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State-of-the-art unmanned aerial vehicles are typically able to autonomously execute a preplanned mission.

However, unmanned aerial vehicles usually fly in a very dynamic environment that requires dynamic changes to the

flight plan; this mission management activity is usually tasked to human supervision. Through the use of a set of

theoretical concepts that allow the description of a flight plan, a software system that autonomously accomplishes the

mission management task for an unmanned aerial vehicle was developed. The system was implemented using a

combination of Soar intelligent agents and traditional control techniques, and it is thoroughly described in the first

part of the paper. An extensive testing campaign, based on the use of a realistic simulation environment, was

performed on the system; the second part of this paper presents results obtained during this campaign. The system

was demonstrated to be capable of automatically generating and executing an entire flight plan after being assigned a

set of objectives. In conclusion, possible future developments are discussed, focusing in particular on prospective

hardware implementation for the system.

I. Introduction

Q1 F OR certain application fields, the many advantages in using unmanned aerial vehicles (UAVs) over conventional aircraft are clear and have

been thoroughly discussed [1]. These advantages include reduced operating costs, better flight performance, and expendability. The latter
advantage in particular resulted in a strong interest in UAVs for military applications, especially during the last two decades; civilian applications
have instead been developingwith amuch slower pace, in part due to a persisting regulatory gap.AsUAV technology growsmoremature, civilian
applications are expected to become more common [2].

The most basic form of UAV is essentially a remotely piloted airplane, but this control scheme is not very suitable to applications that demand
out-of-sight operations. For this reason, some level of autonomy has always been preferable, and in fact there has been a constant trend toward
increased autonomy. The current generation ofUAVs is generally capable of carrying out a preplannedmission on its own [3] but relies on human
supervision in order to address unforeseen events that require changes to the flight plan. This level of autonomy is generally not sufficient to
ensure safety and is one of the main reasons for the relatively low number of civilian applications: until it is possible to ensure safety during
incidents, such as loss of communication, loss of control, or loss of situational awareness, civilian applications will always be constrained to
particular conditions (flight within restricted airspace or with the need for special permits). Eventually, it is expected that UAVs will be able to
seamlessly merge with piloted aircraft within civilian airspace. This, however, at the moment, is only a distant vision, and a large amount of
research work on UAVautonomy is still needed in order to achieve the required capabilities.

To evaluate the autonomy level of a UAV, Clough introduced a classification of UAVautonomy levels in a 2002 paper [4]; this has become the
de facto standard for evaluation of UAVautonomy. The Clough classification includes 11 levels, ranging from level 0 (radio-controlled drone) to
level 10 (fully autonomous); each level adds a set of functionality over the other levels. For example, level 1 adds the capability to autonomously
execute a preplanned mission, while level 2 adds the capability to autonomously switch between a set of pregenerated flight plans according to
current situational awareness. Levels 3 to 5 add increasingly complex capabilities that do not involvemultiple UAVs, such as fault mitigation and
contingency management (sense-and-avoid); levels 6 to 10 focus on coordination and cooperation between multiple UAVs.

The current generation of UAVs is rated around level 2 of the Clough classification [4], and significant efforts are being spent in order to
research the technology needed to achieve higher levels. However, it can be noted that most research work is actually focused on the capabilities
required by the higher autonomy levels and related to multi-UAV coordination (for example, see [5,6]). A comprehensive review of autonomy-
related research efforts can be found in [7]; the authors note that, at present, there is no unified attempt to develop standards in this field, thus
resulting in noncoordinated research efforts and in difficulties regarding certification of such technology. In the paper, it is pointed out that the
possibility of certification is critical for the development of safety-critical systems such as UAVs, and intelligent agent (IA) technology is
proposed as a possible approach that could allow the definition of a clearer path toward certification.

IAs based on the Soar architecture were used to control simulated aircraft within the TacAir-Soar project [8]; TacAir-Soar is built to simulate
human behavior, modeling the tactical decision-making of afighter pilot within a battlefield scenario. TacAir-Soar demonstrated the feasibility of
real-time high-level control of aircraft using Soar agents; however, this is a system that is intended to simulate human behavior rather than to
achieve actual control of a vehicle. Another attempt to use cognitive software to achieve UAVautonomy is presented by Karim et al. [9], Lucas
et al. [10], and Karim and Heinze in several papers [11]: in this study, a cognitive system is used to provide the reasoning capability needed by a
missionmanagement system. This system is implemented using the JACK© IA language and has demonstrated a limited set of autonomy-related
capabilities during actual flight tests.

In this paper, a similar systemwill be proposed, inwhich a cognitive architecture is used to provide the reasoning capability needed formission
management. The Soar architecturewas chosen for the development of this system, for the reasons explained in Sec. II; Soar is the computational
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implementation of a unified theory of cognition originally developed at Carnegie Mellon University. The system presented in this paper is
designed to achieve an autonomy level residing between levels 4 and 5 of the Clough classification [4] (higher than the Karim and Heinze study
[11]). It is therefore desired that the system should requireminimal supervision (limited to the assignment ofmission objectives) and the ability to
generate “intelligent” flight plans that take account of situational awareness and can be updated during flight. Also, a key feature of the system is
that it should be able to satisfy real-time requirements when executed on the typical hardware that can be expected on a small low-costUAV;while
this aspect has not been implemented yet, the goal is to have a system that can run on a single common-off-the-shelf (COTS) PC/104 board.

The system was named SAMMS, or Soar-based autonomous mission management system Q2. Soar agents constitute the reasoning core of the
system, but execution of flight plans generated by the mission management algorithms requires integration with traditional control techniques
(e.g., autopilots). SAMMS is designed as a low-cost architecture for the development of the control software of a highly autonomousUAV,which
should be able to entirely perform a mission once given a set of objectives by a user. SAMMS generates a flight plan that takes into account UAV
status and environment information, and then it executes the generated flight plan and dynamically updates it as new information is available.
SAMMS is at an early development stage, and certain aspects of UAV design are not fully addressed; this is true in particular for sensors and
payload management. Rather than focusing on the full specification of such aspects, the architecture presents a methodology to take this
information into account, considering it as provided by an external system. On an actual system, an intermediate layer would be needed between
external systems and SAMMS; an example of this is already implemented, since the execution agent is basically acting as an intermediate layer
between the high-level planning agents and the autopilot functions (as will be seen within the paper).

