
Redux: Example-Driven Diagrammatic Tools for
 Rapid Knowledge Acquisition

Douglas J. Pearson
ThreePenny Software, LLC
Seattle, WA 98103, USA

douglas.pearson@threepenny.net

John E. Laird
EECS Department, University of Michigan

Ann Arbor, MI 48109, USA
laird@umich.edu

Keywords:
Knowledge acquisition, behavior acquisition, diagrams,

visualization, example-driven, human behavior models, rule
based.

ABSTRACT: The last ten years has seen a revolution in the complexity and realism of human behavior models
(HBMs). However, the cost of developing realistic HBMs continues to increase as much of the detailed and com-
plex knowledge must be manually encoded to produce realistic behavior. The focus of this project is on reducing
the cost of acquiring, validating and maintaining the knowledge used in realistic HBMs. Our approach is to de-
velop tools that allow subject matter experts (SMEs) to specify behavior using abstract scenarios represented as
diagrams. The SME can graphically describe the conditions under which actions and goals should be pursued,
together with the associated reasons for those decisions. The system, guided by the expert’s choices, analyzes and
automatically generalizes from the example scenarios, alerting the SME to inconsistencies and missing knowl-
edge. The system incrementally generates an executable HBM whose behavior the SME can view and modify dur-
ing development. By moving the language of discourse from symbolic programming languages to annotated dia-
grams, the SMEs specify knowledge directly without requiring the intervention of a knowledge engineer to trans-
late between the representations.

1. Introduction
The cost of developing realistic human behavior models
(HBMs) continues to increase as much of the detailed and
complex knowledge must be manually encoded to pro-
duce realistic behavior. The focus of this project is on
reducing this cost by developing tools that allow subject
matter experts (SMEs) to specify behavior using example
scenarios represented as diagrams. The distinguishing
features of this approach are:
• Changing the language of discourse for developing,

validating and maintaining HBMs from symbolic
languages to diagrams.

• Driving the development process through example
scenarios, where an SME walks through ideal behav-
iors, recording reasons for decisions and describing
appropriate goals, actions and methods to pursue.

• Generalizing the examples through direct guidance
from the SME in selecting features for when a par-
ticular course of action is appropriate, coupled with

heuristics to assist in this selection process. This en-
sures that general purpose behaviors are acquired
rather than simple, scripted scenarios.

• Generating and analyzing rules automatically to de-
termine how well they cover the examples specified
by the SME. Where differences arise, the SME is
prompted to correct inconsistencies or fill in missing
knowledge.

• Managing the knowledge during all stages of devel-
opment from acquisition, through development, vali-
dation and maintenance within a single, unified envi-
ronment.

We discuss these methods in the context of an ongoing
project to develop realistic human behavior models of
soldiers engaged in close quarters combat within build-
ings. To date our work has focused on the challenge of
acquiring new behaviors as distinct from acquiring new
internal or external representations of the environment,
which we will pursue at a later point within this project.

2. The Challenge
The typical approach to knowledge acquisition and con-
struction of a human behavior model consists of:
1. Review of relevant domain specific literature by the

development team.
2. Interviews with a subject matter expert (SME) de-

scribing the overall task domain and then specific ex-
ample scenarios with descriptions of decisions and
actions.

3. Prototype knowledge-base development based on
notes taken by knowledge engineering team

4. Intermediate evaluation of the HBM by the SME
5. Continued development cycles with knowledge engi-

neers (KEs) adding new behaviors that are then re-
viewed by the SME for accuracy and completeness.

6. Validation of the final model by the SMEs
7. Extension and maintenance of the model during its

useful life, adding behaviors to cover new tasks.
The most costly parts of the development process are usu-
ally steps 3, 5 and 7--the phases where knowledge engi-
neers encode the behaviors previously described by the
SMEs. Based on our experience of building large scale
HBMs in the tactical air combat and MOUT domains [1,
2] 75%-90% of the effort was spent developing tactical
and mission-specific knowledge. This experience directly
motivated our current effort to build tools that allow
SMEs to more directly encode their knowledge through
examples of behaviors represented as diagrams.

