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Abstract

This paper discusses the challenge of designing in-
structable agents that can learn through interaction with
a human expert. Learning through instruction is a pow-
erful paradigm for acquiring knowledge because it lim-
its the complexity of the learning task in a variety of
ways. To support learning through instruction, the agent
must be able to effectively communicate its lack of
knowledge to the human, comprehend instructions, and
apply them to the ongoing task. We identify some prob-
lems of concern when designing instructable agents. We
propose an agent design that addresses some of these
problems. We instantiate this design in the Soar cogni-
tive architecture and analyze its capabilities on a learn-
ing task.

Introduction

We are interested in long-living, intelligent agents that
demonstrate reasonably complex behavior on a variety of
tasks, adapt to novel environments and operate with a cer-
tain degree of autonomy. To meet these requirements, the
agents must be efficient learners, and must actively acquire
new knowledge throughout their lifetimes. Learning through
self-directed experience alone can be slow, requiring re-
peated interactions with the environment. In this paper, we
investigate using instruction to greatly speed learning. The
instruction we are pursuing is situated and interactive. It is
situated because it takes place while the agent is perform-
ing the task, which eliminates many forms of ambiguity as
the instructor refers directly to features and objects in the
environment that are sensed by the agent. It is interactive
because the agent can ask questions to resolve ambiguity
and to gather knowledge when its own knowledge is insuf-
ficient to make progress on the task. In general, instruction
is a powerful approach because it reduces the complexity of
the agent’s learning task in many ways.
• It reduces the perceptual complexity by focusing the at-

tention of the learner on elements of the environment that
are relevant to the task;
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• It reduces the semantic complexity by identifying relevant
features of objects.

• It reduces the need for exhaustive exploration by leading
the learner through useful training experiences.

• It encourages discovery of dependencies between actions
through explicit explanation.

• It helps the learner integrate new knowledge into a com-
prehensive schema through association with prior knowl-
edge.

• It validates the newly acquired knowledge by testing per-
formance and providing suitable reinforcement.

• It enables direct communication of desirable and undesir-
able states.

• It facilitates incremental learning by scaffolding.

We focus on instruction of goal-oriented behaviors in exter-
nal object-oriented, relational domains, where the agent has
pre-programmed primitive actions and related action mod-
els. The agent is expected to be able to learn achieve novel
goals that require arbitrary compositions of its primitive ac-
tions. In this work we analyze instructable agents from three
viewpoints:

1. We identify and discuss challenges of designing agents
that can acquire knowledge by communicating with a hu-
man instructor.

2. We characterize the problem of learning a composite ac-
tion through instruction, in an object-oriented, relational
environment.

3. We present a general design that addresses some of the
identified challenges and analyze agents instantiated in a
cognitive architecture.

Related Work

Researchers have investigated various ways to incorporate
human knowledge into agent learning; however, there has
been little previous work on situated interactive instruction.
There has been extensive research on learning from exam-
ples, observation, or imitation, such as early work on learn-
ing to fly a simulated aircraft (Sammut et al., 1992). In these
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systems (Van Lent and Laird, 1999; Allen et al., 2007; Din-
erstein, Egbert, and Ventura, 2007), the agent observes a hu-
man perform the task, maps that performance onto it own ca-
pabilities and tries to induce the knowledge, goals, or reward
function that the human had that produced the behavior. In
contrast, with instruction, the agent is performing the task,
and recieves instruction on how to perform those aspects of
the tasks where it lacks knowledge.

Another approach has been to have a human instructor pro-
vide feedback on agent performance, usually within a rein-
forcement learning framework (Maclin and Shavlik, 1996;
Thomaz, Hoffman, and Breazeal, 2006; Goertzel et al.,
2008; Knox and Stone, 2010). In contrast to these works, we
are interested in interactive and explicit instruction where
the agent learner and instructor can communicate with each
other about the task.