Through simulation tests, this paper aims at demonstrating that the SAMMS architecture is viable and possesses highly desirable
characteristics: autonomy, replanning ability, real-time operation, and potential for certification. The theoretical background for SAMMS is also
presented, outlining a set of constructs that allows the computational description of a UAV mission. The paper is divided into four sections. In
Sec. II, the theoretical base for SAMMS will be presented; the main abstractions used during development will be outlined and the system
architecture described, particularly focusing on the threemain software components (Soar agents). In Sec. III, the architecturewill be tested using
a realistic simulation environment; the environment is described, and results are presented. In Sec. IV, possible real-world implementation of the
system is discussed. Finally, Sec. V will draw conclusions regarding the work and propose possible future work.

II. Overview of Soar and Soar-Based Autonomous Mission Management System

In the system presented in this paper (SAMMS), reasoning and planning capabilities are provided by Soar IAs. IAs represent a new paradigm
for software engineering and were first introduced in the early 1990s to improve the flexibility of software systems [12,13]. IA-based systems are
used in very diverse applications, ranging from internet search engines to air traffic control and cognitive studies. Several architectures for IA-
based systems have been proposed, including ACT-R, Soar, and JACK. In [14], several architectures are discussed. The Soar architecture was
chosen for the development of SAMMS for several reasons:

1) It is a cognitive modeling tool that provides high potential in developing intelligent capabilities through the use of symbolic IA techniques.
2) It is proven to be capable to deal with very complex problem spaces while maintaining real-time operation.
3) It provides a good I/O interface, both between separate agents and with external components.
4) Its core is written in the C++ language (on the contrary, the aforementioned JACK package is based on Java), thus providing an easier path

toward certification.
5) It is a fully open-source project.
Soar is the computational implementation of a cognitive architecture that was originally developed at CarnegieMellonUniversity since the late

1980s and is now maintained by the University of Michigan [15,16]. It provides a robust architecture for building complex human behavior
models and intelligent systems that use large amounts of knowledge. A detailed explanation of the Soar architecture is outside the scope of this
paper, but a short introduction to it is in order. As already stated, Soar can be used to model human behavior and to build intelligent systems; the
SAMMS project is focused on the latter option. At the core of a Soar agent lies a perceive–decide–act cycle during which the agent samples the
current state of theworld, makes knowledge-rich decisions in the service of explicit goals, and performs goal-directed actions to change theworld
in intelligent ways. Long-term memory of an agent is represented by production rules, which come in the form of if/then statements where an
action is performed only if the conditions are met. When the conditions of a production are met, the production is said to fire; as Soar treats all
productions as being tested in parallel, several productions can fire at once, and this can happen at different levels of abstraction. Operators are
constructs formed by one proposal rule and one application rule, and theypossess the ability tomodify short-termmemory. Short-termknowledge
is instead constituted by external input, and appropriate functions must be developed to interface the Soar agent with its environment. Soar also
provides a learning mechanism; however, this was not used within this project due to the perceived impact on system determinism.

In practice, the Soar architecture serves as an inference engine, for which the job is to apply knowledge to the current situation and decide on
internal and external actions [16]. The agent’s current situation is represented by data structures representing the states of sensors (from the agent’s
I/O interface) and contextual information (stored in Soar’s internal memory). Soar allows easy decomposition of the agent’s actions through a
hierarchy of operators; operators at the higher levels of the hierarchy explicitly represent the agent’s goals, while the lower-level operators represent
substeps and atomic actions used to achieve these goals. Soar selects and executes the operators relevant to the current situation that specify external
actions, which are applied to the environment through the I/O interface, and internal actions, such as changes to the agent’s internal goals.

A practical example can better clarify the nature of a Soar agent; suppose a Soar agent is being used as a thermostat, having two inputs (actual
temperature sensor and desired temperature value) and one output (binary heating system activation command). The simplest form of such a Soar
agent would have the following operators:

1) If the sensor temperature is less than (desired temperature � 2), then set heating on.
2) If the sensor temperature is more than (desired temperature� 2), then set heating off.
More rules can then be added to this; for example, a fuel sensor might be used to save fuel when the fuel level is low. A third operator would be

the following: if the sensor temperature is more than (desired temperature� 1), then set heating off. A preference rule could be used to choose
between the second and third operators: if the fuel level is lower than the threshold, prefer the third operator, else prefer the second operator. Soar
allows for the combination and organization in hierarchies of large numbers of such rules, leading to very complex agent behavior.

In practical terms, a Soar agent is a dynamic-link library, and C++ classes are provided to control its execution and develop appropriate I/O
functions that interface it with its environment. Since the objective is to combine Soar agents with other control techniques, we chose to integrate
them with MATLAB®/Simulink, which is the most commonly used software package in control systems design. This allows seamless
integration of the control algorithms, once the Soar/Simulink interface is set up, and provides a simulation environment that is indispensible in
testing the system.

This approach (based on the integration of Soar agents within Simulink) was initially applied in the development of a health-management
system for gas-turbine engines [17–19]. This study proved the feasibility of the Soar/Simulink approach, involving multiple Soar agents
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concurrently runningwithin a Simulink environment. However, the applicationfield of gas-turbine engine healthmanagement is characterized by
a limited problem space and severe constraints; consequently, the capabilities of Soar agents could not be fully exploited and the technology did
not bring significant advantages over “conventional” technology with similar functionality. It was then concluded that Soar agents are not
technologically practical for this application field; a more suitable application field was identified in autonomous UAV mission management,
which presents a larger problem space and less severe safety constraints. This work has been presented in two earlier papers [20,21] focusing on
the description of the system itself and on early results; major new results are included in this paper.

A. Theoretical Background

Before outlining our autonomousmissionmanagement system, it is important to define how a flight plan can be computationally expressed. A
set of four abstract constructs was defined within this study [20,21]: the objective, the action, the flight plan, and the entity.

The objective is the abstract construct through which a user interacts with SAMMS: a mission is assigned to a UAV by giving it a list of
objectives. An objective represents a very high-level task for the UAV, defining a significant part of a mission. The types of objectives can vary
greatly depending on the specific type of UAV, but at present, five generic types have been defined: analyze target (go to a position to gather data
on a specific target using payload sensors), attack target (deliver aweapon payload on a specific target), orbit position (circle about a position for a
specified time; for example, to act as communications relay), search area (patrol an area using standard patterns in order to identify targets), and
transit (travel to a destination airport and land there). The objective I/O object has a total of 11 properties that can fully define any type of objective
previously described; properties include the definition of the objective type and of its unique identifier, the position of the objective, the time
constraints it should respect (called time priorities), and the details regarding specific objective types.

