring that occurs
at execution-time (either just before or just after the agent
performs its action or selects a new goal). Along the sec-
ond dimension, we distinguish two relationships between the
monitoring system and the agent which we describe below.

3.1.1 External Monitoring
The first relationship occurs when we consider a monitor-

ing system that is external to the agent. Here, the monitor
would be its own process and would interact with the agent
only through communication channels provided by the en-
vironment. Such a system could be designed to monitor the
agent’s behavior at plan-time. The system could, for exam-
ple, accept, reject, or suggest modifications to the agent’s
proposed plan in order to ensure consistency with the do-
main’s operating constraints. Critically, however, this ap-
proach relies on the agent to communicate its intended plan
before beginning execution; if the agent cannot be trusted
to cooperate in this manner, the approach is useless.

In contrast, an external system that monitored agent be-
havior at execution-time would not necessarily need direct
cooperation from the agent. Monitoring could be done sim-
ply by watching the agent’s sequence of externally visible ac-
tions (keyhole observation). The advantage of this approach
is that the system could easily analyze observations about
a number of agents’ behaviors simultaneously, thus enforc-
ing a group policy as opposed an individual agent policy.
The main disadvantage stems from the fact that keyhole
observation is useful only for detecting errors that can be
observed from the agents’ external actions. This has three
implications. First, errors that are isolated to the inter-
nal reasoning and goal selection process may not be uncov-
ered. Second, the agent may be able to perform a “sleight
of hand” whereby an inappropriate action goes unobserved
by the monitoring system. Finally, and perhaps most im-
portantly, because this approach relies on observing actions,
it is reactive—limited to detecting errors once the behavior
has been performed, as opposed to proactively preventing
the errors from occurring.

External monitoring has been the focus of much attention
in the security community (e.g., [5, 9]), and has been intro-
duced as an important component of self-healing systems in
IBM’s autonomic computing initiative [8]. In the security
community, external monitoring is a natural method to en-
suring correct run-time behavior. The typical assumptions
here are that a group of processes works correctly unless they
are subverted by a malevolent outsider. When subverted,
however, the process group may behave inconsistently with
its operating constraints: changing or deleting files or al-
locating resources to inappropriate tasks. In this setting,
it makes sense to monitor the system’s activity through a
common interface, such as log files. Thus, the interactions
of multiple components can be validated and the monitoring
system ensures compatibility with existing technologies.

3.1.2 Self-Assessment
A second relationship occurs when we consider a moni-

tor that is an internal component of the agent itself. Such

a monitor could be an extension to the agent architecture,
or an additional knowledge-base used by the architecture.
Both cases are instances of self-assessment, but each has
moderately different benefits. In particular, if assessment is
performed by the architecture, it is likely to be transparent
to the agent proper, and thus to the agent’s designers. In
contrast, assessment performed by an additional knowledge-
base is likely to allow a tighter coupling to the agent’s do-
main knowledge, since both will be implemented using the
same underlying representation.

The benefits of self-assessment as compared to external
monitoring are multi-fold. Because the assessment subsys-
tem is encapsulated by the agent, the agent cannot with-
hold its intentions from the monitor. Moreover, because the
assessment subsystem will be able to examine more than
externally visible aspects of the agent’s behavior, this ap-
proach will likely be able to detect a larger set of errors than
an external approach. Finally, because assessment could be
performed before the agent commits to pursing a particular
action or goal, self-assessment may be able to prevent errors
as opposed to simply identify them. Each of these three
properties make it increasingly likely that this approach will
be advantageous for ensuring correct agent behavior.

Within the AI community, self-assessment has had lim-
ited attention. Typically, the self-assessment subsystem has
been built into more traditional planning architectures. This
approach is used to ensure plans are built according to both
the agent’s priority scheme and a set of external constraints.
Weld and Etzioni describe such a system that is capable of
enforcing high-level behavior constraints at plan-time [13].
Work on the CIRCA real-time architecture [11] by Atkins
and others (e.g., [1,2]) has focused on ensuring agents avoid
failure states when engaged in complex tasks with real-time
constraints such as piloting aircraft. Perhaps not surpris-
ingly, both systems mentioned here focus on monitoring
behavior at plan-time. Weld and Etzioni’s system has no
method to ensure consistency at execution-time. CIRCA,
however, does perform limited run-time monitoring, but this
monitoring only allows the system to initiate replanning if
unanticipated states arise.