Recently, emphasis on understanding natural language com-
prehension in robots has lead to work in command driven
embodied agents. This work (Dzifcak et al., 2009; Lopes
and Teixeira, 2000; Lauria et al., 2001; Huang et al., 2010)
has explored how natural language instruction can be used to
train personal robots. However, most of this work has con-
centrated on the problem of grounding natural language into
robots’ actions and perceptions and developing embodied
agents that can be driven by commands. Our work in contrast
is concentrated on developing a general framework through
which agents can learn procedures from commands given by
an instructor and then reuse that knowledge in the future.

Some of the initial investigation of how agents can learn
through explicit instruction sequence from a human expert
was done by Webber and Badler (1995). The author demon-
strated that agents’ understanding and use of instruction can
complement what they derive from their experience in the
environment. Huffman and Laird (1995) identified the prop-
erties of tutorial instruction, explored the requirements on
instructable agent design, and demonstrated that a simulated
robotic agent could learn useful procedures from instruc-
tion in natural language. Our work is an extension to this
work and looks at the general issue of designing instructable
agents in a cognitive architecture.

The Instructional Learning Problem

The task of learning to act in novel environments while com-
municating with a human expert presents several challeng-
ing problems to agent designers. Complete or partial solu-
tions to these problems must be developed in order to design
agents that can effectively communicate their lack of under-
standing of the environment to a human, interpret instruc-
tions, apply them correctly to the task and acquire knowl-
edge that is useful to the agent in future. These problems
can be classified into two functional groups, the communi-
cation problem and the learning problem. In the following
sections (and Figure 1), we elaborate these problems, and
discuss their nature. We assume that both the instructor and
the learner agent can percieve the environment and hence,

their observations are similar and are grounded in the en-
vironment. In addition, we assume that the instructor can
observe agent’s interaction with the environment.

The Communication Problem

What constitutes a good dialog in an instructional setting?
The goal of communication between a human instructor and
an agent learner is to enhance the knowledge of the agent
about the environment. In a typical setting, the agent’s dis-
course is likely to contain information about its failure to
progress in the current situation, the reason of the failure,
and a question posed to the instructor. The human instruc-
tor responds by providing the information required by the
agent to proceed further. The human can also ask the agent
to explain its behavior, in a response to which the agent an-
alyzes its decisions and generates a discourse that describes
the reason for its behavior. The communication is interac-
tive, explicit and grounded in the elements of the environ-
ment. In general, an agent capable of communicating with
a human must solve three distinct but related problems. It
must, compose a reasonable query (the content problem),
generate comprehensible discourse and understand instruc-
tions (the mapping problem), and support a flexible dialog
with the instructor (the interaction problem).

The Content Problem: What information should be com-
municated to the human? An agent acting in a complex envi-
ronment is required to maintain a large state representation
composed of its perceptions, internal data-structures, and se-
mantic knowledge of the environment. If the agent is un-
able to apply its domain knowledge to the situation, it can
communicate with the instructor to gather more information
about the task. However, the complete state description is
rarely relevant to the information sought by the agent. A dis-
course generated from its entire state would be long, hard to
comprehend and would fail to convey the cause of the fail-
ure. To communicate effectively, the agent has to compose
a minimal set of state elements that can help the instruc-
tor accurately identify the cause of failure and provide the
correct response. Similar problems arise when the instruc-
tor asks the agent to provide an explanation of its actions.
The explanation should be reasonable and at the right level
of abstraction.

Several heuristics can be used to compose a precise but in-
formative response. A model of the human instructor can be
used by the agent to filter out information that cannot be per-
ceived by a human (wireless signals, laser data, way-points)
or can be deduced from observations (presence of walls in a
room). Very specific information about the agents own state
(voltage on motors) is also less likely to be useful. An as-
sumption of shared environment can be used to limit the size
of queries by referring to objects present in the environment
instead of providing a detailed description of their attributes
and relations.

A part of this problem - generating explanations in agents -
has been analyzed by Johnson (1994) and Harbers, Meyer,
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Figure 1: The Instructional Learning Problem

and Van Den Bosch (2009). The authors discuss some
heuristics to filter out information to reduce information
overload in explanations.

