
1

Using Reflective Learning to Master Opponent Strategy in a
Competitive Environment

Mark A. Cohen (mcohen@lhup.edu)

Department of Business Administration, Computer Science, and Information Technology, Lock Haven University,
Lock Haven, PA 17745 USA

Frank E. Ritter (frank.ritter@psu.edu)
Steven R. Haynes (shaynes@ist.psu.edu)

College of Information Sciences and Technology, The Pennsylvania State University, State College, PA 16802 USA

Abstract

Cognitive models of people interacting in competitive
environments can be useful, especially in games and
simulations. To be successful in such environments, it is
necessary to quickly learn the strategy used by the opponent.
In addition, as the opponent adjusts its tactics, it is equally
important to quickly unlearn opponent strategies that are no
longer used. In this paper, we present human performance
data from a competitive environment. In addition, a cognitive
model that uses reflective learning is introduced and
compared to the empirical findings. The model demonstrates
that it is possible to simulate learning in an adversarial
environment using reflection and provides insight into how
such a model can be expanded.

Introduction
Cognitive models of people interacting in competitive
environments can be useful, especially in games and
simulations (Jones et al., 1999; Laird, 2001a, 2001b; Ritter
et al., 2002). To be successful in such environments, it is
necessary to quickly learn the strategy used by the
opponent. In addition, as the opponent adjusts its tactics it
is equally important to quickly unlearn opponent strategies
that are no longer used. The model presented here uses
learning by reflection to accomplish this task. This model
was created using a high-level tool that produces cognitive
models quickly, and with little or no programming. We
briefly take up the two important aspects of this project,
leaning from reflection and the role of variability in
performance.

Leaning By Reflection
Learning by reflection (or introspection) is one technique
that can be used to learn and unlearn an opponent’s
changing strategies while at the same time preserving the
variability in which people learn (e.g. Bass, Baxter, &
Ritter, 1995; Cox & Ram, 1999; Ritter & Wallach, 1998).

Learning by reflection is a form of metacognition that
allows the model to learn by reflecting on its performance,
and adjusting accordingly. When reflection reveals
previous actions that were beneficial, the model will be
more likely to repeat those same actions in similar
situations. However, when reflection reveals poor
performance, the actions that lead to that performance are

less likely to be repeated. Thus, learning by reflection is a
form of reinforcement learning (Russell & Norvig, 2003).

Reflective learning requires that both the cognitive model
and its environment are fully observable (Russell & Norvig,
2003). In other words, the model must be able to observe
the effects of its actions on the environment and other
models.

Variability
For a model’s behavior to be believable in a game or
simulation its performance must do more than match
average human behavior. Cognitive models must also
exhibit the same variability in behavior that a human
exhibits. When playing a game or participating in a
simulation, variable behavior is a crucial part of the realism
that these systems must portray.

Because reflective learning strategies are based on
probability, the behaviors they generate are not
deterministic. This allows reflective models to exhibit
variability in learning and thus performance.

The remainder of this paper describes a study done to
measure how quickly participants in a user study learn
opponent strategies while performing a competitive task,
and a cognitive model that was designed to exhibit similar
performance with equal variability.

Task
Lehman, Laird, and Rosenbloom (1996) in their A Gentle
Introduction to Soar use baseball repeatedly as an example.
This inspired us to implement a simple version of a baseball
game to study adversarial problem solving and support
people learning Soar. In a broader context, this environment
provides an accessible platform for the future study of
cognitive models interacting with other agents in a social
simulation (Sun, 2006).

Figure 1 shows the basic interface and one of the
feedback screens. In this game, participants play the role of
the pitcher competing against a series of agent-operated
batters. The goal of this game, as in baseball, is to get
batters out.

The baseball game described here was written in Java and
interacts with the Soar cognitive architecture using the Soar
Markup Language (SML Quick Start Guide, 2005). The
software and instructions on how to use it are available
online (acs.ist.psu.edu/herbal).

Cohen, A. M., Ritter, F. E., & Haynes, S. R. (2007). Using reflective learning to master opponent strategy in competitive environments. In

Proceedings of the International Conference on Cognitive Modeling, 157-162. Oxford, UK: Taylor & Francis/Psychology Press.

