Resolving Contentions Between Initial and Learned Knowledge

Robert E. Wray, IIT and Randolph M. Jones
Soar Technology
317 North First Street
Ann Arbor, MI 48103
(734)327-8000
wrayre@acm.org, rjones@soartech.com

Abstract This work describes a problem, knowl-
edge contention, that arises when agent knowl-
edge learned via knowledge compilation contends
with the agent’s original task decomposition knowl-
edge in the execution of agent actions. We show
the circumstances under which the problem oc-
curs, present a solution that avoids knowledge con-
tention, and provide empirical results that show
that knowledge compilation under the proposed so-
lution leads to agents that can integrate planning,
plan execution, and learning without explicit knowl-
edge design for learning.

Keywords: integration of planning, learning and
execution, knowledge compilation, EBL

1 Background and Motivation

Our interest is in integrated planning and ex-
ecution systems that must interact with dy-
namic and quickly changing environments. For
the purposes of this research, such systems may
integrate “traditional” search-based planning
with execution, or they may be purely reac-
tive planners/executors (Agre and Chapman,
1987). In these systems, the time that it takes
to plan can impact the system’s performance
and its ability to learn. The aim of this pa-
per is two-fold: 1) detail some of the advan-
tages of hierarchical plan representations for
execution and learning, and 2) show how par-
allelism in the reasoning architecture leads to
temporal contention between a system’s initial
knowledge and knowledge acquired via compi-
lation. We propose a straightforward solution

to this “knowledge contention.” An empirical

evaluation illustrates both the efficacy of the
solution and the benefits of using knowledge
compilation to improve performance in plan-
ning and execution systems that use hierarchi-
cal decompositions.

2 Compiling Hierarchically
Decomposed Knowledge

One approach to exploiting the advantages of
both hierarchical and flat representations is to
encode agent knowledge initially in a hierar-
chical fashion, and then use knowledge compi-
lation learning to allow the system to develop
more efficient representations itself. Compila-
tion caches the results of a hierarchical decom-
position. If the agent compiles its plan and
execution knowledge for a particular situation,
the compiled knowledge will apply in a simi-
lar situation as soon as the knowledge can be
retrieved, thus obviating the delay that occurs
due to decomposition. Compilation thus pro-
vides experience-directed composition of com-
plex behavior from simple subtasks.
Explanation-based learning (EBL) ap-
proaches have used goal regression techniques
to operationalize problem solving knowledge
in a number of domain classes. EBL uses a
domain theory to generate an explanation of
why some training instance is an example of a
goal concept according to some operationality
criterion (DeJong and Mooney, 1986). For
an interactive agent, the goal concepts for

Task Goals:
on(block-1, block-2)
on(block-2, block-3)
on-table(block-3)

Percepts: clear(block-3)
on(block-3,block-2)
on(block-2 block-1)
on-table(block-1)
higher(gripper,block-3)
left-of (gripper,block-3)
higher(gripper,block-2)

V4 position(block-3, x3, y3)

[]
‘X1‘ X2‘X3 X4‘X5‘

[+

Figure 1: Building a tower in the Blocks World.

EBL are the situations in which a primitive
operation should be generated in the current
external state, where the current external state
is defined by the available percepts and task
goals. This definition of external state serves
as the operationality criterion for execution
domains: a condition is operational if it is
a direct input from perception or a task
goal. Explanation occurs over the hierarchical
knowledge about the task domain, the domain
theory. The training example is a current state
description. Therefore, one way to use EBL in
interactive environments is to operationalize
the generation of a primitive action, which
will thus avoid the decomposition process in
the future.

Knowledge compilation has been used suc-
cessfully in static domains and in dynamic
domains where the learning occurs “off line”
from the execution. EBL has been applied in
dynamic domains in only limited cases (e.g.,
(Bresina et al., 1993; Laird and Rosenbloom,
1990; Mitchell, 1990)). In a dynamic domain,
the training instance may change over time,
making knowledge compilation methods po-
tentially difficult to use. In particular, previ-
ous systems have been dependent upon specific
representation schemes to avoid problems re-
sulting from compilation when the data base
of assertions could become inconsistent. These

problems include compiling knowledge that in-
cludes features that never co-occur (the non-
contemporaneous constraints problem (Wray
et al., 1996)) and conflicts between compiled
and original task knowledge (the knowledge
contention problem).