The Mapping Problem: How to translate internal state
representations to a commonly understood language? Once
the agent has decided the contents of its discourse, it has
to translate the internal representation of the discourse to a
language that can be comprehended by the human. This is
the mapping problem. It also involves comprehending in-
structions in natural language and translating the informa-
tion content of an instruction to agent’s internal representa-
tions.

Solving the mapping problem in general involves complexi-
ties of natural language comprehension and generation. Just
and Carpenter (1992) pointed out that instructions can be
linguistically complex and difficult to comprehend, inde-
pendent of the difficulty of the task being instructed. Even
in simple instructions, objects and actions often are incom-
pletely specified and agent has to rely on its domain knowl-
edge and perceptions. Wermter et al. (2003) discuss that
grounding action verbs onto agent’s vision and motor ac-
tions is a hard problem, thus limiting the language that can
be utilized for communication.

Goertzel et al. (2010) designed a software architecture that
enables virtual agents in a virtual world carry out simple
English language interactions grounded in their perceptions
and actions. Other works (Dzifcak et al., 2009; Huang et
al., 2010) have explored the mapping problem in embodied
agents. It remains to be analyzed if these theories can ap-
plied in an instructional setting.

The Interaction Problem How to communicate while act-
ing in the environment? How to maintain a dialog? We are
interested in agents that are more than a dialog system, we
are looking at agents that can maintain a dialog as they act
and learn in the environment. The agent cannot direct all its
resources to processing the instruction, since it has to re-
main reactive to the environmental changes. An instruction
event is composed of several instructions that are applicable
in specific contexts and order. To apply these instructions in

the correct context in future, the agent has to maintain an in-
structional state while it is moving about and changing the
environment.

The system can be constrained in several ways such that the
communication is predicted and can be planned for. Com-
munication can be agent-initiated only, that is, the agent be-
gins communicating with the instructor when it faces a prob-
lem. The agent knows when to expect a response from the
instructor and can process it without affecting its actions in
the environment.

Allen et al. (2007) introduce a system that integrates inter-
active dialog with reasoning and planning. They concentrate
on instructor-initiated communication, where the instructor
begins communicating with the agent to teach it a new task.

The Learning Problem

How to derive knowledge from instruction and apply it in
the environment? The goal of communicating with an expert
is to derive new knowledge about a task. Typically, a set of
instructions is provided for a new task. The agent should
be able to apply an instruction within the context of the task
and prior instructions. The agent should be able to merge the
information contained in an instruction with its perceptions
in the environment and its prior knowledge of the task such
that this knowledge is applicable in future. The agent should
be able to solve the following two problems.

The Knowledge Problem: How to apply the instruction
to the current task? An instructable agent should be able to
handle instruction events applicable to the ongoing task and
discourse content. An instruction can carry a wide range of
knowledge, from semantic knowledge about the objects in
the world, procedural knowledge about how to navigate and
handle objects, control knowledge about the preference or-
der of available options to meta knowledge about the instruc-
tion event itself and refinement of pre-conditions and goal
state. The agent requires the ability to identify the type of
knowledge in an instructional event, relate it to the ongoing
task and apply it at the appropriate situation. Given the wide
range of knowledge an instruction event can carry, this is
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a hard requirement to meet in general. Prior systems (Web-
ber and Badler, 1995; Huffman and Laird, 1995) constrained
the instructional events to carry specific types of knowledge
to allow for detailed analysis of instructional learning in
agents.

The Transfer Problem: How to apply the instruction to
similar tasks in future? The agent should be able to retain the
instruction provided and apply it in future. However, mem-
orizing a single instruction without a context in which it is
applicable, is not useful. The agent should be able to orga-
nize the information in the complete instructional event and
relate it to the current task such that it has enough informa-
tion to apply the instructions in future.