2

Figure 1: The Baseball Game Task.

Rules of the Game
There are two ways to get a batter out in this game: The
batter can get three strikes (a strike results when a batter
either swings and misses or does not swing at a good pitch),
or the batter can hit the ball directly at a fielder who catches
the ball.

There are also two ways for a batter to get on base in this
game: The batter can get four balls (a ball results when the
batter does not swing at a bad pitch), or the batter can hit the
ball in a way that prevents the fielders from catching it.

Acting as the pitcher, the participants in this study had a
choice of throwing either a fastball or a curveball to the
batter. Once they threw a pitch, the batter had a choice of
either swinging at the pitch or letting it go by. Both the
pitcher and batter are always aware of how many balls and
how many strikes the batter has. The rules shown in Table 1
describe how to determine the outcome of each pitch.

Table 1: Determining the outcome of a pitch

Pitcher Batter Response Outcome

Fastball Batter swings Contact is made that may
result in either an out
(50% of the time) or a hit
(50% of the time).

Fastball Batter does not
swing

The pitch will result in a
strike.1

Curveball Batter swings The pitch will result in a
strike.1

Curveball Batter does not
swing

The pitch will result in a
ball.1

Based on the rules described above, the most certain way

to get a batter out is to throw a curveball when the pitcher
thinks the batter will be swinging and to throw a fastball
when the pitcher thinks the batter is not going to swing.
Naturally, if the participant can learn what strategy the

1 If the batter gets three strikes, then they are out (called a

strikeout). If the batter gets four balls, they get a free pass to
first base (called a walk).

batter is using then they have a better chance of getting them
out.

Batter Strategies
Each participant faced the same five different batter
strategies in the same sequence during play. Strategy
changes were determined by the number of consecutive outs
that the participant recorded against a given strategy. When
a predetermined out threshold was reached, a strategy shift
by the batter would take place. The exact sequence of batter
strategies and their corresponding out thresholds were
defined in a configuration file that was used by the baseball
environment, but is unknown to the pitcher. The batter
strategies, along with their consecutive out thresholds, are
shown in Table 2. The strategies shown here are the ones
used in our user study in the order they are listed. However,
we do not propose this as the only order, or the best order.
The baseball game environment is easily configurable to use
other strategies and to present them in any order. This
illustrates the baseball task’s usefulness for studying the
effects of order on learning (Ritter, Nerb, O'Shea, &
Lehtinen, 2007).

Table 2: Batter Strategies in the Baseball Environment

Name Strategy Out

Threshold
Hacker Always swings 4

Aggressive Swings at the first pitch and
when there are fewer strikes
than balls, unless there are three
balls and two strikes

7

Random Randomly chooses when to
swing

5

Chicken Never swings 4

Alternate Swings if the last pitch was a
fastball and does not swing if it
is the first pitch or the last pitch
was a curve

7

To make it clear exactly how strategy changes took place
during the game, an example is provided.

Strategy Shift Example The participant begins by facing
batters that use the Hacker strategy. Because the
consecutive out threshold for this strategy is 4, the
participant continues to face batters that use the Hacker
strategy until they get 4 consecutive batters out. At this
point in time, the strategy shifts to the Aggressive strategy
and a new out threshold of 7 is in effect. The Aggressive
strategy is then used by the batters until 7 batters are retired
consecutively. Game play continues in this fashion until the
participant reaches the fifth and final strategy (Alternate).
When 7 consecutive Alternate batters are retired by the
pitcher the game ends.

3

Performance Measure
The participant’s ability to learn a particular strategy was
measured quantitatively using a measure of pitching
efficiency (PE). The following formula was used to
calculate pitching efficiency:

PE = Ns / Ts

Where Ns is the number of batters using strategy s that were
faced by the participant, and Ts is the consecutive out
threshold for strategy s. A decrease in PE indicates an
increase in the efficiency of the pitcher. A value of 1.0 for
PE indicates the most efficient pitching strategy. For
example, if a participant faced 14 Aggressive batters before
they could retire 7 in a row, the participant’s pitching
efficiency would be 14 / 7, or 2.