3.2 Execution-Time Self-Assessment
Interestingly, relatively little research has focused directly

on the issue of execution-time self-assessment. We believe
execution-time self-assessment is critical for two reasons.
First, in complex, dynamic environments, agents cannot as-
sume that plan-time enforcement of domain constraints will
be sufficient to prevent execution-time errors. Second, many
agent architectures do not enforce strict plan then act cy-
cles and so cannot directly benefit from research on plan-
time monitoring methods. In the remainder of this paper,
we describe a general framework for execution-time self-
assessment and present our initial implementation of this
framework.

4. A SELF-ASSESSMENT FRAMEWORK
We can view the agent’s mind as a decision procedure that

takes as input the agent’s goals, perceptions and knowledge
and outputs an action to perform or a new goal to pursue
(we will refer to these outputs collectively as operators). At a
finer level of detail, we can view this decision procedure as a
three phase process. In the first phase, potential operators
are identified. In the second phase, operators are ranked

Agent’s Internal Reasoning

Identify Operators

Rank Operators

Select Operator

Self-Assessment
Monitoring System

Assess Operators

Merge Rankings

Operator

Figure 1: The Self-Assessment Framework

relative to one another. Finally, in the third phase, the
most appropriate operator is selected and scheduled to be
performed. Depending on the agent’s implementation, these
three phases may be controlled deliberately by the agent or
may be controlled internally by the underlying architecture.

Our self-assessment framework fits on top of this three
phase decision process. The framework interrupts decision
making after the agent ranks potential operators. At this
point, operators are re-evaluated with respect to the mon-
itoring system’s high-level domain constraint model. This
evaluation creates a new ranking structure that is poten-
tially inconsistent with the agent’s preferences. As a result,
rankings must be merged to ensure consistency with do-
main constraints while upholding the agent’s preferences to
the greatest degree possible. The merging process creates a
finalized ranking of the potential operators1. This ranking
can then be passed back to the agent’s decision making pro-
cess which will now select the best operator based on the
finalized preferences (see Figure 1). This approach allows
the monitoring framework to take into account the agent’s
own preferences (based on the agent’s knowledge, goals, and
perceptions), yet it also prevents errors by coercing decision
making to ensure domain constraints are upheld.

The framework presented here can be used regardless of
whether the agent performs deliberate planning and acting
phases, however its most appropriate use will vary some-
what based on this property. Within a reactive agent system
where the decision making process occurs in (soft) real-time,
the framework will be used exactly as presented here. The
agent will necessarily need to evaluate potential operators
before making a commitment since it cannot rely on a pre-
existing plan.

In contrast, a planning agent selecting operators at run-
time does not necessarily need to evaluate potential options
since it already has a formula (the plan) for how to behave.
For such agents, the assessment framework may only be able
to accept or reject the agent’s desired operator (since the
agent may not evaluate a set of potential options). If the
assessment framework rejects the agent’s intended operator,

1It is possible that none of the agent’s proposed operators
will be consistent with the domain constraints. In Section 6,
we consider this scenario and present some strategies for
handling such exceptions.

it must initiate replanning, otherwise the agent may fail to
continue problem solving in a reasonable manner. With such
agents, it may be beneficial to use the framework at plan-
time as well as at execution-time. At plan-time, agents must
evaluate potential operators to determine which are most
appropriate for the plan. As a result, the self-assessment
framework is likely to have better control over what opera-
tors are incorporated into the plan to begin with. Used in
this fashion, the self-assessment subsystem resembles Atkins
extensions to CIRCA [1, 2]. Note however, that the abil-
ity to use the framework without a distinct planning phase
and with arbitrary constraint models makes the framework
a generalization of CIRCA’s specific approach.

5. DESIGN DECISIONS
Implementing the self-assessment framework described in

Section 4 requires two major design decisions. First, we
must determine an appropriate model for the high-level do-
main constraints used to evaluate and guide the agent’s be-
havior. Second, we must select an appropriate agent archi-
tecture for our implementation.

5.1 A High-Level Constraint Model
An appropriate constraint model (CM) is critical because

it determines the self-assessment system’s ability to distin-
guish between correct and incorrect behavior. Previous work
has examined simple logical sentences to define domain con-
straints [13], and explicit information about failure states [1].
Both approaches attempt to delineate correct and incorrect
behavior based on the states that the environment, or the
agent, may enter.