The second stage of the transfer problem is the problem of
learning generally applicable knowledge from instructions
that apply to specific situations. Huffman and Laird (1995)
introduced the concept of generalizing from situated ex-
planation where the agent can acquire generally applicable
knowledge by analyzing its observations of the environment
when the instruction was provided. It is based on a more gen-
eral theory of explanation based generalization (Mitchell,
Keller, and Kedar-Cabelli, 1986).

Constraining Instructional Learning

The focus of this work is to implement and analyze agents
that provide solutions to a subset of the problems identified
in the previous section in a constrained learning task.

Learning Task Characterization

We are interested in analyzing agents that can use instruc-
tions to learn composite actions in object-oriented and re-
lational domains. We define a composite action as a set of
primitive actions that lead to a specific goal. The goal of
a composite action is unknown to the agent before the be-
ginning of the instruction. Instruction provides an example
execution of the composite action from which the agent can
deduce the goal.

The domains can be described by a set of classes, a set
of predicates defined over classes, and a set of primi-
tive actions in a classical planning setting. We define a
set of classes, C = {C1, ...,Cc}, such that each class in-
cludes a set of attributes, Attribute(C) = {C.a1, ...,C.aa},
and each attribute has a domain, Dom(C.a). The environ-
ment consists of a set of objects, O = {o1, ...,oo}, where
each object is an instance of one class, oεCi. The state
of an object is a value assignment to all its attributes,
os = {o.a1(Val(Ci.a1))...o.aa(Val(Ci.aa))}. A set of pred-
icates, P = {P1...Pp} is defined over instantiated objects,
Pi(om, ...,on). The state of the world is the set of true predi-
cates, S= {Pk, ...,Pl}. A primitive action, PA= {pa1...papa}
is characterized by pre-conditions, Spa - set of true predi-
cates for the action to apply, and a goal - set of true pred-
icates after the action has been applied in the environment,
Gpa and can be represented by the triplet, (Spa, pa,Gpa).

Blocks World Domain The agents presented in this work
learn composite actions in the blocks world domain (shown
in Figure 3). The state can be described by two predi-
cates: ontop(<b1>, <b2>) and clear(<b>). It consists
of two classes: block and table. Both classes have only
one attribute, name. The domain has one primitive action:
move-block(<b1>, <b2>). The domain is relatively sim-
ple, however it is representative of the types of domains we
are interested in. Despite its simplicity, state space is large
and learning composite actions through instructions has its
advantages.

Composite Actions and Learning: To learn how to per-
form a composite action ca, the agent needs to derive the
following knowledge from the instruction and subsequent
example execution of the task in the domain -
• proposal knowledge: the set of predicates that have to be

true to invoke a composite action, Sca,

• application knowledge: the set of primitive actions to be
executed in sequence, {pam, ...pan}, and

• termination knowledge: the goal conditions, Gca

The composite action can be represented by the triplet,
(Sca,ca,Gca). The number of objects |O|, predicates |P| and
primitive actions |PA| in a domain give an intuition about
how hard the problem of learning a new task is. The num-
ber of predicates are combinatorial in the number of objects,
|O| in the world, which have multiple attributes of varying
values.

|P|= |O|× ...×|O|
The state space, S of the world is exponential in the number
of predicates, |P|.

|S|= 2|P|

Given |S|, determining the goal conditions for a composite
action is a hard problem for learning agents. Given |PA|,
there are many ways to reach the goal condition. Deriving
application knowledge involves searching through the space
of possible actions to reach the goal. If the number of prim-
itive actions is large enough, the search space can become
intractable.

