
Computationally Efficient Forgetting via Base-Level Activation

Nate Derbinsky (nlderbin@umich.edu)
John E. Laird (laird@umich.edu)

University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121 USA

Keywords: large-scale cognitive modeling

Introduction
As we apply cognitive models to complex, temporally
extended tasks, removing declarative knowledge from
memory, or forgetting, will become important both to model
human behavior, as well as to scale computationally. The
base-level activation (BLA) model predicts that the
availability of specific memories is sensitive to frequency
and recency of use. Memory decay based on this model has
long been a core commitment of the ACT-R theory
(Anderson et al., 2004), as it has been shown to account for
a class of memory retrieval errors (Anderson, Reder, &
Lebiere, 1996), and has been used in Soar (Laird, 2012) to
investigate task-performance effects of forgetting short-term
(Chong, 2003) and procedural (Chong, 2004) knowledge.
Prior work has addressed many of the computational
challenges associated with retrieving a single memory
according to the BLA model (Petrov, 2006; Derbinsky,
Laird, & Smith, 2010; Derbinsky & Laird, 2011). However,
efficiently removing items from memory, while preserving
BLA-model fidelity, is a different problem, which we
address here. We formally describe the computational
problem; present a novel approach to forget according to
BLA in large memories; and evaluate using synthetic data.

Problem Formulation
Let memory M be a set of elements, {m1, m2, …}. Let each
element mi be defined as a set of pairs (aij, kij), where kij
refers to the number of times element mi was activated at
time aij. We assume |mi| ≤ c: the number of activation events
for any element is bounded. These assumptions are
consistent with the ACT-R declarative memory when
bounding chunk-history size (Petrov, 2006). This is also
consistent with the semantic memory in Soar (Laird, 2012).

We assume that activation of an element m at time t is
computed according to the BLA model (Anderson et al.
2004), where d is a fixed decay parameter:

B(m, t,d) = ln(kj ⋅[t − aj]
−d)

j=1

|m|

∑

We define an element as decayed, with respect to a
threshold parameter θ if B(m,t,d) < θ. Given a static element
m, we define L as the fewest number of time steps required
for the element to decay, relative to time step t:

L(m, t,d,θ) := inf{td ∈ℵ:B(m, t + td,d)<θ}

For example, element x = {(3, 1), (5, 2)} was activated once
at time step three and twice at time step five. Assuming
decay rate 0.5 and threshold -2, x has activation about 0.649
at time step 7 and is not decayed: L(x,7,0.5,-2) = 489.

During a model time step t, the following actions can
occur with respect to memory M:

S1. A new element is added to M.
S2. An existing element is removed from M.
S3. An existing element is activated y times.

If S3 occurs with respect to element mi, a new pair (t, y) is
added to mi. To maintain a bounded history size, if |mi| > c,
the pair with smallest a (i.e. the oldest) is removed from mi.

Thus, given a memory M, we define that the forgetting
problem, at each time step, t, is to identify the subset of
elements, D ⊆ M, that have decayed since the last time step.

Efficient Approach
Given this problem definition, a naïve approach is to
determine the decay status of each element every time step.
This test requires computation O(|M|), scaling linearly with
average memory size. The computation expended upon each
element, mi, will be linear in the number of time steps where
mi ∈ M, estimated as O(L) for a static element.

Our approach draws inspiration from the work of Nuxoll,
Laird, and James (2004): rather than checking memory
elements for decay status, “predict” the future time step
when the element will decay. First, at each time step,
examine elements that either (S1) weren’t previously in the
memory or (S3) were activated. The number of items
requiring inspection is bounded by the total number of
elements (|M|), but may be a small subset. For each of these
elements, predict the time of future decay (discussed
shortly) and add the element to a map, where the map key is
the predicted time step and the value is a set of elements
predicted to decay at that time. If the element was already
within the map (S3), remove it from its old location before
adding to its new location. All insertions/removals require
time at most logarithmic in the number of distinct decay
time steps, which is bounded by the total number of
elements (|M|). At any time step, the set D is those elements
in the set indexed by the current time step that are decayed.

To predict element decay, we perform a novel, two-phase
process. After a new activation (S3), we first employ an
approximation that is guaranteed to underestimate the true
value of L. If, at a future time step, we encounter the
element in D and it has not decayed, we then compute the
exact prediction using a binary parameter search.

