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ABSTRACT 
The last ten years has seen a revolution in the complexity 
and realism of human behavior models (HBMs).  However, 
the cost of developing realistic HBMs continues to increase 
as much of the detailed and complex knowledge must be 
manually encoded to produce realistic behavior.  The focus 
of this project is on reducing the cost of acquiring, validat-
ing and maintaining the knowledge used in realistic HBMs.  
Our approach is to develop tools that allow subject matter 
experts (SMEs) to visually specify behavior using abstract 
scenarios represented as diagrams.  The SME can graphi-
cally describe the conditions under which actions and goals 
should be pursued, together with the associated reasons for 
those decisions.  The system, guided by the expert’s 
choices, analyzes and automatically generalizes from the 
example scenarios, alerting the SME to inconsistencies and 
missing knowledge.  The system incrementally generates an 
executable HBM whose behavior the SME can view and 
modify during development.  By moving the language of 
discourse from symbolic programming languages to anno-
tated diagrams, the SMEs specify knowledge directly with-
out requiring the intervention of a knowledge engineer to 
translate between the representations. 

Categories and Subject Descriptors  
I.2.6 Learning – knowledge acquisition 

Keywords  
Knowledge acquisition, behavior acquisition, diagrams, 
visualization, example-driven, human behavior models, rule 
based. 

INTRODUCTION 
The cost of developing realistic human behavior models 
(HBMs) continues to increase as much of the detailed and 
complex knowledge must be manually encoded to produce 

realistic behavior.  The focus of this project is on reducing 
this cost by developing tools that allow subject matter ex-
perts (SMEs) to visual specify behavior using example sce-
narios represented as diagrams. The distinguishing features 
of this approach are: 

• Changing the language of discourse for developing, 
validating and maintaining HBMs from symbolic lan-
guages to diagrams. 

• Driving the development process through example sce-
narios, where an SME walks through ideal behaviors, 
recording reasons for decisions and describing appro-
priate goals, actions and methods to pursue. 

• Generalizing the examples through direct guidance from 
the SME in selecting features for when a particular 
course of action is appropriate, coupled with heuristics 
to assist in this selection process.  This  ensures that 
general purpose behaviors are acquired rather than 
simple, scripted scenarios. 

• Generating and analyzing rules automatically to deter-
mine how well they cover the examples specified by the 
SME.  Where differences arise, the SME is prompted to 
correct inconsistencies or fill in missing knowledge. 

• The tools manage the knowledge during all stages of 
development from acquisition, through development, 
validation and maintenance within a single, unified en-
vironment. 

We discuss these methods in the context of an ongoing 
project to develop realistic human behavior models of sol-
diers engaged in close quarters combat within buildings.  
To date our work has focused on the challenge of acquiring 
new behaviors as distinct from acquiring new internal or 
external representations of the environment, which we will 
pursue at a later point within this project. 

THE CHALLENGE 
The typical approach to knowledge acquisition and con-
struction of a human behavior model consists of: 

1. Review of relevant domain specific literature by the 
development team. 

2. Interviews with a subject matter expert (SME) describ-
ing the overall task domain and then specific example 
scenarios with descriptions of decisions and actions. 
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3. Prototype knowledge-base development based on 
notes taken by knowledge engineering team 

4. Intermediate evaluation of the HBM by the SME 

5. Continued development cycles with knowledge engi-
neers (KEs) adding new behaviors that are then re-
viewed by the SME for accuracy and comp leteness. 

6. Validation of the final model by the SMEs  

7. Extension and maintenance of the model during its use-
ful life, adding behaviors to cover new tasks. 

The most costly parts of the development process are usu-
ally steps 3, 5 and 7--the phases where knowledge engi-
neers encode the behaviors previously described by the 
SMEs.  Based on our experience of building large scale 
HBMs in the tactical air combat domain [1, 2] 75%-90% of 
the effort was spent developing tactical and mission-
specific knowledge.  This experience directly motivated our 
current effort to build visual tools that allow SMEs to more 
directly encode their knowledge, through examples of be-
haviors represented as diagrams. 