Instruction can reduce some of these complexities by pro-
viding an example execution of a composite action, through
which the agent can derive proposal and application knowl-
edge and goal conditions. The sequence of primitive ac-
tions provided during the instruction greatly limits the
search space and the agent can avoid exploring parts of
search space which might not lead to the goal condi-
tions. In the blocks world domain, to learn a composite
action stack(<block1>,<block2>,<block3>), the agent
will be provided with a one grounded example of this action,
stack(A,D,C) composed of a sequence of primitive actions
starting and ending in specific states. The agent is expected
to learn how to execute this specific example and to derive
general knowledge about the relationship between the primi-
tive actions and the goal state, thereby learning a general im-
plementation of stack(<block1>,<block2>,<block3>).
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Instruction Event: We define an instruction event as the
set of instructions provided for learning a composite ac-
tion, i.e. the set of related primitive actions. For example,
the instruction event for composite action stack(A,D,C)
would include an instruction event containing the prim-
itive actions {move-block (D,C), move-block (F,G),
move-block (A,D)} (shown in Figure 3).

Problems of Interest

We are interested in analyzing two problems on the learn-
ing task previously described. We develop solutions for the
interaction problem and the learning problem and make
workable assumptions about others.
• The Content problem: To learn a composite action the

agent requires the related sequence of primitive actions.
We assume that the agent and the instructor know the
composite action the agent is learning. To prompt for a
primitive action the agent informs the instructor of the
last primitive action it executed, to which the instructor
responds by providing the next primitive action or indi-
cating that the composite action has ended.

• The Mapping problem: We implemented a simple, lim-
ited, artificial language of communication between the
agent and the instructor. The agent can map its action
representation to symbols such as move-block and its
state representation to symbols such as ontop and block.
A typical sentence that describes a primitive action is
move-block moving-block D destination Table.

• The Interaction problem: We focus on agent-initiated
communication in this work. The inability of the agent to
proceed further in the environment marks the beginning
of communication with the instructor. The instructor only
responds to prompting by the agent. (details in Agent Im-
plementation and Analysis section).

• The Knowledge problem: We limit the information con-
tained in the instruction to a declarative representation of
the primitive action. The agent uses this information to
build a declarative structure of the composite action.

• The Transfer problem: The agent merges the declarative
structure of the composite action and context derived from
the environment to derive general application and ter-
mination knowledge. (details in Agent Implementation
and Analysis section).

Requirements on Agent Design

The properties of the learning task and the problems we are
analyzing impose the following requirements on agent de-
sign. The agent should be able to -

1. represent the current state of the world.

2. represent the primitive actions and execute them.

3. model the effects of the primitive actions on the world.

4. communicate with the instructor about the primitive ac-
tions.

5. memorize the declarative structure of the composite ac-
tions and related instruction.

6. remember the context and relevant states of instruction.

7. generalize from a specific example to a general theory.
We look to Soar cognitive architecture to provide architec-
tural solutions to these requirements.

Soar Cognitive Architecture

Soar (Laird, 2008) is a symbolic theory of cognition based
on the problem space hypothesis, that has been extensively
used in designing AI systems and cognitive models. Soar’s
main strength has been its ability to solve diverse problems
by employing various reasoning and learning mechanisms.
To represent different forms knowledge, Soar has long- and
short-term memories. Following architecture elements re-
spond to the design requirements on our agents.

Working Memory

Soar’s working memory holds the agent’s current state (re-
quirement 1), which is derived from its perceptions, its be-
liefs about the world and knowledge in its long-term mem-
ories. The working memory is encoded as a symbolic graph
structure which allows the representations of objects, rela-
tions and predicates in the world as parent-child relation-
ship between graph elements. The memory is transient and
changes as the agent’s environment changes. The state de-
scriptors are termed working memory elements (WMEs)

Procedural Memory

Behaviors and actions (requirements 2, 3, 4) in Soar are rep-
resented and implemented as production rules in its proce-
dural memory. Whenever a rule’s conditions match working
memory structures, the rule is fired and its actions executed.
An operator is the unit of deliberation in Soar and it can be
either an internal or an external action. Internal actions may
involve adding or removing structures from working mem-
ory thereby changing the internal state of the agent. External
actions, on the other hand, initiate changes in the environ-
ment.

