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Abstract

Linguistic communication relies on non-linguistic con-
text to convey meaning. That context might include,
for instance, recent or long-term experience, semantic
knowledge of the world, or objects and events in the
immediate environment. In this paper, we describe em-
bodied agents instantiated in Soar cognitive architecture
that use context derived from their linguistic, percep-
tual, procedural and semantic knowledge for compre-
hending imperative sentences.

Introduction
All linguistic communication occurs in a context. Contem-
porary theories of natural language comprehension in arti-
ficial systems have been limited to the examination of syn-
tactic and semantic properties of words and sentences con-
sidered in isolation. Such systems range from naive systems
that adopt the ‘bag of words’ approach and define the context
of a word as its neighborhood, to formal systems that relate
language to formal notations such as symbolic logic and the
context is derived from logical reasoning and inference.

However, evolution of language did not occur in isolation
from the environmental context. Although the theories of
language evolution differ in important ways, they generally
assume that sophisticated language developed to facilitate
social coordination in situated tasks and collaborative learn-
ing. Research in human language processing has shown that
people regularly leverage non-linguistic context to convey
meaning. This non-linguistic context not only includes the
objects and events in the immediate environment, but might
also include a person’s recent or long-term experiences and
semantic facts about the world. Indeed, non-linguistic con-
text crucially provides the means through which our commu-
nication is situated in both the world around us and our ex-
periences. Use of language to refer to non-linguistic context
allows humans to establish shared beliefs about the environ-
ment and to learn and generalize from others experiences.

An embodied, artificial agent that can effectively coordi-
nate with humans and learn from such collaborative inter-
actions should be able to comprehend language by connect-
ing the linguistic symbols to its perceptions, actions, expe-
riences and learning. We are interested in developing and
studying embodied, cognitive agents that can associate lin-
guistic symbols to aspects of cognition that originate outside
of the linguistic system.

The main focus of this paper is to analyze the utility of
a theory of situated language comprehension - the Indexi-
cal Hypothesis (Glenberg and Robertson, 1999) in design-
ing cognitive agents that can interpret natural language sen-
tences using non-linguistic context derived from the envi-
ronment and agent’s experiences and demonstrate and dis-
cuss their linguistic capabilities.

The Indexical Hypothesis for Comprehension
Glenberg and Robertson (1999) propose the Indexical Hy-
pothesis that describes how sentences become meaningful
through grounding their interpretation in situated action.
The hypothesis asserts that comprehending a sentence re-
quires three processes: first, indexing words and phrases to
referents that establishes the contents of the linguistic in-
put, second, deriving affordances from these referents, and
third, meshing these affordances under the guidance of phys-
ical constraints along with constraints provided by the syn-
tax of the sentence. The evidence from experimental studies
(Kaschak and Glenberg, 2000) supports the Indexical Hy-
pothesis by suggesting a specific type of interaction between
syntax and semantics that leads to understanding. The lin-
guistic information specifies a general scene, and the affor-
dances of objects are used to specify the scene in detail suf-
ficient to take action.

Language can index a situation in various ways (Barsalou,
1999); in immediate indexing, the participants of the conver-
sation are simultaneously embodied in a physical situation
and use language to refer to objects and events in the current
environment; in displaced indexing, the participants use lan-
guage to refer to objects and events from prior experiences
with the environment. These referents may not be present in
the current perceptions.

The results of comprehension of a sentence are influenced
by the intentions behind that utterance. For imperative sen-
tences, such as “put that book in the shelf”, the compre-
hension results in an action by the listener that leads to the
intended goal. The speaker intends the listener to perform
an action. However, comprehension of utterances such as
assertions - “there is a blue couch in the living room” re-
sults in the establishment of shared belief. Interpretation of
an interrogation - “where is the blue couch?” results in a
speech act that provides the requested information. Other ut-
terances might result in perceptual simulation. Recognizing
the intention behind an utterance is a significantly complex
challenge and an open area of research. For the purposes



of this paper, we will only study imperative sentences and
assume that their comprehension results in an action in the
environment.