A NEW APPROACH  
The core of this approach is to minimize the role of the 
knowledge engineer as much as possible, to let the SME 
enter knowledge in a format friendly to his natural thinking, 
and translating that representation automatically to an ex-
ecutable format. 

The outline of our approach is: 

1. The expert (SME) visually lays out a training scenario 

2. The expert then walks through the scenario, defining 
the desired behavior for the entities within this specific 
scenario 

3. The example scenario is automatically generalized to 
cover more than the specific scenario being described 
by the SME. 

4. Rules are automatically generated from the example 
scenarios and these rules are analyzed to determine 
how well they cover the library of training examples. 

5. This process is applied to the all stages of development 
from acquisition, through development, validation and 
maintenance. 

The overall structure of the system is shown in Figure 1 and in the 
rest of this paper we will describe these elements in more detail. 

BEHAVIOR CAPTURE USING DIAGRAMS 
The biggest problem with current approaches is that there is 
a vast disconnect between the language used by the SMEs 
for describing behaviors and the language used by the 
knowledge engineers for building the HBMs.  A long tradi-
tion of psychological research supports the idea that for 
some problem solving and thinking, diagrams are essential 
[3, 4].  Our hypothesis is that by visually specifying behav-
ior through diagrams, the SMEs will be able to more directly 

encode their knowledge greatly reducing the time to de-
velop HBMs. 

Figure 1.  System Architecture  

The knowledge to be acquired falls into three categories: 

• Goal knowledge 

• Behavior knowledge 

• State knowledge 

At this stage of our research project, the SME is able to 
specify new goal and behavior knowledge in terms of the 
existing state representation.  The SME does this, not by 
directly writing code, but by stepping through diagrammatic 
representations of the example problems in the task domain.  
The current tools assume that the state representation is 
largely constant and is developed in collaboration with the 
SME prior to behavior specification.  We hope to relax this 
assumption in the future.  

Scenario Specification by the Expert 
The first step in entering new knowledge is for the SME to 
create a specific scenario.  The SME lays out a series of 
rooms, doors, walls, kitchen appliances etc.  The SME can 
also place participants, including friendly, opponent and 
neutral forces (see Figure 2).   

 
 

Figure 2.  Scenario Specification 



Example Behavior Specification 
Once the scenario is defined, the SME walks all of the enti-
ties through the scenario, step by step, demonstrating the 
correct behavior.  At each step, the SME selects the appro-
priate behavior for the agent for its current task.  These 
tasks can include situations assessment (e.g. determining 
defensive strong points), high-level tactical goals (e.g. de-
fend a room) or low-level behaviors (e.g. move to a door). 

The majority of the information that the SME must have 
access to is well suited to visual representations, such as 
the layout of a room, the positions of individuals, their ac-
tions etc.  To date, we have focused on representing these 
physical aspects of the task domain, but it is our intention 
to progressively represent data structures that are internal 
to the HBMs, such as abstract situational awareness, cur-
rent objectives and individuals’ attitudes concerning other 
members of the team.  We expect that graphical representa-
tions of these concepts, although more difficult to develop 
initially, will be more natural to use than pure symbolic or 
numeric representations that developers are currently 
forced to use. 

Behaviors are defined by selecting specific actions from an 
available palette (e.g. add-new-goal or move-to-location).  
The user then parameterizes this action by clicking in the 
visual display (e.g. clicking on the room to be cleared or on 
the door to be moved to).  The user can add new goal con-
cepts, together with the parameters they require.  The be-
haviors being defined are not limited to external, physical 
behaviors.  The set of actions can include internal state 
changes, such as new situational awareness information 
(e.g. that a particular door is the mo st likely access point for 
an enemy). 

 
Figure 3.  Behavior Specification with Entity View 

The SME can summon additional views of the situation.  
Most notable is the entity’s view that shows what the se-
lected entity can sense directly through all modalities.  We 

plan to extend this view to show situational analysis, such 
as determining lines of fire, escape routes etc.  Figure 3 
shows an example of this (the lower window is the entity 
view).   