The action is an abstract construct that still represents a high-level task but is the finest subdivision that is relevant from amission management
point of view. In general, an objectivewill always correspond to two or more actions. Twelve types of action have been identified as necessary to
fully describe a flight plan that accomplishes objectives of the types earlier described, as in Table 1. The action I/O object consists of 11 properties
that together fully describe it; these properties include the action type; sequence number and parent objective tags; the coordinates of relevant
positions; specific values related to flight heading, speed, and altitude; plus additional variables related to specific action types. Using these
definitions, a flight plan is a numbered sequence of actions that fully describes a mission. The UAVwill then be able to accomplish a mission by
executing actions in the expected order.

The fourth and final abstract construct is the entity. The entity represents any external factor that may influence the generation of the flight plan.
Entities include targets of various types (buildings, vehicles) but also known threats (hostile presences, bad weather areas, etc.) and constraints
(geography, air traffic control zones). In short, the entity is a format for all types of external information provided to theUAV. The entity I/O object
consists of eight variables that describe its nature, its position and expectedmovement, its behavior, and how it can affect theUAVmission.While
objectives are a user input, entities are expected to be received automatically from an information-gathering system (in military terms, the
battlefield network).

Having defined these abstractions, a mission management system is a system that converts a list of objectives into a flight plan (formed by
actions), taking into account all entities that are known. Figure 1 shows the flow diagram for such a system and includes indications regarding the
various parts (agents) in which it will be divided in the SAMMS architecture.

Table 1 Action types

Number Name Description

1 Park Wait until mission start time
2 Taxi Move to runway position
3 Takeoff Perform takeoff maneuver
4 Climb Climb to specified altitude
5 MMS Main-mission start
6 Travel Travel to position
7 Reconnaissance Perform reconnaissance on target
8 Attack Perform attack on target
9 Circle Circle about specified position
10 MME Main-mission end
11 Descent Enter descent path
12 Landing Perform landing maneuver

Fig. 1 SAMMS flow diagram.
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B. Architecture Description

SAMMS is designed to allow a user to instruct a UAV through a set of clearly defined objectives and then leave all details of mission execution
to the autonomous system. No further supervision is expected, so the system should be able to develop a flight plan that is both viable and
intelligent (ideally, the plan would be optimal, but guaranteeing such optimization is expected to be an issue in terms of computational
requirements). The flight plan must be updated during flight according to situational awareness; the systemmust also be able to directly interface
with low-level control algorithms (e.g., an autopilot).

To achieve this functionality, SAMMSwas designed as amultiagent system.Three interacting Soar agents (planner agent, execution agent, and
missionmanager agent) are implemented in a Simulink environment, which provides supporting functionality such as a user interface, real-world
sensory input (including onboard sensors and external data), and algorithms for low-level tasks (autopilot and payload management). Figure 2
schematically describes the architecture; the agents will be described separately in the following subsections.

The agents are complemented by a set of functions that use more traditional control techniques. The new plan trigger function monitors all
inputs to the system and compares them with the situation recorded when the last flight plan was generated in order to trigger the generation of a
new flight plan only when truly needed; the planner agent and the mission manager agent (MMA) are triggered separately when the relative
conditions aremet. The autopilot function consists of a set of standard autopilots that allow control of theflight path of theUAVduring the various
mission phases; it has two main operating modes of direct and automatic. In direct mode, the execution agent provides commands in the form of
desired pitch, yaw, and speed, thus only four control loops (roll-hold, yaw-hold, pitch-hold, and speed-hold) are used. In automatic mode, the
execution agent provides commands as desired destination, altitude, and speed, thus six loops are used, with an altitude-hold loop functioning as
the outer loop for the pitch-hold loop and a bearing calculation algorithm functioning as the outer loop for the yaw-hold loop. The payload
management function translates generic payload commands from the execution agent to actual controls for the payload actuators; it is not
currently implemented, as it is largely platform-dependant. Completing the loop is the simulation environment, which ismodeled in Simulink and
receives input from the low-level functions and provides feedback as real-world sensor information.

C. Planner Agent

The planner agent is taskedwith receiving objectives as input from a user and then fusing themwith real-world information (available as entity
constructs) in order to obtain a full flight plan (as previously defined, a sequence of actions). The planner agent decides the order in which
objectives are sequenced and includes several algorithms that allow improving the flight plan in several ways, such as avoiding dangerous areas,
increasing flight speed in order to reach a target before a specified time, or decreasing flight speed in order to save fuel so that all parts of the
mission can be accomplished.

Input for the planner includes base airport information (parking position, runway position and heading, altitude at ground level, and for the
landing airport if different from the starting airport), a list of objectives from the user, a list of entities that should be automatically updated by a
dedicated data link, and feedback from the execution agent (basically indicating what stage of the flight plan has been reached). On the first agent
cycle, a valid flight plan is not available, so the planner decides to generate the initial one; this is then sent forward (to the execution agent) and
stored internally for reference. At each following cycle, the planner will check the validity of the current flight plan and eventually generate a new
one if the newplan trigger external function signals that sufficient changes have occurred to situational awareness. In this case, the planner cancels
the current flight plan (keeping an internal record of it) and generates an entirely new one, taking into account parts of the old flight plan that have
already been executed. Just as with the first one, the new plan is then sent forward and stored internally. The cycle is repeated until the mission is
finished.

From a Soar implementation point of view, the planner agent includes 12 states and substates. From the main state, two substates can be
reached: “generate-plan”, which is valid only when no flight plan is currently selected and causes the generation of the entire flight plan during a
single iteration; and modify-plan, which stores old-plans and watches for input from the new plan trigger function.

Generate-plan is then split into five substates:Q3 1) “old-plan”, which copies parts of the old flight plan that have already been executed into the
new one being created; 2) takeoff, which adds to the flight plan all actions related to takeoff operations (park, taxi, “take-off”, and climb);
3) “main-mission”, which develops the main part of the flight plan (during which all objectives are accomplished); 4) “approach”, which adds all
actions related to landing operations (descent, landing, taxi, and park); and 5) “plan-optimization”, which changes the plan in intelligent manners
in response to situational awareness.