Imperative sentences can rely on both immediate and dis-
placed indexing. Consider the sentence - “put the red box
on the table.”. The speaker refers to objects in the current
environment that fit the description of ‘the red box’ and ‘the
table’ and assumes that such descriptions will allow the lis-
tener to resolve the intended objects. If this description is not
sufficient to disambiguate the intended objects from other
objects present or if the listener cannot find objects that fit
these descriptions, the listener will resolve the disambiguity
by further interaction. However, a sentence such as - “put
the red box in the kitchen”, refers to a location that fits the
description ‘kitchen’ even though it might not be currently
perceptible. The speaker assumes that the listener knows
the referent from prior experience with the environment and
can resolve the description correctly. If the listener fails in
resolution, further interactions will occur.

In this paper, we propose a scheme for indexical com-
prehension in agents instantiated in Soar cognitive architec-
ture, define indexing and meshing within the architectural
constraints of Soar, demonstrate the utility of Soar cognitive
mechanisms for immediate and displaced indexing, and an-
alyze and discuss the linguistic capabilities of the agents. A
novel contribution of this work is the use of various knowl-
edge sources - perceptual, linguistic, procedural and seman-
tic, for situated comprehension for cognitive agents.

Environment Overview
To study situated comprehension of imperative sentences,
we chose a simple, simulated robotic domain shown in Fig-
ure 1. The domain simulates a toy kitchen; it includes three
locations with simulated functions - a stove, a dishwasher
and a pantry. It also consists of a variety of movable objects
of different colors, sizes and shapes.

Figure 1: The Kitchen World

• Perceptions: The agent perceives its world as a set of ob-
jects and locations. Each object is associated with a set of
perceptual symbols that describe its shape, size, color, and
pose data. The locations are also augmented with symbols
that represent their functional state, for example, the agent
can perceive if the stove is on.

• Actions: The actions encoded in the domain are determin-
istic and include locomotion (goto (<x>, <y>, <z>)),
object manipulation (pick-up <id>, put-down <id>)
and functional (set-value(stove,on)).

• Interaction: A human can communicate with agent by
typing natural language action commands through a chat
interface. The human-agent communication is embedded
in a mixed-initiative, interaction framework (Mohan and
Laird, 2012) that enables the agent to learn new, compos-
ite actions through interactions. Currently, the grammar
is constrained to allow for parsing of simple imperative
sentences (Table 1). Typically, an imperative sentence in
English is composed of a verb followed by its argument
structure that can refer to various physical entities (objects
and locations in our environment).

Table 1: Supported Grammar

S → VP
VP → VB |VB NP |VB NP PP NP |VB PP NP
NP → DET? ADJ* Nominal
VB → go, put, pick
DET → a, the
PP → on, to, in
ADJ → red, blue, . . . small, large, . . .
Nominal → cube, cylinder, pantry, dishwasher, stove

Agent Design
We now describe the our agent design including a brief
overview of the underlying cognitive architecture, the for-
mal state representation convention, and the encoded action
implementation knowledge.

Cognitive Architecture
The agents we describe have been instantiated in Soar
(Laird, 2012), a cognitive architecture based on the problem
space hypothesis. It has been used extensively in designing
AI systems and cognitive models. Through its various long
term memories, a Soar agent can represent different forms
of knowledge which can be used to inform agent’s learning.

Perception Perceptual symbol grounding in high-
dimensional data from sensors is an important research
challenge. Prior work in grounded language acquisition
(Roy, 2002; Gupta and Davis, 2008) has tackled this chal-
lenge and made some promising advances. In this paper, we
assume that underlying sub-symbolic sensing mechanisms
can reliably generate relevant perceptual symbols such
as color, size, shape and pose for various objects. Our
agents are grounded in the simulated world (described in
previous sections). This simplifying assumption allows us
to investigate the association of language with other higher
cognitive abilities of the agent (procedural and semantic
knowledge). Future work will involve experimenting with
robotic agents embedded in the real world.