3 Contention Between Com-
piled and Hierarchical
Knowledge

Knowledge contention arises when duplicate
plans specify the same action in two differ-
ent levels of the hierarchy. Although duplica-
tion would be avoided by a knowledge designer,
compilation does lead to duplicate plans (at
different levels of generalization) for generat-
ing actions.

Cousider, for example, a robot in an interac-
tive variation of the Blocks World (Figure 1).!
Assume that the agent has compiled a rule
for executing a step-right action, compiling
over subtasks such as put-block-on-table
and pick-up-block, as in this rule:

'We use the the familiar, easy-to-understand Blocks
World for illustration. The methods and ideas that fol-
low should be applicable to all agent domains. The
empirical evaluation will describe how these methods
apply in a significantly more complex domain.

Rule 1:

IF Task-Goal(Tower(x,y,z))
Not (On-Table(x))
Clear(x)
Left-of (gripper, x)
Higher(gripper, x)
Ready (gripper)

THEN Execute(step-right (gripper))

If the gripper is ready in the Figure 1 state,
Rule 1 would fire and execute the step-right
action, achieving the desired result: the com-
mand to move the gripper is generated without
referencing the intermediate goals (and thus
there is no delay while creating them).

What does the agent do if the gripper is
not ready? It begins to create a hierarchi-
cal plan by decomposing the problem. A
put-on-table(3) goal is created, followed by
further decomposition to a pick-up goal. At
this point, if we assume that the agent has
no direct means of making the gripper ready,
the agent can progress no further; the agent
now waits to receive the ready signal from the
external environment. When it is perceived,
both the compiled knowledge (Rule 1) and the
original decomposition knowledge are immedi-
ately applicable. Depending on the specific im-
plementation of the agent’s motor system, the
agent may step once to the right, twice, or not
at all.

This example illustrates the potential of con-
tention between an agent’s original task knowl-
edge and its compiled knowledge. The agent
now has two different knowledge sources that
specify the same action in the same state and,
as the example shows, in some cases the ar-
chitecture may try to apply both of these ac-
tions for the same task goal. Solutions to this
problem can also become complicated by the
time it takes to perform hierarchical decompo-
sition. For example, the agent should also deal
correctly with situations where the gripper be-
comes ready in the middle of creating subgoals.

4 A Solution to Knowledge
Contention

Knowledge contention arises from parallelism
in the reasoning architecture. In complex, real-
time tasks, parallelism is an advantage because
an agent can pursue different threads of reason-
ing that can be executed independently of one
another (for example, moving a gripper and
opening a gripper at the same time). However,
allowing unrestricted parallelism can lead to
inconsistencies in an agent’s asserted knowl-
edge (Wray, 1998). Unrestricted parallelism
also allows contending pieces of knowledge to
execute simultaneously.

One way to maintain “good” parallelism
while avoiding many of the problems is to se-
rialize the reasoning between subtasks while
maintaining parallelism within a subtask. We
call this serialization Subtask-limited Reason-
ing (SLR). Ideally, serialization would occur
only when knowledge contention could be de-
tected, but dependency computations are ex-
pensive (Almasi and Gottlieb, 1989). SLR
uses a heuristic notion of dependency, allow-
ing reasoning to progress from the top of
the plan/execution hierarchy to the lowest
level. This imposed serialization determines
which levels of knowledge get first priority (the
heuristic being that knowledge closer to the
base of the hierarchy is presumably more ef-
ficiently represented).

Determining which assertions are associated
with particular levels of the hierarchy is, in the
worst case, linear in the number of pending
assertions (Wray, 1998). Thus, SLR avoids ex-
pensive dependency computations. However,
SLR delays all assertions in lower levels of the
hierarchy, regardless of whether they are de-
pendent on the reasoning causing the delay.
Thus, there is some potential unnecessary loss
in parallelism.