3. A New Approach
The core of this approach is to minimize the role of the
knowledge engineer as much as possible, to let the SME
enter knowledge in a format friendly to his natural think-
ing, and to translate that representation automatically to
an executable format.

The outline of our approach is:
1. The expert (SME) lays out a training scenario as a

sequence of situations represented as diagrams, simi-
lar to a storyboard for a movie.

2. The expert then steps through each situation in the
scenario, defining the desired behavior for the enti-
ties within this specific scenario.

3. The behavior defined in the example scenario is
automatically generalized to cover more than the
specific scenario being described by the SME.

4. Rules are automatically generated from the example
scenarios and these rules are analyzed to determine
how well they cover the library of training examples.

5. The training scenarios are saved in a library that can
be examined (and modified) by other SMEs. The li-
brary of examples can be used for regression testing,
as well as to determine if additional scenarios need to
be considered by the SMEs.

The overall structure of the Redux (Rapid Behavior Ac-
quisition from Diagrams Using Examples) system is
shown in Figure 1 and in the rest of this paper we will
describe these elements in more detail.

3.1 Behavior capture using diagrams

The biggest problem with current approaches is that there
is a vast disconnect between the language used by the
SMEs for describing behaviors and the language used by
the knowledge engineers for building the HBMs. A long
tradition of psychological research supports the idea that
for some problem solving and thinking, diagrams are es-
sential [3, 4]. Our hypothesis is that by specifying behav-
ior through diagrams, the SMEs will be able to more di-
rectly encode their knowledge greatly reducing the time
to develop HBMs.
The knowledge to be acquired falls into three categories:
• Goal knowledge: the goals and objectives of the enti-

ties, such as clear a room, defend a room, or retreat to
safety.

• Behavior knowledge: the knowledge that determines
which goals and actions should be taken to achieve
the current goals given the current situation. This in-
cludes relevant doctrine and tactics.

• State knowledge: the features of the environment that
are relevant to generating behavior, such as the
weapons available to an entity, the location of doors
and windows, available sight lines, areas under en-
emy control.

At this stage of our research project, the SME is able to
specify new goal and behavior knowledge in terms of the
existing state representation. The SME does this, not by
directly writing code, but by stepping through diagram-
matic representations of the example situations in the task
domain. The current tool assumes that the state represen-
tation is developed in collaboration with the SME prior to
behavior specification. We hope to relax this assumption
in the future
.

Figure 1. Redux System Architecture

3.2 Scenario specification by the expert

The first step in entering new knowledge is for the SME
to create a specific situation that is the first step of a sce-
nario. In our example domain, the SME lays out a series
of rooms, doors, walls, kitchen appliances etc. The SME
can also place participants, including friendly, opponent
and neutral forces (see Figure 2).

Figure 2. Scenario Specification

3.3 Example behavior specification

Once the first state of scenario is defined, the SME selects
the appropriate behavior for each entity for its current
task. These tasks can include situations assessment (e.g.
determining defensive strong points), high-level tactical
goals (e.g. defend a room) or low-level behaviors (e.g.
move to a door). Redux then automatically creates the
next state of the scenario, moving entities if appropriate,
and the process repeats, with the SME specifying appro-
priate behavior step by step.

The majority of the information that the SME must have
access to in specifying behavior is well suited to visual
representations, such as the layout of a room, the posi-
tions of individuals, their actions etc. The physical aspects
of the situation are directly represented in the diagrams
and can easily be seen and selected by the SME. How-
ever, there are also more abstract data structures that are
internal to the HBMs, such as abstract situational aware-
ness, current objectives and individuals’ attitudes con-
cerning other members of the team, that are represented
as attribute-value feature vectors. All of an object’s or
entity’s features are available through menus as shown on
the right-hand side of Figure 2 and 3. For some of these
concepts, graphical representations may be possible that
would be easier to use than the purely symbolic attribute-
value representations.
Behaviors are defined by selecting specific actions from
an available palette (e.g. add-new-goal or move-to-
location). The user then parameterizes this action by
clicking in the visual display (e.g. clicking on the room to
be cleared or on the door to be moved to). The user can
add new goal concepts, together with the parameters they
require. The behaviors being defined are not limited to
external, physical behaviors. The set of actions can in-
clude internal state changes, such as new situational
awareness information (e.g. that a particular door is the
most likely access point for an enemy).
The expert builds up a sequence of actions for the entities
step by step. This forms a series of states (S0, S1, …).
These states do not need to occur at fixed time intervals
(e.g. every 10 seconds) but instead occur at points that the
expert deems important. For example, the SME might
define a series of small, detailed moves when defining the
behavior for entering a door, but use longer moves for
advancing down a corridor. Redux automatically deter-
mines the duration of each state by computing the maxi-
mum duration of all of the actions (A0, A1, …) within that