Example Generalization 
If the knowledge base included only annotated examples, 
the knowledge would be very brittle, covering the specific 
training scenarios but little else.  One of the major roles of a 
knowledge engineer in traditional knowledge acquisition is 
to generalize from the examples so that the knowledge cov-
ers a broader collection of situations. 

Generalization is such a key area that we plan to address it 
with multiple techniques.  We will describe two methods we 
are using in this section and another proposed method in 
the future work section. 

Our first approach to generalization is to have the SME walk 
through the scenario marking features in the environment 
that should be considered in each decision.  The more fea-
tures that the SME selects, the more closely tied the ac-
quired knowledge will be to the specific scenario.  If the 
SME selects only a few features, the knowledge generated 
from the scenario will be very general and will cover many 
similar situations. 

For example, when firing at an opponent a subset of the 
important features might be: 

Table 1. Example relevant features  

Object Feature Value 

<target> IsThreat true 

<target> IsAlive true 

<shooter> CanSee(<target>) true 

<shooter> Nearest-Threat <target> 

<shooter> Goal Eliminate-Threats 

 

The process of selecting these relevant features is poten-
tially time consuming and error prone.  Our second generali-
zation technique uses a series of heuristics to reduce both 
the time spent and errors made.  These heuristics attempt to 
identify features that are likely to be relevant to a decision.  
To continue this example, the heuristic associated with 
shooting someone might be to include: 

Table 2. Approximate list of relevant features  

Object Feature Value 

<target> IsThreat true 

<target> IsAlive true 

<shooter> CanSee(<target>) true 

<shooter> Goal     <current-goal> 



That is to say that whenever a “shoot” command is issued, 
these features will be included in the default set of relevant 
features (e.g. to shoot someone you should be able to see 
them).  The set of features to include is domain specific and 
is developed in consultation with the SME prior to behavior 
acquisition.  The important aspect of these heuristics is that 
their predictions do not have to be correct, just close.  The 
SME will review and adjust the set of features, remo ving 
ones that are not in fact relevant or adding others (e.g. the 
Nearest-Threat condition in this example).  This  initial 
‘guess’ at the feature set reduces the workload for the SME. 

This example also serves to demonstrate how the number of 
features selected affects the generality of the knowledge 
that is acquired.  If the Goal feature is removed then the 
knowledge gained will apply any time the entity can see a 
threat, not just when the current task is to eliminate those 
threats.  Conversely, if additional features are added (e.g. 
that the shooter is carrying a certain weapon) then the 
newly acquired knowledge will apply to a smaller range of 
situations. 

A major research issue is how to correctly handle the situa-
tion where the important features relevant to a decision are 
not currently represented within the domain.  We have not 
yet directly addressed this problem although our approach 
will be to allow the user to define new internal structure that 
the HBM can then use for its reasoning.  For example, the 
SME might determine that a particular decision relies on the 
last known location of an enemy.  If that property is not 
currently represented in the task domain, we must present a 
method for its inclusion together with a method to visualize 
this new piece of information.  We expect that developing 
such techniques for dynamically extending the set of con-
cepts will be one of the more challenging aspects of our 
future work on this project.  

Automatic Rule Generation and Analysis 
After the SME has defined the scenario, specified the de-
sired behavior and reasons for that behavior the system can 
then automatically generate a set of rules based on the 
SMEs choices.  This generation process is currently a direct 
mapping from the important feature sets.  The rule gener-
ated from the example shown in Table 1 would be: 

If (<target> ^isThreat true ^isAlive true) & 

 (<shooter> ^canSee <target> ^nearest-threat <target> 

  ^goal eliminate-threats) )  

then 

   (<shooter> ^select-action <action>) 

   ( <action> ^name shoot ^target <target>) 

These rules are executed within the tool and compared to 
the behavior that the SME specified.  If the SME did not 
accurately specify the list of important features for each 
decision then the behavior produced by the rules will not 
match the desired behavior that the SME specified.  For 

example, if an entity shoots an opponent in a crowded room 
the SME should indicate that the reason for this was be-
cause of the target being an opponent (not a friend or neu-
tral).  If the SME forgets to do so, then when the system 
simulates the entity preparing to shoot it will determine that 
the entity cannot uniquely decide which target to select and 
will prompt the SME for further clarification. 