The main-mission state has two further substates: “plan-sequencing” and actions definition.
During plan-sequencing, objectives are ordered in a sequence using amodified version of the nearest-neighbor (NN) algorithm to solvewhat is

basically a classical traveling salesman problem (TSP) [22]. The NN algorithm is a well-known heuristic to solve TSPs, and although it presents
issues (giving bad results under certain circumstances), it is computationally very fast and the small scale of the TSP considered here (counting

Fig. 2 Architecture overview.
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visited points in the tens atmost, rather than in thousands) allows us to expect sufficiently good results. Furthermore, the possibility of adding time
constraints for objectives means that both the problem formulation and the algorithms needed to solve it have to be modified. The algorithm
selects a starting point (base airport), and then it calculates the distance toward every objective and chooses the closest objective as thefirst visited
point; the process is then repeated until all objectives have beenvisited.An estimate of the time required to reach each objective is calculatedwhile
the algorithm is running; if an objective’s time priority is not respected, the objective will be moved up the list until the priority is found to be
respected. The NN algorithm is then reapplied for all following objectives; for example, if with four objectives the NN algorithm returns the
sequence 1-2-3-4 but objective 4 has a time priority that is not respected, objective 4 is moved up the list. If the sequence 1-4 allows to respect the
time priority, then theNNalgorithmwill be reapplied from this; depending on relative positions, itmay return the sequences 1-4-2-3 (2 closer to 4)
or 1-4-3-2 (3 closer to 4).

During actions definition, every objective is converted into the corresponding list of actions, which are ordered reflecting the sequence of
objectives defined during plan-sequencing. This operation varies greatly depending on the type of objective. Analyze-target, attack-target, and
orbit-position objectives can be accomplishedwith a travel action and another action (respectively, a reconnaissance action, an attack action, and a
circle action). Search-area objectives are converted into a list of travel actions that implements the chosen search pattern for the specified area.
Transit objectives are accomplished by a single travel action but have to be placed at the end of the mission.

The plan-optimization part of the planner is separated from the rest so that it can be as simple or as complex as desired. This part of the planner
agent includes algorithms that are designed to improve the flight plan in intelligent manners. It is to be noted that the word “optimization” is not
used in a mathematical sense. At this stage, a viable flight plan is already available; however, it does not take into account many types of
information thatmay be available to theUAV. It could be said that, while the rest of the planner implements autonomy (generation of aflight plan),
it is the plan-optimization part that implements intelligence (improvement of the flight plan according to several criteria). In Fig. 3, the
planner agent flow diagram is shown, highlighting the four plan-optimization algorithms: path adjustment, estimations, fuel check, and priority
check. The algorithms are described in Table 2. It is important to note that, to avoid conflicts between the fuel-check and priority-check
algorithms, priority check is inhibited if fuel check fires and changes the flight plan. A possible future improvement over this solutionwould be to
allow priority check to override fuel check for top-priority objectives (e.g., objective to be accomplished regardless of risk to UAV survival).

D. Execution Agent

The execution agent takes as input the flight plan and then executes it action by action. It basically acts as a transition layer between the planner
and low-level controls. As themission is executed, it chooseswhat action is to be performed and then, fusing the information containedwithin the

Fig. 3 Planner agent flow diagram.

Table 2 Algorithms in the plan-optimization state

Number Name Description

1 Path adjustment Checks whether the current flight path intersects any known entity that represents a threat (hostile presences but also bad
weather areas or no-fly zones) and eventually changes the flight plan in order to take a detour around it. The algorithm works
by calculating the shortest distance between the danger area center and the flight path, and then comparing it to the danger
area radius to determine whether they intersect or not. If an intersection is detected, a new waypoint is added to the flight plan;
the waypoint is placed along the perpendicular to the original flight path passing through the danger area center, at a distance
sufficient to avoid intersection.

2 Estimations Calculates an estimate of the distance covered and the time and fuel needed for each action; this is needed by the other
algorithms. The algorithm works by calculating the distance covered for each action (the Haversine formula is used to
calculate distance between waypoints), and then using the distance values to calculate time and fuel values. Time is obtained
simply by multiplying distance by the expected flight speed in the flight plan. Fuel consumption is calculated by multiplying
distance by the amount of fuel used per unit distance; this value is obtained from flight speed using a simple linear model.

3 Fuel check Checks whether current onboard fuel is sufficient to accomplish the entire mission; in case fuel is deemed insufficient, it tries to
reduce fuel consumption by reducing flight speed by fixed amounts. In case this reduction is still insufficient, the problem is
left to another algorithm in the MMA.

4 Priority check Checks whether objectives with a time priority are expected to be reached within the time limit; in case this is not true, the
algorithm tries to solve the problem by increasing flight speed by fixed amounts for all the actions before the objective.

GUNETTI, THOMPSON, AND DODD 5



action with real-time sensor data (Global Positioning System, attitude, airspeed, etc.), sends commands to the lower-level control systems,
namely, the autopilot and the payload management system. Conceptually, the exag is very simple: it starts from action 1, passes the related
commands to low-level controls, verifies the execution of the action, and then goes on to action 2 to repeat the cycle again. However, this is made
more complex by the fact that every type of action needs to be dealt with in a different way; each of the action types outlined in Table 1 has a
dedicated execution algorithm.

The exag outputs two very important sets of data: planner feedback, with information such as the current action being performed and the
commitment to an objective; and the commands, which represent direct input to theUAV low-level controls and include data for the two autopilot
modes: direct mode (speed, pitch, roll, yaw, brakes) and automatic mode (speed, altitude, and initial and final positions). The exag selects the
current action to be performed, and then it calculates what commands need to be given in the light of action details and real-time sensor
information. The action algorithms are described in Table 3.

E. Mission Manager Agent

TheMMA is tasked with dealing with contingencies in the flight plan. It is very important for the intelligence of the overall system, since it has
the authority to change the objectives (that are otherwise exclusively defined by the user) and to add new ones. For example, it can cancel a
secondary objective that is close to a newly detected threat or change the parameters of a search mission if a minor fault places stricter endurance
limits on the UAVor, finally, take advantage of targets of opportunity. The type of autonomy brought forward by this agent allows for intelligent
decisions to be made; it is to be noted however that, in certain cases, this level of autonomy might be excessive. While the agent will react
predictably to the external situation, it is in fact autonomously modifying the objective list; this might not be desirable for certain applications,
thus this functionality was embedded in a separate agent from the planner and, in fact, theMMA can be excluded from the SAMMS architecture
without consequence (apart from losing the capabilities it brings).