state. For example, a person walking 10 ft at 2 ft/s would
take 5 seconds. The time at each state is then computed
from the sum of the duration of all previous states:

∑
−

=

=
1

0

)()(
n

i

in SdurationStime ;)()(
0

j
m

j
i AdurationMaxSduration

=
=

This approach to time allows the SME to provide an ap-
propriate level of detail to different parts of the scenario.

Figure 3. Behavior Specification with Entity View

The SME can also choose to view the situation in multi-
ple ways. Most notable is the entity’s view that shows
what the selected entity can sense directly through all
modalities. We plan to extend this view to show situ-
ational analysis, such as determining lines of fire, escape
routes etc. Figure 3 shows an example of this (the lower
window is the entity view).
 In many domains, the entities should select actions with a
certain amount of unpredictability. For example, when
soldiers are training against computer controlled oppo-
nents, it is important that the opposing forces do not al-
ways follow the same tactics in a given situation or they
will be too easily defeated. Redux supports this by allow-
ing the SME to define multiple acceptable actions in a
particular state and assigning weights to each path. The
different actions become branches in the scenario, which
allows the SME to efficiently describe multiple training
examples within a single scenario.

Figure 4. Example of conditional and negated actions

In addition to having the SME specifying multiple ac-
tions, the actions themselves can have multiple, mutually
exclusive outcomes. For example, when one agent shoots
at another, the outcome could be a fatal hit, a wounding
hit, or a miss. This leads to additional branches in the
scenario (which the SME can ignore if they are not tacti-
cally distinctive).
The SME can also define actions that should explicitly
not be taken in a particular situation. Figure 4 shows an
example of two weighted alternatives (30% to move, 70%
to shoot) and that the entity should not withdraw in this
situation. Sometimes it is more efficient to specify actions
that should not be taken so that exceptions can be made to
more general rules.

3.4 Example Generalization

If the knowledge base included only specific annotated
examples, the knowledge would be very brittle, covering
the specific training scenarios but little else. One of the
major roles of a knowledge engineer in traditional knowl-
edge acquisition is to generalize from the examples so
that the knowledge covers a broader collection of situa-
tions.
Generalization is such a key area that we address it with
multiple techniques. We will describe two methods we
are using in this section and another proposed method in
the future work section.
Our first approach to generalization is to have the SME
explicitly step through the scenario, marking the features
in the environment that are relevant to each decision. The
more features that the SME selects, the more closely tied
the acquired knowledge will be to the specific scenario.
If the SME selects only a few features, the knowledge
generated from the scenario will be very general and will
cover many similar situations.
For example, when firing at an opponent a subset of the
important features might be:

Table 1. Example relevant features

Object Feature Value

<target> IsThreat true

<target> IsAlive true

<shooter> CanSee(<target>) true
<shooter> Nearest-Threat <target>

<shooter> Goal Eliminate-
Threats

The process of selecting these relevant features is poten-
tially time consuming and error prone. Our second gen-
eralization technique uses a series of heuristics to reduce
both the time spent and errors made. These heuristics
attempt to identify features that are likely to be relevant to
a decision and then the SME can further specialize or

generalize these automatically selected features. To con-
tinue this example, the heuristic associated with shooting
someone might be to include:

Table 2. Approximate list of relevant features

Object Feature Value

<target> IsThreat true

<target> IsAlive true

<shooter> CanSee(<target>) true

<shooter> Goal <current-goal>

That is to say that whenever a “shoot” command is is-
sued, these features will be included in the default set of
relevant features (e.g. to shoot someone you should be
able to see them). We currently assume that the set of
included features is domain specific and is developed in
consultation with the SME prior to behavior acquisition.
The important aspect of these heuristics is that their pre-
dictions do not have to be correct, just close. The SME
will review and adjust the set of features, removing ones
that are not in fact relevant or adding others (e.g. the
Nearest-Threat condition in this example). This initial
‘guess’ at the feature set reduces the workload for the
SME.
This example also serves to demonstrate how the number
of features selected affects the generality of the knowl-
edge that is acquired. If the Goal feature is removed then
the knowledge gained will apply any time the entity can
see a threat, not just when the current task is to eliminate
those threats. Conversely, if additional features are added
(e.g. that the shooter is carrying a certain weapon) then
the newly acquired knowledge will apply to a smaller
range of situations.
A major research issue is how to correctly handle the
situation where the important features relevant to a deci-
sion are not currently represented within the domain. We
have not yet directly addressed this problem although our
approach will be to allow the user to define new internal
structure that the HBM can then use for its reasoning.
For example, the SME might determine that a particular
decision relies on the last known location of an enemy. If
that property is not currently represented in the task do-
main, we must present a method for its inclusion together
with a method to visualize this new piece of information.
We expect that developing such techniques for dynami-
cally extending the set of concepts will be one of the
more challenging aspects of our future work on this pro-
ject.

3.5 Automatic Rule Generation and Analysis

After the SME has defined the scenario, specified the
desired behavior and reasons for that behavior Redux can
automatically generate a set of rules based on the SMEs

choices. This generation process is currently a direct
mapping from the important feature sets. The rule gener-
ated from the example shown in Table 1 would be:
If (<target> ^isThreat true ^isAlive true) &

 (<shooter> ^canSee <target> ^nearest-threat <target>
 ^goal eliminate-threats))

then
 (<shooter> ^select-action <action>)
 (<action> ^name shoot ^target <target>)
These rules are executed within Redux and compared to
the behavior that the SME specified. If the SME did not
accurately specify the list of important features for each
decision then the behavior produced by the rules will not
match the desired behavior that the SME specified. For
example, if an entity shoots an opponent in a crowded
room the SME should indicate that the reason for this was
because of the target being an enemy (not a friend or neu-
tral). If the SME forgets to do so, then when Redux
simulates the entity preparing to shoot it will determine
that the entity cannot uniquely decide which target to se-
lect and will prompt the SME for further clarification.
Redux also can determine that a rule is likely to be over-
general or over-specific during the selection of important
features by the SME. This is done by checking whether
the rule created from the feature set would also apply to
the state immediately preceding or immediately after the
current state. If the rule does match in those states this is
usually a sign that the rule is over-general and additional
features should be specified so it only matches in the cor-
rect state. To continue our example, if the SME forgot to
include the (<shooter> ^CanSee <target>) feature then
this rule would match in the state before the shooter
moved into the room. Figure 5 shows how the tool dis-
plays an error with the red stop light, signaling that the
SME should correct the rule. This alert is only provided
as advice to the SME as there are valid situations where a
match will occur in neighboring states.

Figure 5. Immediate Detection of Errors

Rules that are likely to be over-specific can also be de-
termined by categorizing certain features of the domain as
being highly specific features. For example, it is unlikely
that an entity will move to exactly the same location in
two different scenarios, so a rule that includes an entity’s
exact position is probably over-specific.
This ability to detect errors in the knowledge base during
the creation and storage of examples can save an enor-
mous amount of time. In a traditional knowledge acquisi-
tion process, such an error is often not recognized until
the knowledge engineers have invested substantial effort
and the SME may have to be contacted again to explain
what the correct behavior should be.

3.6 Rule Assisted Knowledge Acquisition

As rules are built up from prior situations and scenarios,
Redux can use these during the knowledge acquisition
process to control behavior of the agents, even before the
SME has specified actions. Thus, the knowledge acquisi-
tion process becomes more of a collaboration between the
tool and the SME, with Redux being able to generate be-
havior for familiar situations. This simplifies the SMEs
job to being one of verifying behavior and filling in the
blanks – places that the tool does not yet have sufficient
knowledge to generate behavior.