SLR provides a partial solution to knowl-
edge contention. In the example above, both
compiled and decomposition knowledge match
simultaneously. With SLR, the agent would
always invoke the compiled knowledge before

the original knowledge, because the compiled
knowledge applies at a higher level. SLR thus
provides conflict resolution between compiled
and original task knowledge, always preferring
the compiled knowledge because it necessarily
matches higher in the hierarchy.

SLR. alone is not a complete solution. It pre-
vents the rules from firing simultaneously, but
would not prevent the decomposition knowl-
edge from firing after Rule 1. However, the
agent’s assertion of an output command pro-
vides new information, in the form of the is-
sued command. It is possible to tag such com-
mands so that compiled knowledge will include
the tag when issuing the command. For ex-
ample, assume the agent creates a Command
tag whenever it begins execution of a primi-
tive. The original decomposition knowledge
could test that this tag was not asserted before
executing the command by adding Condition 2
to the knowledge that issued the primitive:

Condition 2:
Not (Command (step-right (gripper)))

Absence of the tag can then be used as a
precondition for issuing the command at all
levels of the hierarchy. Further, compilation
would capture this condition in learned rules.
Thus, Condition 2 would now be an additional
condition in Rule 1. If a learned rule is not
fully operationalized (at the top level of the
hierarchy), the presence of the tag will prevent
that rule from firing. Thus, the tagging so-
lution with SLR provides a complete solution
for all knowledge contention between knowl-
edge at different levels of hierarchy, whether
the contending pieces of knowledge are part of
the original task knowledge or learned.

In a sense, such tagging can be viewed as
an explicit way to mark resources (external
actuators) as being busy or free. Making re-
source use explicit in this way is probably a
good idea anyway, from a software engineering
standpoint. Although some knowledge repre-
sentations make resource usage decisions im-
plicit, the problem of knowledge contention

during learning demands a solution that makes
such marking explicit.

5 Serialized
Planning,
Learning

Integration of
Execution, and

We have run a variety of tests to verify that
the proposed architecture results in agent sys-
tems that can compile their knowledge unprob-
lematically. We have instantiated the pro-
posal in a variation of the Soar architecture,
because Soar integrates hierarchical execution
and planning, uses compilation as its learn-
ing mechanism, and allows unrestricted paral-
lelism in the application of knowledge. Agents
implemented using the original Soar architec-
ture (Laird et al., 1987; Newell, 1990) require
extensive knowledge design/re-design when the
architecture’s compilation mechanism is used
in interactive environments (especially real-
time environments). The additional knowl-
edge engineering cost arises from knowledge
contention as well as temporal inconsistencies
in compiled knowledge (Wray et al., 1996).
This section briefly relates the results of us-
ing compilation in the new architecture. We
used previously existing agents, not specifi-
cally designed for learning, and the experi-
ments demonstrate that the new architecture
improves agent performance through compila-
tion, and avoids knowledge contention without
expensive knowledge re-design.

We first applied SLR to a Blocks World sim-
ulation, a testbed created to explore issues in
architecture design. Agents in this simulation
of the blocks world do no explicit planning, but
rather have execution knowledge that allows
the agent to manipulate any initial configura-
tion of blocks into an ordered tower. Although
this domain is simple, agents developed solely
for the integrated planning and execution task,
but not for learning, were not able to com-
plete a single task in this domain when learning
was enabled. The primary cause of failure was
knowledge contention. The agents compiled a
rule similar to the one shown previously, and

2000
wn
801750
<

'E 1500

& 1250 SLR(NL)

= 1000

/g 750 i
500 SLR(PL)

2500 tll..eesseaeeess

20 30 40 50
Outputs

Figure 2: Output Commands vs. rule firings in
the SLR agent for both post-learning (PL) and
non-learning (NL) runs. The plot for the SLR
learning agent does not include data from the
first 100 cases (during which most compilation
occurs). The shade and size of each datum
signifies the the number of blocks moved for
the run: (smallest, black) — 1 block; (larger,
dark gray) — 2 blocks; (larger, medium gray)
— 3 blocks; (largest, light gray) — 4 blocks.

the resulting knowledge contention debilitated
the agent. Thus, the results do not include
learning data without SLR because non-SLR
agents could not perform the task due failures
deriving from knowledge contention.?