Working Memory A Soar agents beliefs about the cur-
rent state are held in its working memory. The agents be-
liefs are derived from its perceptions of the world (immedi-
ate grounding) and from its experiential knowledge of the
world (displaced grounding). The data in working mem-
ory is represented as a symbolic, labeled graph of working
memory elements (WME).



Semantic Memory Semantic memory (Derbinsky, Laird,
and Smith, 2010) provides the ability to store and retrieve
declarative facts about the world and structural regularities
of the environment. It is context independent; it contains
knowledge that is not related to when and where it was ac-
quired. The agent can deliberately store parts of its working
memory into semantic memory as concepts. A concept can
be retrieved from the semantic memory by placing a cue into
a special buffer in working memory. The cue is then used
to search semantic memory for a match biased by recency
and frequency. The result is then retrieved into the working
memory.
Episodic Memory Soar’s episodic memory (Derbinsky
and Laird, 2009) is a context dependent memory that records
the agent’s experience during its lifetime. It effectively
takes snapshots of working memory which are then stored
in chronological fashion, providing the agent the ability to
remember the context of past experiences as well as tem-
poral relationships between experiences. A specific episode
can be retrieved by deliberately creating a cue in an episodic
memory buffer in the working memory. The episodic mem-
ory searches through past episodes for the best partial match
biased by recency and retrieves the episode into the episodic
memory buffer. Episodic memory also provides an ability
to step through episodes once an episode is retrieved. The
agents described in this work do not use episodic memory,
however, in future we will extend the definition of displaced
indexing to include agent’s prior experiences.
Procedural Memory Behaviors and actions in Soar are
represented as production rules in procedural memory.
Whenever a conditions match the contents of working mem-
ory, the rule fires changing the state of the working memory.
An operator is the unit of deliberation in Soar which when
applied changes the internal state of the agent and may initi-
ate changes in the environment through agent’s actuators.

Decision-making in Soar is goal-directed. Deliberate
goals in Soar take the form of operators in working memory,
a distinction from other cognitive architectures where goals
are often represented in declarative memory. The state of
working memory causes rules to propose relevant operators.
A selection mechanism makes a decision between proposed
operators based on agent’s selection knowledge. An opera-
tor is applied by rules that test for a set of WMEs and modify
them.

If the operator selection or implementation knowledge is
missing, an impasse results and a subgoal is created to cor-
respondingly select an operator or implement the selected
operator. In this goal, knowledge from other sources such
as episodic memory, semantic memory, task-decomposition
and/or look-ahead search can be used to inform the decision
at the superstate. Through chunking, Soar compiles the rea-
soning performed in the substate into a new rule, effectively
learning new rules that are applicable in future/analogous
situations.

Environment State Representation
The agent maintains an object-oriented representation of the
environment such that each object is associated with a set of
perceptual attributes such as color, size, shape, pose etc.

Formally, let A be a set of perceptual attributes
{a1, a2, ...} like color, size, shape, pose etc. Every attribute

has a domain Dom(ai) and for the sake of simplicity, we as-
sume that these domains are non-overlapping sets. A set of
classes, C = {C1, ..., Cc} is defined such that a class Ci is a
set of attributes {Ci.a|Ci.a ∈ A}. Let O be a set of objects
{o1, ..., oo}. Each object oi is defined as an instance of one
class Cj and is obtained by a complete value assignment
to its attributes, oi = {(Cj .ak, valak

), ...(Cj .am, valam)}
where valar ∈ Dom(ar). We define a function V al(oi) that
returns the set of value assignment to the object’s attributes.

A set of predicates, P = {P1...Pp} is defined over in-
stantiated objects, Pi(om, ..., on). These predicates include
predicates that represent spatial relationships between ob-
jects and if an object is currently perceptible. The state of the
environment is the set of true predicates, S = {Pk, ..., Pl}.
The agent’s belief about the environment state is represented
by the presence/absence of WMEs that correspond to the
predicates and objects in the current environment state.