3.7 Traceability and Validation

An important problem in any effort to acquire behavior
models from experts is how to verify that the acquired
knowledge has been accurately encoded in the HBM. By
formally capturing the training scenarios as diagrams, we
can both validate that the rules generate the desired be-
havior in all example scenarios as well as tracing the
source of each piece of the knowledge base back to the
specific diagram drawn by the SME that lead to its inclu-
sion. If errors are detected, then the point of discussion is
a specific concrete example as opposed to an abstract
rule. Thus, an SME brought in to verify the system can
examine both generated behavior and the original exam-
ples, and if there are disagreements, they can be readily
settled by either modifying the scenario or generating new
scenarios, with new correct behavior.
This approach compares very favorably to standard
knowledge acquisition processes, where the final knowl-
edge base is validated by running a series of test cases
and having the results inspected by the SMEs. This test-
ing can be expensive if the number of test scenarios is
large and performing manual comparisons of the results is
a potentially error prone process. Worse, when errors are
discovered and changes are made to the knowledge base,
the only way to reliably validate the new model is to re-
peat all of the tests and inspections again. Unfortunately,
this final phase of regression testing is rarely done in cur-
rent systems because it is prohibitively expensive. How-

ever, in our approach, the examples are always there and
regression testing is a core part of the methodology.

3.8 Maintenance of the Knowledge Base

Knowledge acquisition typically focuses on the initial
creation of a knowledge base. In practice with large scale
HBMs, there is invariably a need to include new knowl-
edge after the delivery of the model. A significant moti-
vation for this project is that the SMEs for one of our be-
havior models (TacAir-Soar [1, 2]) have been frustrated
by their inability to add new missions and tactics quickly
and cheaply.
Our example-driven approach allows new knowledge to
be added through the addition of new example scenarios.
We hope that the tools are sufficiently easy to use that in
many cases these additions can be made by the SMEs
directly, without the involvement of knowledge engineers
at all. The SMEs will maintain the library of example
diagrams, rather than maintaining the underlying code.
As new examples are added or existing examples are
modified, the automatic analysis and validation steps de-
scribed above will help ensure that changes do not break
existing behaviors and introduce errors.

4. Evaluation
We are still in the relatively early stages of this project
and are still developing the suite of tools but the first,
preliminary, results are encouraging. We used Redux to
define a simple scenario where a single entity moves
through a series of rooms and takes up a defensive posi-
tion. The time this took using the tool are as follows:

• Defining the scenario (22 rooms and doors)
– 4.5 minutes

• Specifying the walkthrough (19 states)
– 5 minutes

• Generating and validating a set of rules (12
rules) – 4.75 minutes

Total time: 14.25 minutes to move from scenario to rules
for a single tactic developed by an expert Redux user. To
put times such as this in context, we need to run compara-
tive trials to determine how well an SME can use the tool
without the help of a KE and how long it takes to manu-
ally encode a given tactic without use of the tools.
Once Redux is complete, we will evaluate it based on
these trials:
1. Baseline trial. In order to create a baseline for com-

parison, we will have an SME specify, in advance,
the requirements for a series of tasks in the MOUT
Close Quarters Combat domain. This specification
will follow the standard model of using written
documents to convey the requirements to the knowl-
edge engineer. The engineer will then use their exist-

ing development tools to complete as many of the
tasks as possible within the available time.

2. Comparison trial. An SME, working in conjunction
with a knowledge engineer, will use the new tool set
to complete the same set of tasks. We will then com-
pare the time taken to complete the tasks and the
quality of the solutions.

We may also design and conduct additional comparative
trials to evaluate how well an SME can function working
alone with the tools or how well a novice user performs
with the new tools.

5. Domain Independence
Although our examples and evaluation domain both focus
on the close quarters combat domain, the suite of tools is
largely domain independent. The only requirement for a
domain is that we can build a visual representation of the
task. In physical tasks this representation is typically a
two-dimensional top-down view of the problem domain,
but the tool only assumes that some such visual represen-
tation can be found (e.g. a 3-dimensional view or even a
purely internal representation would also suffice).