Method
Undergraduate Computer Science students at Lock Haven
University participated. A total of 10 participants
performed the baseball task. Nine of the 10 participants
were male.

After signing a consent form, each participant was given
instructions explaining the rules of the game. The
instructions were similar to those presented here except the
information in Table 2 was not provided. As a result, the
participant did not know what type of strategies to expect, or
when strategy changes would take place. However, the
participants were aware that strategies could change during
the game.

Participants were given as much time as needed to
complete the task and were allowed to consult the
instruction sheet during play. All the participants seemed to
have no problem understanding the game and no questions
were asked while performing the task.

Models
A total of six cognitive models were written to conduct the
study described here. All six models were written using the
Herbal high-level language and development environment
(Cohen, Ritter, & Haynes, 2005).

The Herbal high-level language is based on the Problem
Space Computational Model (PSCM) (Newell, Yost, Laird,
Rosenbloom, & Altmann, 1991) and produces productions
that can run in both the Soar cognitive architecture (Laird &
Congdon, 2005) and Jess (Friedman-Hill, 2003). In this
study, the Herbal generated Soar productions were used.
However, Jess productions would have also been adequate.

Because of the use of the Herbal high-level language and
graphical editor, the creation of the models described here
required only an understanding of the PSCM (which
provided an infrastructure for model organization) and some
visual modeling techniques. This serves as an example of
how Herbal can provide modelers without a strong
programming background access to the complicated
machinery used by architectures that may traditionally be
out of their reach. As these models progress towards more
sophisticated learning algorithms, the simplified access to
Soar and the PSCM will become even more valuable.

All of the models described here are available online as
examples at the Herbal website (acs.ist.psu.edu/herbal).

Batter Models
Five cognitive models were written to represent the
strategies used by the batter (Hacker, Aggressive, Random,
Chicken, and Alternate). These models are not capable of
learning and served only as opponents that exhibit the
behavior described in Table 2.

Pitcher Model
A sixth model was written to play the role of the pitcher.
The goal of the pitcher model was to exhibit behavior
similar to that demonstrated by the participants. Unlike the
batter strategy models, the pitcher model was able to learn
using reflection. More specifically, this model operated
within two problem spaces: one to deliberate what pitch to
throw next, and one to reflect on recent performance and
modify future deliberation. The formulation of an explicit
reflection phase was simplified by the use of the PSCM and
Herbal.

The pitcher model started with an equal probability of
throwing a curveball or a fastball. Within the explicit
reflection problem space, the pitcher model considers the
following features of the environment: the previous number
of balls and strikes on the batter, the previous pitch thrown,
and the outcome of that pitch. If the outcome is positive
(e.g., a strike was called or the batter struck out) the pitcher
adjusts a probability so that it is more likely to throw the
same pitch the next time it encounters this situation. If, on
the other hand, the outcome was negative (a ball or contact
by the batter, including contact resulting in an out), and the
pitcher had previously experienced a positive outcome in
this situation (a strike or a strikeout), the probability of
throwing the same pitch in that situation was decreased.

The probability of an action occurring was adjusted by
altering working memory so that more or fewer indifferent
operators were proposed to throw that pitch type in a given
situation. In other words, positive events lead to episodic
memory that influences future action. Alternatively,
negative events remove episodic memory, reducing this
influence. Without prior positive outcomes in a particular
situation, no episodic memory elements exist and negative
outcomes in that situation are ignored.

An alternative approach to episodic memory would be to
use the numeric-indifferent preference in Soar (Laird &
Congdon, 2005). However, the Herbal high-level language
did not support this at the time these models were written.

Model Parameters
The pitcher model takes two parameters: the learning rate
and the unlearning rate. The learning rate specifies how
quickly the model will commit to throwing a particular pitch
in a particular situation; in other words, how quickly the
probability increases given a positive outcome. The
unlearning rate specifies how quickly the model will reduce
this learned commitment. The best values for these learning
rates almost certainly depend on the nature of the particular
task.