While a state-based approach may be sufficient in some
situations, especially when a clear notion of failure states
exists, it is insufficient to classify a wider range of interesting
behaviors. In particular, agents such as TacAir-Soar that
are designed to emulate human behavior are probably best
characterized by the sequence of goals and actions pursued
and not by the specific states they can or cannot enter.

To distinguish acceptable and unacceptable behavior se-
quences, we require a model that describes temporal rela-
tionships. Moreover, our selection must be informed by the
following three competing requirements.

Simplicity The model must be easier to understand than
the agent’s internal knowledge representation. Other-
wise, the task of constructing the model will be likely
to introduce errors at the implementation phase (as is
likely to happen when implementing the agent itself).
This presents a recursive validation problem that must
be avoided.

Constructibility The human expert may hold the only
specification for correct behavior, but may be unable
to communicate this specification in a meaningful man-
ner. By limiting the data contained in our constraint
model, we can use inductive techniques to construct
a specification from observations of expert behavior.
Thus we avoid requiring the expert to articulate the
model directly.

Efficacy The model must allow the assessment system to
identify and prevent salient errors. The previous re-
quirements aim to make the model simple to under-
stand and construct. However, both of these require-

ments could have the effect of reducing the model’s
ability to distinguish correct behavior from incorrect
behavior, thereby severely reducing its efficiency.

To balance these three requirements, we look to previous
work on automated validation and knowledge base refine-
ment. Recent work by Wallace and Laird [12] has examined
a high-level model inspired by the hierarchical representa-
tions used in And/Or trees, HTN planning [4] and GOMS
modeling [6] to encode the variety of ways in which partic-
ular tasks can be accomplished.

Their model was designed with constructibility and sim-
plicity in mind. In particular, it only relies on data that
can be collected from annotated observations of task perfor-
mance. This structure can be created automatically from
performance traces and it has been shown to be PAC-Learnable
(establishing the efficiency of creating and maintaining it).
Finally, because this structure has been reasonably effec-
tive at identifying differences between two agents’ behav-
ior, it seems to make appropriate tradeoffs between each
of the three requirements we consider here. We leverage
this model, the hierarchical behavior representation (HBR),
making minor changes that have the double advantage of
increasing the HBRs representational power while also re-
ducing the complexity of our self-assessment system.

The HBR is a tree with binary temporal constraints rep-
resenting the relationships between the agent’s goals and
actions. It is defined as a node-topology (a hierarchical re-
lationship between nodes) and a set of constraints (unary
node type constraints and binary temporal constraints be-
tween siblings). In the HBR, internal nodes correspond to
goals and leaves correspond to primitive actions. A node’s
children indicates the set of subgoals or primitive actions
that are relevant to accomplishing the specified goal. In
Wallace and Laird’s work, unary constraints on the nodes
specify a type of either And or Or. These constraints in
turn specify whether all or some of a node’s children (sub-
goals and actions) are required to successfully accomplish
the parent goal. In our model, we change these unary con-
straints to specify the frequency with which a particular op-
erator occurs. Specifically, nodes are tagged as either Some-
times or Always. Semantically, a goal whose children are
all Always nodes is equivalent to an And node in the orig-
inal HBR specification. Similarly, a goal whose children is
some mix of Sometimes and Always nodes is equivalent
to an Or node in the original HBR specification. It should
be clear from this analysis that the model presented here is
representationally equal to, if not more powerful than, the
original HBR specification.

An example HBR is illustrated in Figure 2. Here, the sub-
goals Destroy-Lead and Destroy-Wingman are relevant for
completing their parent goal, Engage-Enemy. The manner in
which subgoals should be used to achieve their parent goal is
encoded by the subgoal’s node-type constraint (Sometimes
vs Always) and the ordering constraints between subgoals.
In Figure 2, Sometimes and Always nodes are represented
with ovals and rectangles respectively. Binary temporal con-
straints are represented with arrows between siblings. From
examining the figure, we can determine that the hierarchy
specifies Engage-Enemy may be correctly accomplished by
first accomplishing Destroy-Lead and then accomplishing
Destroy-Wingman.