Procedural knowledge can be learned through Soar’s chunk-
ing mechanism (Laird, Rosenbloom, and Newell, 1986).
Chunking is a form of explanation based learning that cap-
tures agent’s reasoning process in form of new rules which
are then added to the procedural memory of the agent.
Chunking also implicitly generalizes (requirement 7) by de-
termining which state descriptors were required for the rea-
soning and including only them in new rules.

Semantic Memory

We use a Soar agent’s semantic memory to store instructions
and the task structure implicitly conveyed through them
(requirement 5). Semantic memory (Derbinsky, Laird, and
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Smith, 2010) provides the ability to store and retrieve declar-
ative facts about the environment. It is context independent;
it contains knowledge that is not related to when and where
it was acquired. The agent can deliberately store parts of its
working memory into semantic memory as concepts. A con-
cept can be retrieved from the semantic memory by placing
a cue into a special buffer in working memory. The cue is
then used to search semantic memory for a match biased by
recency and frequency and the result is then retrieved into
the working memory.

Episodic Memory

Episodic memory (Derbinsky and Laird, 2009) is a context
dependent memory; it records the agent’s experience during
its lifetime. In Soar, episodic memory includes snapshots of
working memory ordered by time, providing the ability to
remember the context of past experiences as well as tem-
poral relationships between experiences. A specific episode
can be retrieved by deliberately creating a cue in an episodic
memory buffer in the working memory. The episodic mem-
ory searches through past episodes for the best partial match
biased by recency and retrieves the episode into the episodic
memory buffer. Episodic memory also provides an ability to
step through episodes once an episode is retrieved. Episodic
memory is used to store the context of the instruction which
later is used to reason about it(requirement 6).

Decision Process

Decision-making in Soar is goal-directed. Deliberate goals
in Soar take the form of operators in working memory, a
distinction from other cognitive architectures where goals
are often represented in declarative memory. The state of
working memory causes rules to propose relevant operators.
A selection mechanism makes a decision between proposed
operators based on agent’s selection knowledge. An operator
is applied by rules that test for a set of WMEs and modify
them.

However, if the operator implementation is not known di-
rectly, an impasse results and a subgoal is created to imple-
ment the operator. The operator may be implemented within
the subgoal by drawing on the declarative knowledge of how
to change the state or by decomposing the operator into a set
of smaller operators. Through chunking, Soar compiles the
reasoning performed in the substate into a new rule, effec-
tively learning the operator implementation knowledge.

If the agent cannot make a decision between the pro-
posed operators because it lacks selection knowledge, a tie-
impasse occurs and a subgoal is created to make this de-
cision. In this goal, knowledge from other sources such as
episodic memory, semantic memory, or a look-ahead search
can be used to inform the decision at the superstate. Through
chunking, this knowledge can be compiled into a new rule
which is used to break future ties.

A chunk - new rule created through chunking - is more gen-
eral than an exact memorization of the reasoning process,
due to implicit generalization and variabilization. Chunking,

uses dependency analysis to determine which WMEs at the
start of an impasse resulted in the final resolution of the sub-
goal. Since this dependency analysis uses only those WMEs
that were used directly in impasse resolution, chunking gen-
eralizes implicitly. The exact situation that led to a chunk
does not need to be repeated for a chunk to fire later; only
those elements which lead directly to the chunk are neces-
sary. Thus, the chunk can fire not only for the situation that
created it but in any situation in which its conditions match.
Chunks are variabilized; which means that the chunk refers
to variables rather than exact situation and object names
when possible. Therefore, the chunk can apply not only in
exactly the same case, but also in analogous cases.

Agent Implementation and Analysis

In this section, we present some potential solutions to the
Instructional Learning Problem introduced in the previous
sections and discuss them in relation to architectural com-
ponents of Soar.

Solving the Interaction Problem

As a solution to the interaction problem, we developed an in-
struction cycle shown in Figure 2. It is accommodates agent-
initiated instruction and contains the following phases -
• Detect: The agent is not aware of any action that is appli-

cable to the current state. It needs to pose a query prompt-
ing the instructor to provide the next action.