TheMMAneeds a large amount of information towork: the list of current user objectives, the entity information, airframe information, and the
current flight plan generated by the planner (together with the estimates obtained by the estimations algorithm). The agent works similarly to the
planner agent, as it is triggered by an external function and is waiting for changes duringmost of the time.When the trigger function detects that a
new check of the current situation is needed, the MMA goes through a list of algorithms that determine and apply necessary changes to the
objectives. There are basically three types of operations that theMMA can do: modify an objective, remove an objective, or add a new objective.

There are five types of inconsistency that can determine a change to an objective or its removal; these are described in Table 4, together with an
explanation of how the MMA acts to solve them.

The other type of action that theMMA can perform is the addition of a new objective. This is related to search objectives specified by the user.
Search objectives can be specified as pure searches, search-and-analyzemissions, or search-and-attackmissions; the latter two imply that if a new
entity is detected within the search area, the related action should be performed on it (either analyze or attack). The MMA looks at the current
entity status and, if a new entity is detected within the search area, it adds a new objective of the analyze or attack type to the list given by the user.

It is important to understand that giving the authority to autonomously change, add, or remove objectives to the systemmight not be desirable in
certain situations. Thus, this functionality is implemented in an agent that is separate from the planner, allowing to completely disregard it without
losing the functionality provided by the planner. The ability to respond to a dynamic environment is one of the driving ideas behind the entire
system; however, this inevitably comes at the cost of losing control over theUAV’s operation. Separate implementation of the algorithmswith the
authority to change mission objectives allows SAMMS to be more flexibly configured for the actual UAVon which it is used, depending on the
specific needs (for example, a transport mission in a nonhostile environment would likely not require the MMA to be active).

Table 3 Algorithms for each action type

Number Name Description

1 Park Very simple action, only requiring to keep the UAV still on ground until the mission start time is reached. Most commands are
set to zero value, apart from the brakes. On a real system, preflight tests would probably also have to be performed during
this action.

2 Taxi Complex action, as it involves ground navigation (with all its constraints). At present, it is executed by directly steering the
UAV toward the planned takeoff position (commands: yaw and low speed), and then moving at a higher speed, and finally
stopping the UAV when the position is reached. It is planned to improve the taxi algorithm with navigation within runways
and communication with air traffic control. The algorithm takes account of the maneuvering space needed to steer the UAV.

3 Takeoff Once the expected takeoff position is reached, the UAV is steered in the runway direction (commands: yaw and low speed), and
then full throttle is set (keep yaw, maximum speed) until the takeoff speed is reached. At this point, a pitch command is
given, and then takeoff is considered finished when the UAV has cleared the 15 m level from the ground (obstacle clearance
height). Decision speed is not considered at the moment.

4 Climb Immediately after takeoff, the climb action keeps the UAV in the takeoff direction (and then in the direction of the first
objective) and sets a fixed climb rate that allows it to reach a desired altitude. When this altitude is reached, a level flight
condition is entered, and then the main-mission begins to be executed.

5/10 MMS/MME The main-mission start and main-mission end actions do not correspond to actual flight commands but are needed to correctly
define plans and to deal correctly with replanning events.

6 Travel This is the most important type of action, and the first type to make use of the automatic mode of the autopilot. It basically sets
a great-circle route (shortest distance between two points on a sphere) between the current position and the intended
destination, at the specified speed and altitude. The distance to the destination position is continuously verified in order to
make decisions regarding the commitment to the objective.

7 Target
reconnaissance

This action involves a pass over a target in order to allow a sensor payload to gather data. After the target position is reached, a
turnaround approach waypoint is set, and the UAV then travels toward it before steering back toward the target for the actual
data gathering pass. Usually, during a pass, the desired altitude is different from cruise altitude, so this is also changed

8 Target attack This action is very similar to target reconnaissance but can use different parameters in determining the type of approach and
uses a different type of payload

9 Circle In this action, four waypoints forming a diamond are calculated around the central position. The UAV then cycles through those
in a clockwise (or anticlockwise) direction until the specified time limit is reached

11 Descent In this action, after the expected landing position has been reached in flight, two waypoints are calculated and reached using the
automatic mode of the autopilot. These waypoints basically draw an ideal descent path that is in line with the runway; two
waypoints are needed in order to account for the maneuvering space required

12 Landing This action makes use of the direct mode of the autopilot and has the UAV descend at a specific angle, then perform a flare
maneuver when close to the ground, and finally stop when ground contact has been ensured.
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III. Simulation and Testing

To verify the functionality of SAMMS, a dedicated simulation environment has been set up. During these simulations, realistic input is fed to
SAMMS and the output is fed to a UAV dynamic model controlled through a standard autopilot, aiming to prove SAMMS’s capability to guide
the UAV through an entire mission. The simulation environment is based on a Simulink model of the Pioneer UAV. This was chosen as it is
representative of the type of UAV toward which SAMMS is tailored (small, slow-flying, and low cost).

Themodel is based on the generic aircraftmodel thatwas released byCampa in 2004 [23], although severalmodificationswere implemented to
simulate ground operations (taxi, takeoff, and landing). This model uses nonlinear equations of motion; however, aerodynamic forces are
calculated using a linearmodel and the calculation of thrust is simplified. Thus, themodel does not provide high fidelity, but this has been deemed
acceptable, since the purpose of the simulation is not to validate the low-level control algorithms but to test the mission management algorithms
that operate on a different timescale and do not require tailoring for the specific aircraft being used.

The purpose of the simulations is twofold: primarily, to prove that the flight plans generated by SAMMS in various situations are correct; and
secondarily, to verify that the system respects real-time requirements and is capable to control the aircraft during all flight phases. Two sets of data
are logged: the flight plan that is the main output of the planner agent, and the flight data generated by the model. From these, a set of graphs is
derived, displaying the flight plan and the flight trajectory resulting from its execution.