Fly-Mission

Destroy
Wingman

Destroy
Lead

Engage-Enemy Achieve-Waypoint

Figure 2: Behavior Representation

5.2 Agent Architectures
Having selected an appropriate high-level model of cor-

rect behavior for our self-assessment system, we now turn
to the selection of an appropriate agent architecture. In
some sense, this decision is less critical. We would expect it
will simply make our implementation more or less difficult,
as opposed to directly affecting the function of the system
as a whole.

We have selected the Soar rule based system [10] as the
initial agent architecture for creating our self-assessment sys-
tem. Soar is a compelling choice for four reasons. First, and
most critically, we are relatively familiar with the architec-
ture and methods for creating Soar agents. Second, Soar
has an explicit notion of the three phase decision process
outlined in Section 4. Although it is easy to adapt other
agent architectures such as CLIPS [3] to emulate the three
phase decision process by adding small amounts of flow con-
trol knowledge, in Soar this is unnecessary. Third, Soar has
been used for tasks that make use of explicit plan and then
act phases as well as for creating much more reactive agents
that choose operators in soft real-time. Finally, because the
source code for the Soar architecture is publicly available, we
could implement the self-assessment system either as a set
of Soar rules or as a modification to the architecture itself.

6. THE S-ASSESS LIBRARY
We have implemented a self-assessment system that uses a

high-level model of correct behavior to enforce domain con-
straints. As described in Section 5.1, the constraint model
is a hierarchal representation that indicates the appropriate
relationship between goals, subgoals, and primitive actions
as well as constraints on the frequency with which operators
are selected and constraints on their relative ordering. Our
assessment system is implemented within the Soar agent ar-
chitecture as a modular knowledge base, or library, called
S-Assess. The library itself is a domain independent set of
62 Soar rules and follows the framework specified in Sec-
tion 4.

The S-Assess library works under the assumption that
a constraint model (CM) suitable for assessing behavior is
stored in a specific location of the agent’s working memory.
A likely setup would require the agent’s designers to create
and load such a model before the agent left the laboratory.

Constraint Model
Current

Execution Model

Step 1

Step 2

Achieve
Waypoint

Destroy
Lead

Destroy
Wingman

Reject

Accept

Step 3

Engage
Enemy

Temporary
Node

Destroy
Lead

Engage
Enemy

Destroy
Lead

Destroy
Wingman

Destroy
Lead

Destroy
Wingman

Return
Home

Destroy
Lead

Destroy
Wingman

Destroy
Lead

Return
Home

Destroy
Wingman

Figure 3: Model Comparison

Note, however, that there is no strict requirement that the
constraint model be supplied by the designers. In fact, as
we will see later in the discussion, the potential uses of the
S-Assess library are greatly expanded by considering other
scenarios.

As the agent performs its task, S-Assess traces which goals
are selected and which actions are performed. In addition, it
monitors when these events take place, and the relationships
between goals, subgoals and primitive actions. As it does
so, S-Assess builds a hierarchical execution model of the
agent’s behavior. The execution model (EM) is similar to
the constraint model, but represents only behavior that has
been executed up to the current point in time.

To evaluate potential operators, S-Assess intercepts the
agent’s decision making process as outlined in Section 4.
The interception occurs just before a decision is made, when
S-Assess augments the current execution model with a tem-
porary node (Step 1 in Figure 3). Next, S-Assess iteratively
associates one of the potential operators with the temporary
node, comparing the resulting execution model with the con-
straint model to check for consistency (Step 2 in Figure 3).
Note that this comparison is a simple process and does not
require examining all nodes in each tree. Instead, we sim-
ply need to compare the temporary node and its siblings to
their corresponding nodes in the constraint model.

The results of the comparison may reveal several situa-
tions. First, the execution model may be entirely consistent
with the constraint model (i.e., siblings are ordered appro-

priately with respect to the ordering constraints, and all
nodes of type Always are represented in the EM). In this
case, the operator associated with the temporary node is
consistent with the domain constraints and S-Assess takes
no action. Second, the temporary node in the execution
model may not have a corresponding mate in the CM. This
situation indicates that the agent has suggested an inap-
propriate operator for the particular situation (i.e., for per-
forming the parent-level goal). In this case, S-Assess rejects
the agent’s proposed operation. Last, the temporary node
in the EM may create inconsistencies with the constraint
model. For example, the EM may no longer uphold appro-
priate temporal constraints between sibling nodes. As be-
fore, this situation indicates the agent’s suggested operator
is inappropriate, and S-Assess must reject the candidate.