• Query: The agent identifies the state descriptors that are
relevant to the current failure and stores them in a query
structure. It also stores its current progress in the environ-
ment, so that it can resume functioning once the instruc-
tion is provided. It then composes an artificial language
query which is presented to the instructor.

• Parse: The instructor responds with a complex or a prim-
itive action that the agent should perform. The instructor
response is grounded in the environment and the current
task. The response is parsed and the agent identifies the
objects present in the instruction and creates a representa-
tion of the action.

• Assimilate: The agent recalls the prior declarative knowl-
edge it has about the task structure and related primitive
actions. It records the information in the instruction such
that it correctly relates to previous instructions.

• Apply: The agent executes the action it has been instructed
to execute and observes how state progresses.

• Explain (self): The agent analyzes the initial and fi-
nal states of the instruction, the instructed actions and
attempts to derive general knowledge about the pre-
conditions and the goals of the action. It is an optional
phase which occurs only when agent has successfully ap-
plied the composite action for the first time.
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composite action: stack block B block A block F

primitive actions: 
move-block moving-block A destination F 
move-block moving-block C destination D 
move-block moving-block B destination A

Initial State
ontop(B,G) 
ontop(C,B) clear(C)
ontop(A,D) clear(A)
ontop(D,E) clear(F)
ontop(G,Table)
ontop(E,Table)
ontop(F,Table) 

Final State
ontop(B,A)
ontop(A,F) clear(B)
ontop(F,Table)
ontop(C,D) clear(C)
ontop(D,E) clear(G)
ontop(E,Table)
ontop(G,Table)

Figure 3: Learning composite operator stack block A block D block C

Detecting Lack of Knowledge: The knowledge of the
composite action in Soar agents is in two different forms -
procedural and declarative. If the agent only lacks procedu-
ral knowledge, it can derive it from declarative knowledge
through explanation. However, if it also lacks declarative
knowledge, it must acquire it from the instructor.

• Lack of procedural knowledge: The knowledge contained
in procedural memory is in the form of rules and is ap-
plied as soon as the state satisfies the preconditions. An
agent ‘knows’ how to execute a composite action if it has
rules that can propose the operator related to it, apply it
by executing a set of primitive actions and terminate the
composite action once the goal conditions are met. If any
of these rules are absent, impasses will occur at various
stages of the task. In response to an impasse, the agent will
queries its declarative memories for information about the
composite action.

• Lack of declarative knowledge: The declarative knowl-
edge of how to perform a composite action is distributed
between episodic and semantic memories of the task
and is used to derive procedural knowledge. While the
episodic memory stores the initial and the goal states (and
intermediate states), the semantic memory stores a declar-
ative structure of the composite action. To recall and use
this knowledge, the agent must query its semantic and
episodic memories. If the agent’s declarative memories
do not contain the required information, the related query
will fail. The detect phase of the instruction cycle com-
pletes when the agent has determined that its declarative
memories do not have enough information for it to use in
the current task.

If the agent does not have rules that apply to the current state,
and lacks related declarative knowledge in its memories, the
agent queries the human instructor.
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Solving the Learning Problem

Learning in our Soar agents occur in two stages - rote learn-
ing and explanation based generalization, during two runs
of the same composite action. The first run of the com-
posite action is an instructed run. The instructor takes the
agent through one example of a composite action as the
agent executes primitive actions in the environment. Dur-
ing this run, the agent acquires declarative knowledge of the
specific example of the composite action. The second run
is an autonomous run during which the agent derives gen-
eral procedural knowledge using the declarative knowledge
of the composite action. An example of the learning task
(stack block A block D block C) in blocks world do-
main is shown in Figure 3.

Rote Learning: Rote learning occurs during the first, in-
structed run of a composite action. The agent executes the
primitive actions (in Figure 3a) as it is instructed. The
agent’s episodic memory automatically encodes all state
transitions. The agent memorizes the exact sequence of
primitive actions and encodes the beginning state of the in-
struction as the initial state in its episodic memory. At the
end of the instruction event, the final state is presented as
a possible goal configuration. The instructor can generalize
the goal by indicating which relations should be present in
the goal state description. This semantic information about
the goal state is encoded in semantic memory as the desired
goal state.