The state of the environment is partially observable, i.e.
there might be certain objects that are not perceptible to the
agent. If an object is perceptible, the complete value assign-
ment to its attributes is known. One can imagine a more
complex scenario where the complete value assignment is
not known for a perceptible object. However, in this work
we concentrate on the simpler situation.

The kitchen domain has two classes; movable objects
(cubes, cylinders etc) and locations (dishwasher, stove,
pantry). Objects are perceptible only if they are within a
certain distance from the robot.

Action Implementation Knowledge
The agent has procedural knowledge that allows it to per-
form certain primitive actions in the environment. The ac-
tions are implemented through operators in Soar. An action
is defined by its availability conditions (a set of predicates
that have to be true for the action to be applicable), execu-
tion knowledge - rules that execute locomotion and manipu-
lation commands in the environment and termination condi-
tions, a set predicates that signify that the goal of the action
is achieved.

A primitive action, pai(oj ...ok) is instantiated for a set of
objects {oj ...ok} when its availability conditions are met in
agent’s working memory. The agent uses its domain knowl-
edge to select between the available actions and applies one.
The action is terminated when its goal is achieved.

The agent constantly maintains a list of available prim-
itive actions PA. This list incorporates all the actions the
agent can take given the current physical constraints, object
affordances and its domain knowledge.

Linguistic Knowledge
For comprehension of imperative sentences by incorporat-
ing different cognitive knowledge sources, the agent should
be able to associate linguistic symbols with perceptual sym-
bols (noun/adjective-perceptual symbol mapping) and ac-
tion control knowledge (verb-operator mapping). Addition-
ally, the agent begins with some semantic knowledge about
the domain.

Noun/Adjective-Perceptual Symbol Mapping
The agent can map its perceptual symbols to linguistic sym-
bols such as red, large, cube etc. Conceptually, these can be
understood as adjectives that qualify an object. The agent



also can map a noun such as dishwasher or cube to an ob-
ject. Acquisition of these mappings has been explored by
prior work on concept labeling.

Verb-Operator Indexical Mapping
The verb-operator indexical mapping is encoded declara-
tively in the agent’s semantic memory. Given the argument
structure of the verb in the imperative sentence, this map-
ping allows the agent to access the related action operator
and associtate the objects indicated by the noun phrases in
the argument sturcture of the verb to the physical objects in
the environment. Essentially, this mapping serves to asso-
ciate the procedural knowledge of actions to lexical structure
of imperative sentences.

Consider the example shown in Figure 2. It maps the
verb ‘put’ with an argument structure consisting of a ‘direct-
object’ and the object connected to the verb via the prepo-
sition ‘in’ with the operator ‘op_put-down-object-location’.
This allows the agent to associate the sentence - “put a red,
large block in the dishwasher” with an appropriate operator
which will achieve the intended goal.

The mapping (A5) contains two child nodes that repre-
sent the linguistic (A4) and the procedural (A6) structure. A4
points to an action operator that takes two physical objects
as arguments. A6 connects these arguments (L1, O2) to the
lexical structure of the corresponding imperative sentences.

A19
[+29.000]

L9
[+0.000]

in
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[+0.000]

direct-object

put

verb

keep

verb

A20
[+30.000]

argument2 argument1

op_put-down-object-location

op_name

A21
[+28.000]

linguisticprocedural

action

type

Figure 2: Verb-Action Indexical Mapping

Domain Semantic Knowledge
In Soar, semantic memory holds long-term, persistent
declarative structures that generally correspond to facts
about objects or concepts. These general facts about the en-
vironment can be used by the agent to augment its sensing
of the environment state to reason about objects that are not
currently perceptible, but are known to exist in the environ-
ment.