Figure 6. Air Combat Domain

In order to demonstrate that Redux is indeed domain in-
dependent, we applied the tool to the air combat domain
in a matter of hours (see Figure 6).

6. Related Work
Visual Programming is the use of graphics to create com-
puter programs [5]. There are a number of visual pro-
gramming languages (e.g. ARK [6], VIPR [7], Prograph
[8]) where the program code is visually represented and
modified directly by the user. These languages focus on
general purpose programming languages and tasks and
therefore the elements represented are basic programming
elements like classes, objects, methods, iterations and

branches. These visual programming systems do not use
inference or learning in the development of the underly-
ing code, instead relying on the user to directly input all
of the new knowledge.
Programming by Demonstration is a variation on visual
programming, where the user demonstrates the desired
behavior on sample data. For example, Peridot [9] allows
a user to draw a desired interface and then “use” the pro-
totype interface while the underlying behavior is induced
by the system. Mondrian [10], Chimera [11] and Meta-
mouse [12] are all examples of systems where the user
demonstrates a sequence of graphical editing commands
and the system learns new compound graphical proce-
dures. The focus of these systems is also to learn general
purpose programming languages (such as LISP). Al-
though they use machine learning techniques to general-
ize from the sample instances, there is very little transfer
of the learned knowledge to new situations. Learning
how one dialog box functions has, appropriately, little
effect on how another dialog box will operate. In the
knowledge acquisition task for our work, transferring
knowledge between different related scenarios is an im-
portant goal. Our use of a rich knowledge representation
and complete AI architecture facilitates this transfer.
Visual programming focuses on the internal representa-
tions of the agent while programming by demonstration
focuses on the external or task domain representations.
Our approach combines these by representing both certain
elements of the agent’s internal goals and sensed state
with external representations of the task domain. This
combination gives the user greater insight into the agent’s
behaviors and reasoning allowing for better transfer of
knowledge to the system.
Visual programming has also been used for specifying
simple robotic behaviors, both in the game MindRover
(www.mindrover.com) and in the legged robotic toy
Wonderborg by Bandai. These systems show that visual
programming can be used effectively by consumers to
program simple behaviors without having to use com-
puter languages. Our goal is to expand this type of pro-
gramming to the complex behaviors required in HBMs.
Knowledge acquisition by assembling primitive compo-
nents (e.g. [13, 14]) typically focuses on the acquisition
of new concepts in the representation language and con-
straints between those concepts. Our work can also be
seen as the composition of primitive components. But in
contrast, we have focused initially on the acquisition of
behaviors described in terms of an existing representation
language rather than on extending the representation.

7. Future Work
There are many avenues for future research on this pro-
ject, including:
During example generalization, the SME may fail to iden-
tify all critical features or might include some that aren’t
really important to the decision to select a particular be-

havior. To improve the quality of this feature selection
process, we will use machine learning techniques to ana-
lyze the scenarios. The learner will identify commonal-
ities across scenarios as well as propose possible speciali-
zations to the SME.
We currently test for inconsistencies and errors within a
scenario. As each scenario is created, the rules generated
from that scenario can be tested against all scenarios in
the example library (not just the current scenario) to see if
they produce contradictory behavior. This extension will
allow us to detect interactions between scenarios that are
typically difficult and time-consuming to identify and
correct.
As we have mentioned earlier, the current approach as-
sumes that the state representation is largely constant and
developed in advance of behavior specification. A key
future goal is to relax this assumption by providing tools
to extend the representation language. The tools must be
simple enough for the SME to make these additions,
while being efficiently represented so the tool scales well
to large and complex domains.

8. References
[1] Jones, R. M., Laird, J. E., Nielsen P. E., Coulter, K.,

Kenny, P., and Koss, F. Automated Intelligent Pilots
for Combat Flight Simulation, AI Magazine , Spring
1999, Vol. 20, No. 1, pp. 27-42.

[2] Robert E. Wray, John E. Laird, Andrew Nuxoll, and
Randolph M. Jones. Intelligent opponents for virtual
reality trainers. In Proceedings of the Interser-
vice/Industry Training, Simulation and Education
Conference (I/ITSEC) 2002, Orlando, FL, Dec 2002.