We approximate L for an element m as the sum of L for
each independent pair (a, k) ∈ m. Here we derive the closed-
form calculation: given a single element pair at time t, we
solve for tp, the future time of element decay…

ln(k ⋅[tp + (t − a)]
−d) =θ

ln(k)− d ⋅ ln(tp + (t − a)) =θ

tp = e
θ−ln(k)
−d − (t − a)

Since k refers to a single time point, a, we rewrite the
summed terms as a product. Furthermore, we time shift the
decay term by the difference between the current time step,
t, and that of the element pair, a, thereby predicting L.

Computing this approximation for a single pair takes
constant time (and common values can be cached). Overall
approximation computation is linear in the number of pairs,
which is bounded by c, and therefore O(1). The computation
required for binary parameter search of an element is
O(log2L). However, this computation is only necessary if
the element has not decayed, or removed from M.

Evaluation
This approach has been empirically evaluated for long-term
tasks in the procedural and working memories of Soar
(Derbinsky & Laird, 2012). In this paper, we focus on the
quality and efficiency of our prediction approach and utilize
synthetic data. Our data set comprises 50,000 memory
elements, each with a randomly generated pair set. The size
of each element was randomly selected from between 1 and
10, the number of activations per pair (k) was randomly
selected between 1 and 10, and the time of each pair (a) was
randomly selected between 1 and 999. We verified that each
element had a valid history with respect to time step 1000,
meaning that each element would not have decayed before
t=1000. Also, each element contained a pair with at least
one access at time point 999, which simulated a fresh
activation (S3). For all synthetic experiments we used decay
rate d=0.8 and threshold θ=-1.6. Given these constraints, the
largest possible value of L for an element is 3332.

We first evaluate the quality of the decay approximation.
In Figure 1, the y-axis is the cumulative proportion of the
elements and the x-axis plots absolute temporal error of the
approximation, where a value of 0 indicates that the
approximation was correct, and non-zero indicates how
many time steps the approximation under-predicted. We see
that the approximation was correct for over 60% of the
elements, but did underestimate over 500 time steps for 20%
of the elements and over 1000 time steps for 1% of the
elements. Under the constraints of this data set, it is possible
for this approximation to underestimate up to 2084 time
steps. We also compared the prediction time, in
microseconds, of the approximation to an exact calculation
using binary parameter search. The maximum computation
time across the data set was >19x faster for the
approximation (1.37 vs. 26.28 µsec./element) and the
average time was >15x faster (0.31 vs. 4.73 µsec./element).

We did not compare these results with a naïve approach, as
results would depend upon a model of memory size (|M|).

In conclusion, we presented a novel, two-phase forgetting
approach that maintains fidelity to the base-level activation
model and scales to large memories. The experimental
results show that the first phase is a high-quality
approximation and is an order of magnitude less costly than
the exact calculation in the second phase.

Acknowledgments
We acknowledge the funding support of the Air Force
Office of Scientific Research, contract FA2386-10-1-4127.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., Qin, Y. (2004). An Integrated Theory of the
Mind. Psychological Review, 111 (4), 1036-1060.

Anderson, J. R., Reder, L., Lebiere, C. (1996). Working
Memory: Activation Limitations on Retrieval. Cognitive
Psychology, 30, 221-256.

Chong, R. (2003). The Addition of an Activation and Decay
Mechanism to the Soar Architecture. Proc. of the 5th Intl.
Conf. on Cognitive Modeling (pp. 45-50).

Chong, R. (2004). Architectural Explorations for Modeling
Procedural Skill Decay. Proc. of the 6th Intl. Conf. on
Cognitive Modeling.

Derbinsky, N., Laird, J. E. (2011). A Functional Analysis of
Historical Memory Retrieval Bias in the Word Sense
Disambiguation Task. Proc. of the 25th AAAI Intl. Conf.
on Artificial Intelligence (pp. 663-668).

Derbinsky, N., Laird, J. E. (2012). Competence-Preserving
Retention of Learned Knowledge in Soar’s Working and
Procedural Memories. Proc. of the 11th Intl. Conf. on
Cognitive Modeling.

Derbinsky, N., Laird, J. E., Smith, B. (2010). Towards
Efficiently Supporting Large Symbolic Declarative
Memories. Proc. of the 10th Intl. Conf. on Cognitive
Modeling (pp. 49-54).

Laird, J. E. (2012). The Soar Cognitive Architecture, MIT
Press.

Nuxoll, A., Laird, J. E., James, M. (2004). Comprehensive
Working Memory Activation in Soar. Proc. of the 6th Intl.
Conf. on Cognitive Modeling (pp. 226-230).

Petrov, A. (2006). Computationally Efficient Approximation
of the Base-Level Learning Equation in ACT-R. Proc. of the
7th Intl. Conf. on Cognitive Modeling (pp. 391-392).

Figure 1. Evaluation of decay-approximation quality.