Figure 2 summarizes the results of using
SLR with the original agents. The agents were
able to learn without difficulty and without sig-
nificant knowledge re-design. The figure shows
the relationships of production firings to out-
put commands and number of blocks to move
in the non-learning and learning agent. The
figure demonstrates that learning reduces the
knowledge (measured in production rules) that
the agent must apply in order to perform its
task. While compilation cannot reduce the
number of outputs nor number of blocks that
must be moved for any initial configuration of
blocks, it does improve knowledge access per-
formance by about 50%, which results in less
overall time to execute the task. Thus, knowl-

%Significant knowledge re-design of the original
agents could also allow unproblematic performance
with learning.

edge compilation achieves the goal of opera-
tionalizing knowledge to a more efficient form,
while SLR eliminates the knowledge contention
problems normally produced by real-time plan
decomposition and parallelism.

It is not surprising that compilation could be
successful in a simple, relatively static domain
like the Blocks World, so we have also run tests
in a much more complex domain. TacAir-Soar
agents pilot virtual military aircraft in a real-
time computer simulation of tactical combat
(Jones et al., 1999; Tambe et al., 1995). The
combat aircraft domain is only indirectly acces-
sible (each agent uses realistic aircraft sensor
models and can thus perceive only what a pilot
in a real aircraft would sense), nondetermin-
istic (the behavior of other agents cannot be
strictly predicted or anticipated), nonepisodic
(the decisions an agent makes early in the sim-
ulation can impact later options and capa-
bilities), dynamic (the world changes in real
time while the agent is reasoning), and contin-
uous (individual inputs have continuous val-
ues). Domains with these characteristics are
the most difficult ones in which to create and
apply agents (Russell and Norvig, 1995).

Complete analysis of the compilation results
from TacAir-Soar agents is beyond the space
constraints of this paper.® In general, the
TacAir-Soar agents required a modest amount
of knowledge modification for the new architec-
ture, although the changes were motivated by
improvements in the task decomposition rather
than learning (Wray and Laird, 1998). No fur-
ther changes were necessary to overcome ex-
isting knowledge contention problems. Agents
were able to compile their knowledge for effi-
cient execution in this dynamic, complex do-
main.

The TacAir-Soar agents demonstrate that
responsiveness can improve with compilation.
One time-critical task for these agents is the
launch of a missile; once a target aircraft is in
range, the pilot should, as quickly as possible,
push a fire button to launch a selected missile.
Figure 3 illustrates the change in this average

3See (Wray, 1998) for further details.

Reaction Time (sec.)
o o o
» o [oe] =

©
N

4. 6
Trials

Figure 3: Improvement in reaction time with
learning.

reaction time with learning. As in the Blocks
World, the original Soar agents cannot use the
learning capability of the architecture. Be-
cause TacAir-Soar uses a task decomposition
that is several levels deep, the original agents
would fire several missiles at once when compi-
lation created contending pieces of knowledge
for firing. Thus, the datum for the original
agents is constant; they cannot improve their
reaction time.

Initially, the agents under the new solu-
tion respond more slowly than their counter-
parts under the old architecture. Under the
complete SLR solution, knowledge for differ-
ent (sub)tasks must be expressed in individual
units, which causes the initial decrease in reac-
tion time. However, with additional learning
trials, average reaction time decreases. By the
fifth learning trial, reaction time in the new ar-
chitecture has improved in comparison to the
original. In the final learning trial, reaction
time has decreased to about one-tenth of a sec-
ond, a 61% improvement in comparison to the
original agent.