Since the amount of input variables for the system is very large, verification of all possible input configurations is practically impossible. For
this reason, a set of seven test scenarios has been prepared, with each scenario including base airport information, a list of objectives, and a list of
entities. The scenarios are representative of the situations that SAMMS might encounter and provide scenario variants that allow testing of
particular algorithms. Four of these scenarios will now be analyzed by providing a description of the scenario, a plot of the resulting flight plan,
and a plot of the simulated trajectory of the UAV. It is to be noted that scenario results are entirely repeatable.

Table 4 Flight plan inconsistency types and solutions

Number Name Description

1 Priority Occurs when an objective has a time priority for which the planner estimates imply that the time priority will not be respected (the
objective cannot be executed before the specified time). At this stage, both the plan-sequencing and the plan-optimization
algorithms have failed in generating a plan that respects the priority, thus the MMA actually decides to ignore the priority and
advises the user of this decision (this type of problem can be caused by an incorrectly set or unrealistic time priority).

2 Target position Occurs when the target for an analyze or attack objective is moving. In such cases, position information entered by the user needs
to be updated using the corresponding entity information.

3 Fuel Occurs when current onboard fuel is deemed insufficient to complete the mission, even after the planner has tried to reduce fuel
consumption by decreasing flight speed. In this case, two possible courses of actions can be taken: if a search objective is
present, the resolution of the search can be increased, so that the distance to be covered is reduced; otherwise, the algorithm
chooses an objective to be canceled (based on two factors: execution priority of objectives, and relative distance between the
mission starting point and the objectives).

4 Threat Occurs when an objective is placed within the danger area of an entity. In this case, the algorithm will decide to remove the
objective if its execution priority is lower than the threat level of the entity.

5 Payload Occurs when airframe status data indicate that the payload related to a certain type of mission has failed. In this case, objectives of
that type are removed, since they cannot be accomplished.

Fig. 4 Scenario 2e flight plan (SPD: speed, m/s; ALT: altitute, m).Q4
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A. Scenario 2

Scenario 2 is a relatively simple scenario for which the main purpose is to test the different search patterns that are implemented within
SAMMS. Two types of search area can be defined: a rectangle, which will be covered using a standard parallel track search pattern; or a circle,
whichwill be covered using an expanding diamond spiral pattern. The 2e variant of the scenario introduces a time priority for the rectangle search
objective, so that the priority-check algorithm (see Sec. II) intervenes to ensure completion of the objective within the time limit. Also, new
detected entities are added during themission to simulate the detection of targets during searches. As these entities are detected, newobjectives are
added by the MMA, and the UAV proceeds to perform the intended action on the new targets.

Figure 4 is a plot of the final flight plan for scenario 2e, therefore including the two objectives that are addedwhen the new entities are detected.
Thefirst search is a search-and-analyze objective (thus, a new analyze objective is added),while the second search is a search-and-attack objective
(thus, a new attack objective is added). In this scenario, the UAV takes off and lands at the same airport.

Figure 5 is the three-dimensional (3-D) plot of the UAV flight trajectory for this scenario. It can be noted that searches are conducted at the
normal cruise altitude, while analyze and attack objectives involve low-altitude flight (flight altitudes are defined as parameters depending on the
UAV configuration).

In Fig. 6, it is possible to see a plot of flight speed versus time regarding the scenario, which demonstrates functionality of the priority-check
algorithm. This algorithm checks whether objectives that have to be completed within a predefined time limit are expected to be accomplished in
time using the time estimates. In case a priority is not respected, the algorithm tries to solve the issue by increasing flight speed for the
corresponding part of the mission (from the beginning until the objective has been accomplished). This is necessary since the plan-sequencing
algorithm orders the objectives on the basis of inaccurate estimates of the time needed (the flight plan is not known at that stage). In the figure, it is
possible to see that flight speed is increased for the first part of the mission (first search) in order to ensure that the time limit is respected (flight
speed increases by 20% from the standard 40 m=s cruise speed and 35 m=s search speed). Thus, the UAV covers the first part of the mission
(which is time-limited) at a higher speed to ensure it is covered in time, and then it accomplishes the remaining part of the mission at the normal
cruise speed (search speed is set to a lower value to simulate the fact that the sensors might need a lower speed to work properly). It is possible to
notice that, when descending (during the reconnaissance and attack actions and during final descent), the UAV reaches high speeds, which can be

Fig. 5 Scenario 2e trajectory plot.

Fig. 6 Speed plot highlighting priority-check algorithm.
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noticed as spikes in the plot. In fact, the autopilot has to include a speed limiter function, which is activated when the UAV reaches a speed of
60 m=s=.

At the current stage of implementation, the search patterns present limited functionality; they cannot be orientated (especially limiting for the
parallel track pattern) and cannot be interrupted (either they are completed or they will be begun from scratch). However, these two features are
planned improvements that are feasible within the SAMMS architecture. For example, this would allow for the rectangle search objective to be
carried out starting from the opposite corner (and yielding a reduction of used fuel) or for the new target-reconnaissance objective to be executed
when the UAV passes close to it during the search (interrupting the search and reprising it later).

B. Scenario 3

Scenario 3 is a medium-complexity scenario for which several variants were developed in order to test a wide range of SAMMS capabilities.
The scenario revolves around a set of six objectives: three of type target reconnaissance and one each for the target-attack, circle, and transit types.
Several time priorities are assigned, as in Table 5, and change during flight in some of the scenario variations.

Figure 7 shows the initial flight plan obtained for the scenario with the original set of time priorities; it is to be noted that a transit objective is
present, so the UAVis expected to takeoff and land at different airports. In the plan-sequencing state, the time priorities override theNN algorithm
(the objective sequence would be: 1-2-5-6-4-3, but it becomes 1-5-4-6-2-3), so that the flight path is not the shortest possible.

A replanning event is scheduled to occur after objective 1 is completed: the time priorities are changed, and thus the objective sequence
is reordered. Figure 8 shows the updated flight plan; with objective 1 already accomplished, the new objective sequence is 1-2-5-6-4-3. The UAV
is already flying toward objective 5 but switches course in order to execute its new instructions (e.g., immediate time priority for objective 2). It is
also to be noted that, in order to achieve the 1500 s time priority for objective 5, a speed increase is needed; the newflight plan expectsflight speeds
20% higher than normal until objective 5 is accomplished. This type of capability is particularly important for SAMMS: not only theflight plan is
updated with the new objective sequence, but it is adapted to ensure that all mission requirements are still met.