Without any generalization, the agent has learned only a spe-
cific instance of the composite action through explicit mem-
orization and does not have any knowledge of the context.
This knowledge is very specific to the states it was learned
in and cannot be applied to other, similar states. Figure 3c
shows the declarative knowledge acquired from instruction
for the specific composite action.

Situated Explanation Based Generalization: The sec-
ond step is deriving procedural rules corresponding to the
declarative knowledge contained in agent’s semantic and
episodic memories. Huffman and Laird (1995) introduced
the concept of learning by situated explanation. We have
extended this learning paradigm to include episodic and se-
mantic memories of Soar.

Procedural learning occurs during the second run of the
composite task starting from the initial state of the instruc-
tion event. During this run, instead of executing a memo-
rized primitive action, the agent selects an operator which
leads to a substate. The goal of the substate is to predict
if executing the primitive action in the current state of the
world leads to the goal state (retrieved from episodic mem-
ory of the first execution of the composite action). In the sub-
state, the agent recreates the current state of the world and
using the internal model of the primitive actions, it simulates
changes in the state. If the prediction using such lookahead
search is successful, it applies the primitive action to the cur-
rent state. If the world transitions to the goal state, the agent

terminates the composite action. Through chunking, this rea-
soning is compiled into a set of rules. These rules include the
context under which these primitive actions can be applied
(application knowledge). The agent also learns to terminate
the composite action if it is in the goal state.

Our agent makes an assumption that the goal of a com-
posite action is composed of only a subset of predicates
that form the final state. For example, the goal of com-
posite action stack(A,D,C) is the presence of predicates
ontop(A,D),ontop(D,C),ontop(C,Table) in the state
description regardless of other predicates. Learning through
interactive instruction allows the agent to determine the ex-
act composition of the goal state through explicit description
by the instructor during instruction.

Due to variabilization during chunking, the new rules do not
only apply to the specific object satisfying a set of predicates
in the memorized instance of the composite action, but can
also apply to any object that satisfies the same predicates.

Specalized goal description and variablization during
chunking results in learning how to execute composite ac-
tions in states with analogous goal predicates. For example,
in the second run of the composite action stack (A,D,C) in
initial and final states shown in Figure 3a, the agent derives
rules that allow it to execute stack(B,A,F) in analogous
initial and final states without requiring more knowledge.

Learning in our current design is incomplete as the agent
learns application and termination knowledge only. To com-
plete learning the composite action it also has to acquire pro-
posal knowledge. The issue of learning proposal knowledge
will be explored in future.

Conclusions and Future Work

Learning through interactive, explicit instruction is a power-
ful learning mechanism and can be used for learning com-
posite actions in semantically complex domains. We identi-
fied general problems that arise while designing agents that
can learn from human instructions and discussed some of
the solutions to these problems developed by the AI research
community. We demonstrated that learning a composite ac-
tion by exploration only is an extremely hard problem be-
cause the goal of the action is unknown to the agent. Explicit
sequence of instructions from an expert can help the agent
identify the goal state, thus reducing the complexity of the
learning task. Explicit sequence of instructions can also help
constrain the search space of primitive actions to reach the
goal.

To solve some of the problems identified, we proposed the
instruction cycle that supports agent-initiated communica-
tion. We instantiated agents based on this design in Soar
cognitive architecture. We show that using Soar’s declarative
and procedural memories and related learning mechanisms,
agents can learn composite actions by rote and situated ex-
planation.

There are several interesting venues for future work. We are
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interested in studying the Instructional Learning Problem in
a greater detail and understand the computational challenges
involved in solving these problems. We are also looking
at understanding different kinds of instructional events that
contain varying kinds of knowledge, and how these instruc-
tions can be accommodated in a general design.
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