This ability to detect errors in the knowledge base during 
the creation and storage of examples can save an enormous 
amount of time.  In a traditional knowledge acquisition 
process, such an error is often not recognized until the 
knowledge engineers have invested substantial effort and 
the SME may have to be contacted again to explain what 
the correct behavior should be. 

Traceability and Validation 
An important problem in any effort to acquire behavior 
models from experts is how to verify that the acquired 
knowledge has been accurately encoded in the HBM.  By 
formally capturing the training scenarios as diagrams, we 
can both validate that the rules generate the desired behav-
ior in all example scenarios as well as tracing the source of 
each piece of the knowledge base back to the specific dia-
gram drawn by the SME that lead to its inclusion. 

This approach compares very favorably to standard knowl-
edge acquisition processes, where the final knowledge base 
is validated by running a series of test cases and having the 
results inspected by the SMEs.  This testing can be expen-
sive if the number of test scenarios is large and performing 
manual comparisons of the results is a potentially error 
prone process.  Worse, when errors are discovered and 
changes are made to the knowledge base, the only way to 
reliably validate the new system is to repeat all of the tests 
and inspections again. 

Maintenance of the Knowledge Base 
Knowledge acquisition typically focuses on the initial crea-
tion of a knowledge base.  In practice with large scale 
HBMs, there is invariably a need to include new knowledge 
after the delivery of the model.  A significant motivation for 
this project is that the SMEs for one of our behavior models 
(TacAir-Soar [1, 2]) have been frustrated by their inability to 
add new missions and tactics quickly and cheaply. 

Our example-driven approach allows new knowledge to be 
added through the addition of new example scenarios.  We 
hope that the tools are sufficiently easy to use that in many 
cases these additions can be made by the SMEs directly, 
without the involvement of knowledge engineers at all.  The 
SMEs will maintain the library of example diagrams, rather 
than maintaining the underlying code.  As new examples are 
added or existing examples are modified, the automatic 
analysis and validation steps described above will help en-
sure that changes do not break existing behaviors and in-
troduce errors. 



EVALUATION 
We are still in the relatively early stages of this project and 
are still developing the suite of tools.  Once completed, we 
will evaluate the impact the system has on the behavior   
development process through a series of comparative trials. 

1. Baseline trial.  In order to create a baseline for compari-
son, we will have an SME specify, in advance, the re-
quirements for a series of tasks in the MOUT Close 
Quarters Combat domain.  This specification will follow 
the standard model of using written documents to con-
vey the requirements to the knowledge engineer.  The 
engineer will then use their existing development tools 
to complete as many of the tasks as possible within the 
available time. 

2. Comparison trial.  An SME, working in conjunction 
with a knowledge engineer, will use the new tool set to 
complete the same set of tasks.  We will then compare 
the time taken to complete the tasks and the quality of 
the solutions. 

We may also design and conduct additional comparative 
trials to evaluate how well an SME can function working 
alone with the tools or how well a novice user performs with 
the new tools. 

DOMAIN INDEPENDENCE 
Although our examples and evaluation domain both focus 
on the close quarters combat domain, the suite of tools is 
largely domain independent.  The only requirement for a 
domain is that we can build a visual representation of the 
task.  In physical tasks this representation is typically a 
two-dimensional top-down view of the problem domain, but 
the tools only assume that some such visual representation 
can be found (e.g. a 3-dimensional view or even a purely 
internal representation would also suffice). 

 
 Figure 3.  Air Combat Domain 

 In order to demo nstrate that the tools are indeed domain 
independent, we applied the tool to the air combat domain 
in a matter of hours (see Figure 4). 