Each operator suggested by the agent is associated with
the temporary node during the assessment process. In this
way, the agent ascribes its own preferences to these opera-
tors and S-Assess can simply accept all operators consistent
with the constraint model and reject all others (Step 3 in
Figure 3). The net result is a (potentially) smaller set of
operators which are consistent with the domain constraints
and ranked according to the partial order specified by the
agent. If, at the end of this process, S-Assess has excluded
all operators suggested by the agent, it raises an exception to
indicate that nothing the agent proposed can be performed
safely. The library does not specify exactly how such ex-
ceptions should be handled, but a number of obvious pos-
sibilities exist. In particular, the agent may choose to do
nothing; it may employ a new, more general, set of knowl-
edge to suggest alternative operators; or it may delegate the
decision to a human.

6.1 Interface
Leveraging the S-Assess library requires only the avail-

ability of a constraint model and minor commitments on
the part of the Soar agent. Because S-Assess uses the same
working memory space as the rest of the agent’s knowledge
base, the agent must be designed so as not to overwrite or
in any other way modify the data structures used for assess-
ment2. For most agents, this will be trivial to ensure, as the
consistency computation uses an isolated area of working
memory for performing its computations.

Additionally, agents must also use a specific mechanism
for ranking potential goals or actions. Typically, in Soar,
operators are proposed and then assigned architecturally
recognized preferences that include unary relations such as
“best” and “worst”, and binary relations such as “better
than”. Once these preferences have been established, the
architecture creates a partial ordering indicating the relative
preference of each option. Normally, at this point the archi-
tecture automatically selects the best option to be pursued.
As a result, S-Assess requires a minor modification to influ-
ence the selection of the agent’s next operator. Specifically,
we require that the agent assigns numeric preferences to op-
erators instead of using Soar’s built-in preferences. This has
similar semantics, and easily allows one to establish a par-
tial order of preferences over potential operations. However,

2As part of our future work, we plan to provide stronger
guarantees that the data structures used by S-Assess cannot
be modified by the agent proper. A conceptually simple
approach would result from providing a read-only interface
between S-Assess and the agent’s standard working memory.

this modification also ensures that the architecture will not
commit to a specific operator as soon as the (now numeric)
preferences are asserted. As a result, the assessment frame-
work has a chance to evaluate potential options and can
then assign standard Soar preferences based on the finalized
rankings. Thus, by this approach, all options are guaranteed
to be ranked by both the agent and the assessment frame-
work, and the final operator selection can still be performed
via Soar’s standard architectural mechanism.

The S-Assess library was built with generality and domain
independence in mind. Although the preference scheme may
require modest changes to existing Soar agents, it should
not limit the engineer’s ability to design agents for arbi-
trary tasks. Indeed, the CLIPS rule based system [3], uses
numeric preferences called salience to make selections in a
similar manner. Moreover, it is worth noting that agents
designed to be used with S-Assess can still be run without
the assessment framework. Specifically, we can use two sim-
ple Soar rules to convert the numeric preferences back into
standard Soar preferences resulting in an agent that will se-
lect operations based entirely on its own beliefs. In this
way, agents can easily be fitted to run with or without the
execution-time self-assessment capability.

6.2 Evaluation
We tested the S-Assess Library on a simple agent with one

high-level goal and six primitive actions. In our simulated
world, the agent’s goal is to satisfy its hunger by correctly
getting, preparing and eating food, through the use of these
six primitive actions. We modeled programming errors by
allowing the agent’s knowledge to suggest actions in any
particular order, even if that order made little logical sense,
or no progress towards the agent’s goal. The result was an
agent capable of trashing in the environment by pursuing
action sequences that had no net effect (such as repeatedly
preheating an oven) and that would achieve the goal only via
a random walk. Given this agent implementation, we built
six distinct constraint models that prescribed how the agent
should perform its task. We included models with the follow-
ing properties: total ordering over actions; partial ordering
over actions; actions with the Sometimes property; partial
ordering between Sometimes actions and Always actions;
and restricting allowable actions to a subset of the agent’s
proposed set. We then examined the agent’s behavior as it
performed 50 instances of this “satisfy-hunger” task for each
given domain constraint model. In all cases, S-Assess was
able to ensure the agent’s behavior was consistent with the
constraint model eventhough the agent’s knowledge alone
would be insufficient to make this same guarantee.