4

Considering the relatively simple rules in the baseball task
described above, it is expected that participants will be able
to learn strategies quickly. In addition, it is hypothesized
that participants will at first be reluctant to unlearn until
they are sure that a strategy shift has taken place. Given
persistent negative feedback on a previously learned
response, participants should eventually accelerate their
unlearning rate.

Looking at the task environment more closely, further
justification of these parameter values can be found in the
fact that four of the five batter strategies are deterministic.
When a particular pitch works for a batter in a specific
situation, it will continue to work until a strategy shift takes
place. After a particular pitch stops working for a batter, it
can be assumed that a strategy shift has occurred.

As a result, in an effort to match human behavior the
pitcher model described here was equipped with a fast
learning rate and an initially stubborn, but later accelerating,
unlearning rate. Figure 2 depicts the learning and
unlearning rates used by the model.

Figure 2: Learning and Unlearning Rates Used by the
Model.

Results
Because a primary goal of this work was to produce a model
that not only matches the average pitching efficiency, but
also matches the variability in pitching efficiency, the
cognitive models created here are not deterministic. This
allowed us to consider each run of the model as being
equivalent to a participant run. To reduce any sampling
error with this theory, the model was run 100 times.

Table 3 shows the results of the participant study and of
the model executions. The average pitching efficiency and
the standard deviation of the pitching efficiency are listed
for all participants and all model runs. Recall that the
smaller the pitching efficiency the more efficient the pitcher,
and the most efficient strategy has a PE equal to 1.0.

Figure 3 visualizes the data listed in Table 3. Each bar in
Figure 3 represents the average pitching efficiency as
defined in the Methods section. White bars represent the
participant data and shaded bars represent the model data.
The error bars in Figure 3 signify one standard deviation
from the average pitching efficiency.

Table 3: Pitching Efficiency against Each Batting Strategy
for Participants and the Learning Pitching Model.

 Participants

(n = 10)
Model

(n = 100)
Strategy Mean StdDev Mean StdDev
Hacker [4] 1.53 0.80 1.69 0.70

Aggressive [7] 1.81 1.62 1.13 0.20

Random [5] 5.00 6.24 5.36 4.67

Chicken [4] 1.03 0.08 1.25 0.33

Alternate [7] 1.54 0.72 3.53 2.01

Discussion
Analysis of Figure 3 reveals that the model’s behavior
matched both the participant’s average performance, and
variability in performance, for three of the five presented
strategies. However, for two of the strategies the model did
not satisfactorily reflect the participant’s performance.

Figure 3: Comparison of Learning Pitching Model and
Participants for the Batting Strategies. SDs are shown as

error bars.

Hacker and Chicken Strategies
The model’s performance matched very well for both the
Hacker and Chicken strategies. Given the simplicity of the
learning strategy used, this is an interesting result. Both the
participants and the model were able to retire the requisite
number of consecutive batters quickly and without much
variability. Interestingly, the Hacker strategy proved to be
more difficult for both the participants and the model. This
may be because the very aggressive strategy used by the
Hacker makes it more likely for the batter to get a hit when
the pitcher made a mistake. On the other hand, the reserved
approach used by the Chicken strategy only punishes
mistakes with a single ball as opposed to a hit. In this
baseball task, an aggressive batter strategy is more
dangerous to the pitcher than a timid one.

5

Random Strategy
As expected, the variation of the pitching efficiency against
the Random strategy was quite large for both the
participants and the model. Both the participant and the
model could not consistently figure out the random strategy,
because, well, it was random. The difference between the
pitching efficiency for the model, and that of the
participants, might be related to the number of participants
run. Due to the random nature of this strategy, additional
participants might cause these averages to match more
closely.

Aggressive and Alternate Strategies
Unexpectedly, the model did not do as good of a job
matching the Aggressive and Alternate strategies. The order
in which these strategies are presented may play an
important role here. One possible explanation for these
problems is that the unlearning rate used by the model is not
fast enough. While good enough to match the transitions
between some strategies, the unlearning rate may need to be
faster in other cases. To understand this theory, the
transitions from the Hacker strategy to the Aggressive
strategy, and from the Chicken strategy to the Alternate
strategy, need to be examined more closely.