Figure 9 instead shows the 3-D trajectory for the entire scenario, including the replanning event; it is possible to notice the takeoff and climb
trajectories, as well as the diversion occurring because of the replanning event. Also, the spiraling trajectories adopted during the reconnaissance,
attack, and descent actions can be noted, as well as the loitering pattern adopted during the circle action.

As previously stated, several variations of this scenario were developed in order to test specific algorithms. Some of the resulting flight plans
will now be shown, although without the corresponding 3-D trajectory plot. In all these scenario variations, no replanning event is scheduled, in
order to highlight the operation of a particular algorithm; however, all algorithms are in fact meant to operate concurrently.

Table 5 Scenario 3 objectives and time priorities

Identifier Tag Type Priority (initial) Priority (change)

1 Circle Immediate Accomplished
2 Reconnaissance N/A Immediate
3 Transit N/A N/A
4 Reconnaissance 2500 N/A
5 Reconnaissance 1500 1500
6 Attack N/A 2500

aN/A, no value available.Q5

Fig. 7 Plot of initial scenario 3 flight plan (SPD: speed, m/s; ALT: altitute, m).
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Figure 10 shows the flight plan for scenario variation 3d; this variation has the same objectives but introduces three dangerous entities that
trigger the mission-path-adjust algorithm. The entities are represented as circles in the figure; it is possible to see that two travel actions intersect
them. The travel action between objective 5 and objective 4 (shown as a dashed line in thefigure) intersects with the threat range of entity 7; thus, a
new waypoint is added, and the flight plan modified to include a new travel action for objective 4. The travel action between objective 6 and
objective 2 intersects with the threat range of entity 6; again, a new waypoint is added to avoid the area. Entity 5 does not interfere with the flight
plan and causes no modifications. It can be noted that the new waypoints cause an increase in distance and time estimates (compare with Fig. 7);
the time priority for objective 4 set at 2500 s is still respected, so no speed increase is needed.

Fig. 8 Plot of initial scenario 3 flight plan (SPD: speed, m/s; ALT: altitute, m).

Fig. 9 3-D trajectory plot for scenario 3.
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Figure 11 shows the flight plan for scenario variation 3f; the usual six objectives are defined but the amount of fuel available to the UAVis set at
24 kg (while the fuel consumption estimate for the original plan, as in Fig. 7, is 28.35 kg). This causes the reduce-speed algorithm in the planner to
reduce flight speed by 19%, in order to save enough fuel to complete the mission. It is possible to see that the time estimate for the completion of
objective 5 in the updated plan is 1622.36 s; objective 5 has a time priority value of 1500 s, which with the reduced flight speeds is not respected.
Since the lack of fuel problem is obviously considered more important, the plan is accepted and eventually a priority problem is detected by the
MMA. In the scenario, objective 5 has its time priority modified from the value of 1500 s to the value of 1682.36 s (obtained as its corresponding
time estimate 1622.36 s, increased by a fixed amount of 60 s). The user interface should be designed so that this changewill be communicated to
the UAVoperator.

If the available amount of fuel is further reduced, flight speed reduction will not be sufficient to ensure that the flight plan is completed and
theMMAmust decide to abort one of the objectives. In scenario 3g, the UAVhas 18 kg of fuel at its disposal, and a fuel problem is detected by the
MMA; since no search objectives are present, the decision to cancel an objective ismade.All objectives have the same execution priority; thus, the
canceled objective is objective 4, which is the farthest from the starting airport. To complete themission, the planner still needs to reduce speed by
19%; the total estimated fuel consumption is now 17.86 kg. Note that the time priority for objective 5 is again not respected. In scenario 3h, the

Fig. 10 Plot of scenario variation 3d flight plan (SPD: speed, m/s; ALT: altitute, m).

Fig. 11 Plot of scenario variation 3f flight plan (SPD: speed, m/s; ALT: altitute, m).
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UAVhas 19.2 kg of fuel and, in this case, objective 6 is chosen to be canceled since it has a lower execution priority. A reduction of flight speed by
27% (three iterations of the reduce-speed algorithm) is needed to ensure that the planwill be completedwith the current amount of fuel; with these
speed values, the fuel consumption estimate is 18.65 kg. In this case, the time priorities for objectives 4 and 5 are not respected. Theflight plans for
both scenario variations 3g and 3h are plotted in Fig. 12.

C. Scenario 4

Scenario 4 is very complex and designed to test the ability of SAMMS to deal with many objectives. It involves eight different objectives of
different types (analyze target, attack target, orbit position, search area). The 4a variant does not include a replanning event; however, it is
designed to test the threat avoidance algorithm.

Fig. 12 Plot of scenario variations 3g and 3h flight plan (SPD: speed, m/s; ALT: altitute, m).
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In Fig. 13, the two-dimensional plot of the flight plan is shown, and operation of the threat avoidance algorithm is demonstrated. The dashed
line represents the flight plan without threat avoidance. The algorithm works by introducing new waypoints, as can be seen on the actual flight
plan that is represented by the solid line. Circles in the plot represent the danger areas that are introduced. The figure also shows distance and time
estimates for all of the main waypoints of the flight plan.

The correspondingUAV trajectory is plotted in Fig. 14. For visual clarity reasons, the 3-Dplot is representedwith inverted axes compared to the
flight plan plot. It is possible to note the circling trajectory used during orbit objectives (this is the first objective that is executed) and the order in
which objectives are executed. Within the scenario, objective 5 (orbit objective) has an immediate priority, which means it is supposed to be
prioritized over any other objective (only one objective can have an immediate priority at any time). The other objectives have no time priorities,

Fig. 13 Threat avoidance algorithm demonstrated in scenario 4a (SPD: speed, m/s; ALT: altitute, m).

Fig. 14 Scenario 4a trajectory plot.
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thus SAMMS chooses the order by trying to minimize the distance to be covered. The scenario does not involve a transit objective, thus the UAV
takes off and lands at the same airport. Finally, danger areas are avoided by flying through the waypoints that are added by the threat avoidance
algorithm.