For this task, we encoded the objects belonging to the
class locations in agent’s semantic memory (Figure 3).
These objects cannot be moved and their pose data does not
change across situations. Encoding these objects in seman-
tic memory allows to the agent to reason about action that
can be instantiated for these object when the speaker talks
about them even if they are not currently perceptible. It has
been shown previously (Laird, Derbinsky, and Voigt, 2011)
that this knowledge can acquired autonomously from expe-
riences in the environment.
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Figure 3: A Semantic Object
Indexing Imperative Sentences

To access and apply the corresponding situated action the
agent has to (1) scan its perceptions and long-term memo-
ries for a physical referent corresponding to noun phrases
in the sentence (indexing arguments), (2) associate the verb
with the intended action (indexing verb) and (3) instantiate
the action with the physical referents under the constraints
action definition (meshing). The process is shown in Fig-
ure 4 and described in following sections. Consider the im-
perative sentence (and Figure 4) - “put a blue cube in the
dishwasher”, to comprehend this sentence the agent goes
through the following processes.

Indexing Arguments
The goal of indexing arguments is to associate the linguistic
description of an objects (the noun phrase) to a perceptible
or a semantic object. The noun phrase in imperative sen-
tences such as ‘a blue cube’, ‘a large cylinder’ or ‘the dish-
washer’ is a linguistic description of an object present in the
environment. Given a mapping between linguistic and per-
ceptual symbols, the noun phrase can be mapped to a per-
ceptual description of the object.

A noun phrase is translated to a set Qo of perceptual sym-
bols {p|p ∈ {Dom(Ci.aj)}}. The agent tries to resolve this
noun phrase to either perceptible objects (immediate index-
ing) or semantic objects (displaced indexing).

• Immediate Indexing: From the perceptible objects, the
agent builds a candidate set of all objects such the value
assignment to its attributes is a superset of the required
perceptual description Qo. Formally, a candidate set CO
is a set of objects, {oi|Qo ∈ V al(oi)}. If CO = {φ}, the
object being described by the noun phrase is not percep-
tible. The agent tries to resolve the phrase to the referent
through displaced indexing.

• Displaced Indexing: The agent queries its semantic mem-
ory for an object such that the value assignment to its at-
tributes is a superset of the required perceptual description
({oi|Qo ∈ V al(oi)}). If the memory query returns in a
failure, the index arguments phase fails and further inter-
actions with the speaker are required to determine the cor-
rect physical referent. If the memory query is successful,
the retrieved semantic object is added to the candidate set
CO.

If the noun phrases are successfully indexed to percepti-
ble objects or to objects from semantic memory (i.e. CO 6=
{φ}), the agent tries to index the verb in the imperative sen-
tence. A distinct candidate set is created for every noun
phrase in the sentence.

The example sentence “put a blue cube in the dish-
washer”, contains two noun phrases, - ‘a blue cube’ and ‘the
dishwasher’. ‘A blue cube’ can be indexed to a percepti-
ble object. However, the object described by the phrase ‘the



dishwasher’ is not perceptible, and therefore the agent tries
displaced indexing. A candidate set will be created for each
(COdo, COin) of these noun phrases.
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Figure 4: Indexing Imperative Sentences
Indexing Verbs
The next phase is to map the verb in the imperative sen-
tence to the correct operator (action). The argument struc-
ture of the verb in the imperative sentence is used to create
a query, Qv for semantic memory. For example, for the sen-
tence “put up a blue cube in the dishwasher” that consists
of the verb ‘put’ with one direct-object (‘a blue cube’) and a
prepositional object (‘dishwasher’ connected to the verb by
the preposition ‘in’), the agent will query its semantic mem-
ory for a mapping that allows the agent to access the related
action and associated arguments.

The retrieved operators are augmented with objects from
the candidate set (COdo, COin). Note that if the candidate
set for an argument contains multiple elements, augmenta-
tion will result in multiple operators. These operators are
added to a set of candidate operators CA.

If verb indexing results in a failure, either the agent does
not know a related action or it knows a relevant action but
lacks the mapping structure. Both of these situations are
resolved by further interactions with the speaker.