Transition From Hacker to Aggressive Because the
Hacker strategy always swings, the pitcher must learn to
throw a series of curveballs to get a batter out consistently.
In addition, the inability to quickly unlearn the Hacker
strategy is not immediately detrimental when an Aggressive
batter follows the Hacker strategy. For example, if the
pitcher continues to throw a series of curveballs to an
Aggressive batter, the batter will not get on base until after
the sixth curveball is thrown. This gives the pitcher several
pitches, and therefore a lot of time to unlearn the strategy.

On the other hand, if the participant or model quickly
unlearns the Hacker strategy, it will lead to throwing an
early fastball which will result in a 50% chance of the batter
getting a base hit. In other words, in this particular case
quickly unlearning the previous strategy is not beneficial.
This might explain why the model performed better against
the Aggressive strategy; the model simply does not unlearn
as quickly as the participants did, and this proved to be more
efficient in this particular ordering of strategies.

Transition From Chicken to Alternate The opposite can
be said about the transition from the Chicken strategy to the
Alternate strategy. A series of consecutive fastballs will get
a batter out using the Chicken strategy because this strategy
never swings. However, if this knowledge goes unlearned,
the same series of fastballs thrown to an Alternate batter
will result in frequent hits because the Alternate batter
swings immediately after a fastball is thrown. In this
particular case, failure to quickly unlearn the Chicken
strategy results in poor performance and might explain why
the model did not perform as well as the participants in this
case. Once again, it appears as if the model did not unlearn
the learned strategy quickly enough in this particular
ordering of strategies.

Unfortunately, our reflective learning strategy is
fundamentally limited in how quickly it can unlearn. This
limit may be a major reason for the model’s inability to
unlearn the Chicken strategy quickly enough. Recall that
the learning algorithm used here cannot unlearn unless it has
already encountered positive feedback. This causes a
problem if the model’s initial encounter with a strategy
involves a series of negative outcomes, which is precisely
the case when transitioning from Chicken to Alternate.
Augmenting the algorithm to use Soar’s numeric-indifferent
preference might eliminate this limitation and possibly
improve the model’s fit.

Additional Explanations Factors other than unlearning rate
may have also had an effect on the model’s inability to
match the participant’s behavior. For example, if the
pitcher follows the simple pattern of throwing a fastball,
followed by curve, followed by fastball, they will always
get the Alternate batter out. While speculative, it is possible
that participants were quick to recognize this alternating
pattern while the model did not treat alternating patterns any
differently from other patterns.

Conclusions
The paper describes a study to measure the learning of
participants performing a competitive task. This task is
based on the game of baseball and consists of a participant
pitching to a series of batters that use a set of different
strategies. Because this task is inspired by the example
introduced in A Gentle Introduction to Soar, many Soar
programmers may already be familiar with its attributes.
One outcome of this work is that, over time, the continued
use of baseball as a running example might help beginners
learn modeling.

In addition, this paper introduced a Soar model written
using the Herbal high-level language. This model used a
reflective learning process to learn and unlearn various
strategies. Another outcome of this work is a downloadable
example of how Soar models that learn can be written
without directly writing Soar productions. Easily obtainable
examples like this will hopefully make Soar models
available to a wider audience.

The model’s behavior was compared to participants’
performance and was shown to match both the participants’
average performance and variability in performance against
many of the presented batting strategies. This result
demonstrates that cognitive models that compete in
adversarial environments using introspective learning need
not be complicated and can be written quickly and easily
using Herbal.

Finally, for the strategies that the model did not
satisfactorily master, insight into the limitations of the
algorithm used, and how people possibly perform this task
was gained. The relationship of the sequences of strategies
and how learning is transferred was explored. These results
motivate future work that will lead to improvements in the
learning algorithm, and in the Herbal high-level language.

6

Future Work
The results reported here provide some insights to guide
future work. To start, the limitations of the learning
algorithm discovered here can be addressed by exploring
more sophisticated learning mechanisms (e.g. the meta-
learning routines described in (Sun, 2001)).

Further work can also be done to alter the reflection
strategy so that certain patterns are easier to learn than
others. Patterns that people recognize quickly (such as
alternating patterns) might create more intense episodic
memories in the model. This change would test the theory
that the participants performed well in cases where the
solution consisted of a simple and quickly recognizable
alternating pattern.