RELATED WORK 
Visual Programming is the use of graphics to create com-
puter programs [5].  There are a number of visual program-
ming languages (e.g. ARK [6], VIPR [7], Prograph [8]) where 
the program code is visually represented and modified di-
rectly by the user.  These languages focus on general pur-
pose programming languages and tasks and therefore the 
elements represented are basic programming elements like 
classes, objects, methods, iterations and branches.  These 
visual programming systems do not use inference or learn-
ing in the development of the underlying code, instead rely-
ing on the user to directly input all of the new knowledge. 

Programming by Demonstration is a variation on visual pro-
gramming, where the user demonstrates the desired behav-
ior on sample data.  For example, Peridot [9] allows a user to 
draw a desired interface and then “use” the prototype inter-
face while the underlying behavior is induced by the sys-
tem.  Mondrian [10], Chimera [11] and  Metamouse [12] are 
all examples of systems where the user demo nstrates a se-
quence of graphical editing commands and the system 
learns new compound graphical procedures.  The focus of 
these systems is also to learn general purpose programming 
languages (such as LISP).  Although they use machine 
learning techniques to generalize from the sample instances, 
there is very little transfer of the learned knowledge to new 
situations.  Learning how one dialog box functions has, 
appropriately, little effect on how another dialog box will 
operate.  In the knowledge acquis ition task for our work, 
transferring knowledge between different related scenarios 
is an important goal.  Soar’s rich knowledge representation 
and complete AI architecture facilitates this transfer. 

Visual programming focuses on the internal representations 
of the agent while programming by demonstration focuses 
on the external or task domain representations.  Our ap-
proach combines these by representing both certain ele-
ments of the agent’s internal goals and sensed state with 
external representations of the task domain.  This combina-
tion gives the user greater insight into the agent’s behav-
iors and reasoning allowing for better transfer of knowledge 
to the system. 

Visual programming has also been used for specifying sim-
ple robotic behaviors, both in the game MindRover [13] and 
in the legged robotic toy Wonderborg by Bandai. These 
systems show that visual programming can be used effec-
tively by consumers to program simple behaviors without 
having to use computer languages. Our goal is to expand 
this type of programming to the complex behaviors required 
in HBMs. 

Knowledge acquisition by assembling primitive comp o-
nents (e.g. [14, 15]) typically focuses on the acquisition of 



new concepts in the representation language and con-
straints between those concepts.  Our work can also be 
seen as the composition of primitive components.  But in 
contrast, we have focused initially on the acquisition of 
behaviors described in terms of an existing representation 
language rather than on extending the representation. 

FUTURE WORK 

There are many avenues for future research on this project, 
including: 

• During example generalization, the SME may fail to 
identify all critical features or might include some that 
aren’t really important to the decision to select a par-
ticular behavior.  To improve the quality of this feature 
selection process, we will use machine learning tech-
niques to analyze the scenarios.  The learner will iden-
tify commonalities across scenarios as well as propose 
possible specializations to the SME. 

• We currently test for inconsistencies and errors within 
a scenario.  As each scenario is created, the rules gen-
erated from that scenario can be tested against all sce-
narios in the example library (not just the current sce-
nario) to see if they produce contradictory behavior.  
This extension will allow us to detect interactions be-
tween scenarios that are typically difficult and time-
consuming to identify and correct. 

• Example behavior specification is currently limited to a 
single, linear path through each scenario.  We will ex-
tend this  to include support for alternative paths, nega-
tions (things not to do) and temporal ordering con-
straints.  We will also present the user with a visual 
representation of the structure of the behavior over 
time (currently we show a particular state at a particular 
time) and allow the user to modify this structure. 

• As we have mentioned earlier, the current approach 
assumes that the state representation is largely con-
stant and developed in advance of behavior specifica-
tion.  A key future goal is to relax this assumption by 
providing tools to extend the representation language.  
The tools must be simple enough for the SME to make 
these additions, while being efficiently represented so 
the tool scales well to large and complex domains. 
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