Meshing
The candidate operator set CA can be understood as a set of
different meanings of the imperative sentences intended by
the speaker. CA can have multiple elements arising from

ambiguous description of objects (COi has multiple ele-
ments). The set of available primitive actions PA consists
of all the actions that are currently applicable given the cur-
rent physical and spatial relationships between the objects.
The intersection of both these sets, CA ∩ PA gives a set
of intended actions that are applicable under current phys-
ical constraints and agent’s domain knowledge. If this set
contains a single element, that action operator is applied. If
it contains multiple elements, further interaction or internal
reasoning is necessary for resolution.

Discussion
We have described the knowledge and processes encoded
in the agent to allow for situated comprehension. We now
discuss the linguistic and cognitive capabilities of the agents.

Linguistic Capabilities
Situated Referent Resolution The agent is able to inte-
grate knowledge from different sources for resolving the
physical referent indicated by the noun phrases.
• Perceptual Knowledge: Immediate indexing uses percep-

tual features of objects that are currently being sensed for
resolution. Consider the perceptual situation shown in
Figure 4 and assume that the speaker intends the agent
to pick up the blue cube. The object can be referred to in
various ways, the simplest being ‘the cube’. This informa-
tion is not enough to completely resolve the referent since
there are two objects that satisfy this description. If, in-
stead, the speaker uses the noun phrase ‘the large cube’ or
the ‘the blue cube’, the agent can successfully determine
the correct object. However, if only one cube (blue) was
perceptible, any noun phrase from ‘the cube’, ‘the large
cube’, ‘the blue cube’ or ‘the large blue cube’ would have
resulted in the agent picking up the blue cube.

• Semantic Knowledge: Displaced indexing uses the
knowledge of the semantic facts about the environment
for resolution. Consider again the situation shown in the
Figure 4 in which the location dishwasher is not percep-
tible. Assume that the speaker intends the agent to go to
the dishwasher. Since, the agent cannot perceive the dish-
washer, it cannot reason about the actions associated with
it. However, semantic knowledge about the dishwasher
(which includes its position) allows the agent to instanti-
ate the intended action and successfully apply it.

• Procedural Knowledge: Meshing allows for the use of
procedural knowledge in resolving the intended referent.
Consider a slight diversion from situation in Figure 4,
in which the agent has picked up the blue cube. The
speaker intends the agent to put down the blue cube and
issues a “put down the cube” sentence. Although the
noun phrase incompletely specifies the intended object
given the agent’s perceptions (the agent can also perceive
the brown cube), the agent correctly resolves the referent
since the ‘put-down’ action is only specified for objects
the agent is holding.

Situated Action Resolution The meaning of verbs is
greatly influenced by its argument structure which includes
the direct objects and objects occuring in its prepositional
phrases. In case of imperative sentences, the argument struc-
ture of a verb allows the speaker to specify the intended goal



in terms of the relationships between objects. This suggests
that a verb should index to different actions depending on
its argument structure. The action corresponding to “put the
small cylinder on the blue cube” is a sequence of object ma-
nipulations, which is different from “put the small cylinder
in the dishwasher” which involves a sequence of locomotive
and manipulative actions. Our indexical mapping scheme
allows for mapping of verb argument structure to different
operators which in turn allows for different interpretation of
the same verb given its argument structure.

Verb Synonymy Different verbs can be used to refer to
same or similar actions. Verb-operator indexical mapping
(Figure 2) allows for verb synonymy. Using the map, the
agent can resolve different verbs (put and keep in the exam-
ple) to the same action of putting an object in a location.

Desiderata for Cognitive Language Comprehension
Mayberry, Crocker, and Knoeferle (2009) characterize cog-
nitive spoken language comprehension as - incremental,
anticipatory, integrative, adaptive and coordinated. Al-
though, our system does not include a speech understanding
component, we find that it demonstrates the following desir-
able cognitive properties.
1. Integrative: Multiple sources bear simultaneously on

comprehension. We have demonstrated an integration
of knowledge from various cognitive sources (linguistic,
procedural, semantic, perceptual) for comprehension.