Additional improvements to the model could also be
made by enhancing the reflective process so that positive
experiences are no longer required in order to benefit from
negative experiences. In the absence of positive learned
events, negative reflection should still lead to a decrease in
the probability of repeating the action. One solution could
involve equally increasing the probability of all other
possible actions when an event results in a negative
outcome. This would be easier to accomplish if the Soar
numeric-indifferent preference was used to control operator
probabilities, and this capability is currently being added to
the Herbal high-level language.

There is also scope to explore other parts and versions of
the baseball task. For example, the environment and models
can be expanded to include other batting strategies, other
batter sequences, batting tournaments, and learning batters.
In addition, the model created here could be transformed
into an Herbal library that can be reused in future models.

Finally, because the Herbal development environment
automatically creates both Soar and Jess models, the
opportunity exists for comparisons of a single Herbal high-
level model running in two very different architectures.

Acknowledgments
The development of this software was supported by ONR
(contract N00014-06-1-0164). Comments from Mary Beth
Rosson and Richard Carlson have influenced this work.
Recognition is also given to the undergraduate students that
agreed to participate in this study.

References
Bass, E. J., Baxter, G. D., & Ritter, F. E. (1995). Creating

models to control simulations: A generic approach. AI
and Simulation Behaviour Quarterly, 93, 18-25.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). Herbal:
A high-level language and development environment for
developing cognitive models in Soar. In Proceedings of
14th Behavior Representation in Modeling and
Simulation, 133-140. University City, CA.

Cox, M. T., & Ram, A. (1999). Introspective multistrategy
learning: On the construction of learning strategies.
Artificial Intelligence, 112, 1-55.

Friedman-Hill, E. (2003). Jess in action: Rule-based
systems in Java. Greenwich, CT: Manning Publications
Company.

Jones, R. M., Laird, J. E., Nielson, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V. (1999). Automated Intelligent
Pilots for Combat Flight Simulation. AI Magazine, 20, 27-
41.

Laird, J. E. (2001a). It knows what you're going to do:
Adding anticipation to a Quakebot. In Proceedings of
Fifth International Conference on Autonomous Agents,
385-392. New York, NY: ACM Press.

Laird, J. E. (2001b). Using a computer game to develop
advanced AI. IEEE Computer, 34(7), 70-75.

Laird, J. E., & Congdon, C. B. (2005). The Soar User's
Manual Version 8.6: The Soar Group: University of
Michigan.

Lehman, J. F., Laird, J. E., & Rosenbloom, P. S. (1996). A
gentle introduction to Soar: An architecture for human
cognition. In D. Scarborough & S. Sternberg (Eds.), An
invitation to cognitive science (Vol. 4). New York: MIT
Press.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P., &
Altmann, E. (1991). Formulating the problem space
computational model. In R. F. Rashid (Ed.), Carnegie
Mellon Computer Science: A 25-Year commemorative
(pp. 255-293). Reading, MA: ACM-Press (Addison-
Wesley).

Ritter, F. E., Nerb, J., O'Shea, T., & Lehtinen, E. (Eds.).
(2007). In order to learn: How the sequence of topics
influence learning. New York: Oxford University Press.

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R.,
Gobet, F., & Baxter, G. D. (2002). Techniques for
modeling human performance in synthetic environments:
A supplementary review. Wright Patterson Air Force
Base, OH: Human Systems Information Analysis Center.

Ritter, F. E., & Wallach, D. P. (1998). Models of two-
person games in ACT-R and Soar. In Proceedings of
Second European Conference on Cognitive Modeling,
202-203. Nottingham: Nottingham University Press.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A
Modern Approach (2nd ed.). Upper Saddle River, NJ:
Prentice Hall.

SML Quick Start Guide. (2005): ThreePenny Software
LLC.

Sun, R. (2001). Meta-learning processes in multi-agent
systems. In Proceedings of Intelligent Agent Technology,
210-219. Maebashi, Japan: World Scientific, Singapore.

Sun, R. (Ed.). (2006). Cognition and multi-agent
interaction. Cambridge University Press: New York.