6.3 Future Work
Although the current version of the S-Assess library pro-

vides enough functionality to illustrate its use and practi-
cal relevance, it is still in the early phases of design. In
particular, the current implementation does not take maxi-
mum advantage of Soar’s built in truth-maintenance system
(TMS), opting instead to maintain data structures related
to the quality of potential operators on its own. It is likely
that leveraging Soar’s TMS will have the added benefit of
increasing the execution speed of the assessment subsystem
while simultaneously making the library more compact.

Finally, we note that although we have only explored using
the S-Assess library to perform run-time validation in the

agent’s operating environment, its potential uses are much
broader. Briefly we introduce three such uses and leave fur-
ther examination as future work.

First, consider a situation where the policies of the en-
vironment change over time (perhaps because new laws or
rules are put into effect). Here, we might design an agent to
consider performing its task in relatively general ways and
use the S-Assess library to enforce the current environmen-
tal policy. This would allow the agent to adapt to new laws
simply by obtaining a new constraint model from the en-
vironment. Second, a similar situation exists when agents
must interact with one another. Here, we might use the S-
Assess library to enforce a social policy that would establish
safe and appropriate methods for agents to interact with one
another. The policy might be obtained from the environ-
ment or from other agents involved in a specific transaction.
Finally, we might allow callbacks from the assessment frame-
work to either the agent or the external world. This would
allow new approaches for dealing with constraint failure such
as adjusting the agent’s autonomy by seeking outside assis-
tance. Although the details of these three applications differ,
in each situation the self-assessment framework provides a
mechanism for improving dependability and robustness of
the agent it monitors.

7. CONCLUSION
In the near future, execution-time behavior monitoring

will become an important tool for bridging the gap be-
tween the our willingness to trust new agent systems and
our promised ability to produce agents that perform inter-
esting and useful tasks. The work presented in this paper
brings this goal one step closer by presenting a generalized
framework for self-assessment and describing S-Assess, an
initial implementation of this framework.

8. ACKNOWLEDGMENTS
The author would like to thank the anonymous reviewers

for their insightful comments. The final version of this pa-
per benefited from the questions raised by one reviewer in
particular.

9. REFERENCES
[1] E. M. Atkins, T. F. Abdelzaher, K. G. Shin, and E. H.

Durfee. Planning and resource allocation for hard
real-time, fault-tolerant plan execution. Journal of
Autonomous Agents and Multi-Agent Systems,
March—April 2001.

[2] E. M. Atkins, E. H. Durfee, and K. G. Shin. Detecting
and reating to unplanned-for world states. In
Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pages 571–576, 1997.

[3] CLIPS Reference Manual: Version 6.05.

[4] K. Erol, J. Hendler, and D. S. Nau. HTN planning:
Complexity and expressivity. In Proceedings of the
Twelveth National Conference on Artificial
Intelligence, pages 1123–1128. AAAI Press/MIT
Press, 1994.

[5] S. A. Hofmeyer, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6(3):151–180, 1998.

[6] B. E. John and D. E. Kieras. The GOMS family of
user interface analysis techniques: Comparison and

contrast. ACM Transactions on Computer–Human
Interaction, 3(4):320–351, 1996.

[7] R. M. Jones, J. E. Laird, P. E. Nielsen, K. J. Coulter,
P. Kenny, and F. V. Koss. Automated intelligent
pilots for combat flight simulation. AI Magazine,
20(1):27–42, 1999.

[8] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, pages 41–50,
January 2003.

[9] C. Ko, G. Fink, and K. Levitt. Automated detection
of vulnerabilities in privileged programs by execution
monitoring. In Proceedings of the Tenth Annual
Computer Security Applications Conference, pages
134–144, 1994.

[10] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar:
An architecture for general intelligence. Artificial
Intelligence, 33(1):1–64, 1987.

[11] D. J. Musliner, E. H. Durfee, and K. G. Shin. CIRCA:
A cooperative intelligent real-time control
architecture. IEEE Transactions on Systems, Man and
Cybernetics, 23(6), 1993.

[12] S. A. Wallace and J. E. Laird. Behavior Bounding:
Toward effective comparisons of agents & humans. In
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, pages 727–732,
2003.

[13] D. Weld and O. Etzioni. The first law of robotics (a
call to arms). In Proceedings of the Twelveth National
Conference on Artificial Intelligence, 1994.