The improvement in reaction time is at-
tributable to two different factors. First, af-
ter compilation, the agent recognizes the condi-
tions under which a missile should be launched
without having to regenerate the plan hierar-
chy. Thus, the agent has gained more oper-
ational knowledge of when to fire a missile.
Second, individual actions have been composed

higher in the hierarchy and no longer require
individual selection and application. Thus,
multiple, independent actions can be initiated
within a single agent reasoning cycle (an ex-
ample of “good” parallelism). These results
show that responsiveness can improve substan-
tially with compilation, improving the quality
of agent behavior. Again, these results were
achieved without significant explicit knowledge
design to handle learning. The SLR solution
provides the infrastructure for non-problematic
compilation.

6 Conclusion

When compiling over a knowledge hierarchy,
knowledge contention can essentially create
race conditions when one or more operational-
ized chunks of knowledge initiates an external
action at the same time as the original domain
knowledge. A race condition is simply a sit-
uation in which the result of some computa-
tion is dependent on the order in which the
knowledge applies. Together with tagging of
actions, SLR eliminates knowledge contention
by assuming that assertions higher in the hi-
erarchy have greater priority than local asser-
tions. This is a reasonable assumption because
the original plan/execution hierarchy is also
built from top to bottom; an agent can be cer-
tain that a subtask is still valid in the current
context only after the higher level context as
been fully elaborated. Parallelism is still desir-
able and maintained for independent pieces of
knowledge within each level of the hierarchy.

References

Agre, P. E. and Chapman, D. (1987). Pengi:
An implementation of a theory of activity.
In Proceedings of the National Conference
on Artificial Intelligence, pages 196201,
Seattle, Washington.

Almasi, G. S. and Gottlieb, A. (1989).
Highly Parallel Computing. Ben-
jamin/Cummings, Redwood City,
California.

Bresina, J., Drummond, M., and Kedar, S.
(1993). Reactive, integrated systems pose
new problems for machine learning. In
Minton, S., editor, Machine Learning
Methods for Planning, chapter 6, pages
159-195. Morgan Kaufmann.

DeJong, G. and Mooney, R. (1986).
Explanation-based learning: An al-
ternative view. Machine Learning,

1(2):145-176.

Jones, R. M., Laird, J. E., Neilsen, P. E., Coul-
ter, K. J., Kenny, P., and Koss, F. V.
(1999). Automated intelligent pilots for
combat flight simulation. AI Magazine,
pages 27-41.

Laird, J. E., Newell, A., and Rosenbloom, P. S.
(1987). Soar: An architecture for general

intelligence. Artificial Intelligence, 33:1—
64.

Laird, J. E. and Rosenbloom, P. S. (1990). In-
tegrating execution, planning, and learn-
ing in Soar for external environments. In
Proceedings of the National Conference on
Artificial Intelligence, pages 1022-1029,
Boston, Massachusetts.

Mitchell, T. M. (1990). Becoming increas-
ingly reactive. In Proceedings of the
National Conference on Artificial Intel-
ligence, pages 1051-1058, Boston, Mas-
sachusetts.

Newell, A. (1990). Unified Theories of Cogni-
tion. Harvard University Press.

Russell, S. and Norvig, P. (1995). Artificial In-
telligence: A Modern Approach. Prentice
Hall.

Tambe, M., Johnson, W. L., Jones, R. M.,
Koss, F., Laird, J. E., Rosenbloom, P. S.,
and Schwamb, K. (1995). Intelligent
agents for interactive simulation environ-
ments. AI Magazine, 16(1):15-39.

Wray, R. E. (1998). Ensuring Reasoning
Consistency in Hierarchical Architectures.
PhD thesis, University of Michigan.

Wray, R. E. and Laird, J. (1998). Maintaining
consistency in hierarchical reasoning. In
Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence, pages
928-935, Madison, Wisconsin.

Wray, R. E., Laird, J., and Jones, R. M. (1996).
Compilation of non-contemporaneous con-
straints. In Proceedings of the Thirteenth
National Conference on Artificial Intelli-
gence, pages 771-778, Portland, Oregon.