[3] Larkin, J. and Simon, H. Why a diagram is (some-
times) worth 10,000 words. Cognitive Science 11:65-
99, 1987.

[4] Shah, P., & Miyake, A. The separability of working
memory resources for spatial thinking and language
processing: An individual differences approach.
Journal of Experimental Psychology: General, 125, 4-
27, 1996

[5] Myers B., "Taxonomies of Visual Programming and
Program Visualization," Journal of Visual Languages
and Computing, Vol. 1, No. 1, March 1990, pp. 97 -
123.

[6] Smith, R. The alternate reality kit: An animated envi-
ronment for creating interactive simulations. In Proc.
1986 IEEE Workshop Visual Languages, pp. 99-106,
1986.

[7] Citrin, W., Hall, R., and Zorn, B. Programming with
visual expressions. In Proc. 1995 IEEE Symposium
Visual Languages, pp. 294-301, 1995

[8] Cox, P. T. and Pietryzkowsky, T. Using a pictorial
representation to combine dataflow and object-

orientation in a language-independent programming
mechanism. In Glinert, E. P., editor, Visual Program-
ming Environments: Paradigms and Systems. IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[9] Myers B., "Taxonomies of Visual Programming and
Program Visualization," Journal of Visual Languages
and Computing, Vol. 1, No. 1, March 1990, pp. 97 -
123.

[10] Lieberman H.., “Mondrian: A Teachable Graphical
Editor”. In Allen Cypher, editor, Watch What I Do:
Programming by Demonstration, MIT Press, Cam-
bridge MA, 1993, Chapter 16.

[11] Kurlander D., “Chimera: Example-Based Graphical
Editing”. In Allen Cypher, editor, Watch What I Do:
Programming by Demonstration, MIT Press, Cam-
bridge MA, 1993, Chapter 12.

[12] Maulsby D. and Witten I.., “Metamouse: An Instruc-
tible Agent for Programming by Demonstration”. In
Allen Cypher, editor, Watch What I Do: Programming
by Demonstration, MIT Press, Cambridge MA, 1993,
Chapter 6.

[13] Clark P., Hayes P., Reichherzer T., Thompson J.,
Barker K., Porter B., Chaudhri V., Rodriguez A.,
Thomere J., Mishra S., Gil Y. Knowledge entry as the
graphical assembly of components. In Proceedings of
the International Conference on Knowledge Capture
2001, Victoria, B.C., Canada, pp 22-29.

[14] Handschuh S., Staab S., Maedche A. CREAM: cre-
ating relational metadata with a component-based, on-
tology-driven annotation framework. In Proceedings
of the International Conference on Knowledge Cap-
ture 2001, Victoria, B.C., Canada, pp 76-83.

Author Biographies
DOUGLAS J. PEARSON is a Software Architect and
Founder of ThreePenny Software, LLC. He received his
Ph.D. in Computer Science from the University of Michi-
gan in 1996 where his thesis focused on machine learning
of planning knowledge. He now runs a small software
company developing commercial quality applications in a
wide range of different fields.

JOHN E. LAIRD is a Professor of Electrical Engineer-
ing and Computer Science at the University of Michigan
and Associate Chair of the Computer Science and Engi-
neering Division. He received his Ph.D. in Computer
Science from Carnegie Mellon University in 1983. He is
one of the original developers of the Soar architecture and
leads its continued development and evolution. His cur-
rent research includes extending Soar through the addi-
tion of reinforcement and episodic learning. He is a foun-
der of Soar Technology and is a Fellow of AAAI.

	1. Introduction
	2. The Challenge
	3. A New Approach
	3.1 Behavior capture using diagrams
	3.2 Scenario specification by the expert
	3.3 Example behavior specification
	3.4 Example Generalization
	3.5 Automatic Rule Generation and Analysis
	3.6 Rule Assisted Knowledge Acquisition
	3.7 Traceability and Validation
	3.8 Maintenance of the Knowledge Base

	4. Evaluation
	5. Domain Independence
	6. Related Work
	7. Future Work
	8. References
	Author Biographies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