2. Adaptive: Comprehension robustly exploits relevant in-
formation whenever it is available. Our system is adap-
tive and is able to perform correctly when desired object
is not present in the current perceptions by relying on the
semantic knowledge of the domain. We have also iden-
tified situations where further interaction might be nec-
essary for correct resolution. Potentially, the agent can
engage the speaker in a dialog for resolution.

3. Coordinated: Sources of information may temporally de-
pend on each other. We have discussed ways in which
ambiguities in sentence comprehension can lead to fur-
ther interactions between the listener and speaker. Fur-
ther research is required to understand how temporally
distant information can be combined for effective com-
prehension. Soar’s episodic memory can be useful source
for this information.

Related Work
Researchers have studied the problem of grounding lan-
guage from many different perspectives. There has been
extensive research on grounded acquisition of nouns from
labeled pictures (Barnard, Forsyth, and Jordan, 2003; Gupta
and Davis, 2008) and computer-generated visual scenes
(Roy, 2002), associating linguistic descriptions with spatial
relationships (Kollar et al., 2010) and ground verbs in visual
perception (Siskind, 2001). However, little work has been
done in situated interpretation of sentences.

Our work is best understood as a close kin to Winograd’s
SHRDLU, a well known system that could understand and
generate natural language referring to objects and actions in
a simple blocks world (Winograd, 1972). Like our system it
performs semantic interpretation during parsing by attach-
ing short procedures to lexical units. Unlike our system,

it doesnot combine constraints dervied from various cogni-
tive components (linguistic, perceptual, procedural and se-
mantic in our case) for effective linguistic comprehension.
Our agent’s are designed within a well constrained cogni-
tive architecture that has been shown to demonstrate learn-
ing and reasoning in a variety of domains. Our motivations
are very closely aligned to Winograd’s work, although, with
the eventual goal of grounded in the real world via percep-
tual symbol grounding.

A recent work (Goertzel et al., 2010) describes software
architecture which enables a virtual agent in an online vir-
tual world to carry out simple English language interac-
tions grounded in its perceptions and actions. This system
uses knowledge from external sources such as FrameNet and
other similar sources to associate semantic meaning to lin-
guistic utterances. This work shares some conceptual ideas
with our research, however, we are interested in association
of linguistic symbols to experiential knowledge acquired by
the agent rather than an external knowledge base.

Cantrell et al. (2010) demonstrate a natural language un-
derstanding architecture for human-robot interaction that in-
tegrates speech recognition, incremental parsing, incremen-
tal semantic analysis and situated reference resolution. The
semantic interpretation of sentences is based on lambda rep-
resentations and combinatorial categorial grammar. Our
work is significantly different from this work in deriving se-
mantic meaning of from action representations.

Future Work
There several potential directions for further study. An im-
mediate concern is devising formal evaluations for situated
language processing in embodied agents. More specifically,
we are interested in quantifying the information contained in
an utterance and understanding how the information content
in language affects disambiguation.

To be able to comprehend natural language sentences and
associate them with perception and other cognitive abilities,
the agent requires some background knowledge such as the
indexical mapping structures shown in Figure 2. We are in-
terested in investigating how this knowledge can be acquired
by experience in the environment combined with interaction
with a language expert (a human) allowing the agent to au-
tonomously acquire language. A related research goal is to
investigate if indexical mapping also aids in generation of
natural language where the contents of agent’s utterances are
provided by its experience in the world.

Another direction we are interested in pursuing is in-
tegrating situated language comprehension and generation
with a mixed-initiative interaction framework in which the
agent can pursue collaborative tasks with a human. It has
been demonstrated previously that an agent can acquire new
procedural knowledge through human instruction (Huffman
and Laird, 1995; Mohan and Laird, 2011). A natural ex-
tension to this work is to ask if agent can acquire useful se-
mantic, and procedural knowledge from collaborative action
with humans. A situated language framework will facilitate
such learning.
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