To further test SAMMSwhen dealing with many objectives, a scenario variation including a replanning event was prepared. In short, scenario
variation 4c introduces two new objectives, one of which (objective 9) has an immediate priority; however, the time at which the replanning event
is scheduled can be changed, and the updated flight plan varies accordingly. Figure 15 shows the flight plan obtained when the replanning event
occurs after action 12 (last travel leg to reach objective 7). Since objective 7 has almost been reached, it is completed before heading toward
objective 9; the travel action toward objective 9 intersects two danger areas that are properly avoided and, after objectives 9 and 10 have been
completed, objective 3 is scheduled before others because of its time priority. In the plan shown in Fig. 16, the replanning event is scheduledwhile
performing action 15 of the original plan (while traveling toward objective 8).Objective 8 is completed before heading toward objective 9; no time
priority issues arise with objective 3, and so objective 6 can be completed before yielding a reduction in traveled distance. Finally, Fig. 17 shows
the flight plan obtained when replanning occurs during action 18 (while objective 3 is being completed). In this case, objectives 9 and 10 are
simply added after objective 3 and before objective 6, and the rest of theflight plan is executed as originally planned. The corresponding trajectory
plots for these flight plans are not shown, as they would not bring significant insight.

D. Scenario 5

Scenario 5 is a scenario of medium complexity, designed to test SAMMS’s ability to deal with multiple replanning events. In the 5e variant,
three replanning events occur: every time the flight plan is updated.

In Fig. 18, the evolution of the flight plan for scenario 5e is shown. The scenario beginswith four objectives; no transit objective is assigned, so
the UAV is expected to takeoff and land at the same airport. Shortly after takeoff, a new objective with an immediate time priority is added; the
UAVupdates the flight plan and diverts toward it. A second replanning event is triggered later while accomplishing objective 2; objective 3 is
removed and the flight plan updated accordingly. The third replanning event occurs when a transit objective is added; this means that the UAV
should land at a different airport from the starting one, and a final update to the flight plan is done.

In Fig. 19, the 3-D trajectory plot for scenario 5e is shown; after the first replanning event, a diversion in the UAV flight can be noted. The
diversion happens because the execution agent is not yet committed to complete the current objective. During other replanning events, the exag is
instead committed to finish the current objective, so the UAV does not divert immediately. The rules used by the execution agent to decide
commitment to finish the current objective depend on several factors; generally, the agent will be committed if a significant part of the objective
has already been accomplished.

It is to be noted that the SAMMSarchitecture is designed to be able to dealwith anynumber of replanning events. The new-plan trigger function
is present to avoid excessive replanning: only significant events should trigger the generation of an updatedflight plan. The three events that can be
seen in scenario 5e are all changes in the user-provided mission objectives, which are obviously significant and consequently trigger replanning.

IV. Hardware Implementation

In the previous sections, SAMMS has been thoroughly described and tested with simulations. In this section, details regarding its planned
implementation will be discussed.

Fig. 15 Plot of scenario 4c flight plan, replanning event at action 12 (SPD: speed, m/s; ALT: altitute, m).
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While the SAMMS architecture is not constrained to a specific UAV class (UAV performance is provided to SAMMS by a set of easily
changeable parameters), it has been designed with application on small low-cost UAVs in mind. A key goal of the project has always been
ensuring that the system could run on a PC/104 board running a real-time operating system such as QNX or VxWorks Tornado.

This phase of development has not been reached, so the following observations cannot currently be proved and are purely based on the
observation of the simulations and from experience derived from other projects. The SAMMS architecture is currently executed within a

Fig. 17 Plot of scenario 4c flight plan, replanning event at action 18 (SPD: speed, m/s; ALT: altitute, m).

Fig. 16 Plot of scenario 4c flight plan, replanning event at action 15 (SPD: speed, m/s; ALT: altitute, m).
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MATLAB R2006b environment with a 100 ms sample time; a dual-core laptop computer can run an entire simulation (including the
computationally heavy UAV model and a visualization feature based on Microsoft Flight Simulator) faster than real time.

The target platform for SAMMS is a single PC/104 board running either QNX or Tornado; using the Real-Time Workshop feature of
MATLAB, the intention is to automatically generate executable code from the Simulinkmodel. This codewould include the three Soar agents and
the autopilot function, so as to avoid the need for an external autopilot. Depending on the avionics suite, an additional PC/104 I/O board could be

Fig. 18 Evolution of the flight plan within scenario 5e (SPD: speed, m/s; ALT: altitute, m).

Fig. 19 Scenario 5e trajectory plot.
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needed, but no additional components should be required. Using COTS hardware, such a configuration would weigh in the 200–500 g range and
cost about $500–1000. This qualifies it for use within small UAVs with a maximum weight of 5–10 kg and costs in the $10,000 range.

At present, the fact that such a system possesses sufficient computational resources to execute the SAMMS software cannot be guaranteed.
However, past experiences such as in [24], suggest that compilation of Simulink models allows for a dramatic increase of execution speed. The
addition of Soar agents brings uncertainty; however, these are in fact executed as Simulink S functions (which do not pose an issue), and related
literature [6,8,14] does not evidence problems regarding the computational resources required by the Soar architecture. While not proven, the
authors are confident that a single PC/104 board will be sufficient to execute the SAMMS software respecting real-time requirements.

V. Conclusions

In this paper, a novel software system for autonomous mission management and execution was presented. The system is based on a
combination of three Soar-based intelligent agents, supported by additional software components implementing traditional control algorithms
(autopilots and others). The whole system was integrated using the MATLAB/Simulink package, which also provided the simulation
environment used to test it.

Simulation results proved the feasibility of the approach; the system demonstrated its capability to control a simulated model of the Pioneer
unmanned aerial vehicle (UAV), deriving appropriate flight plans in all the test scenarios and then executing them smoothly.

A possible implementation strategy was also discussed, highlighting the fact that, once the software compiled in executable code using the
Real-TimeWorkshop package, the Soar-BasedAutonomousMissionManagement System (SAMMS) computational requirements are estimated
not to exceed the computational resources available on a PC/104 board running a real-time operating system such as QNX or VxWorks Tornado.
This qualifies the architecture for use within small low-cost UAVs; it is to be noted that, in this form, the architecture will not be applicable to
micro-UAVs (less than 2 kg total weight). Real-world application of SAMMS will require recalculation of the low-level control algorithm
parameters, but otherwise, the high-level agents are platform independent and only need a small set of performance parameters in order towork.A
thorough study regarding the certification possibilities for SAMMS will also be needed, especially since its capabilities make its suitable for
civilian applications such as environmental monitoring. Within such applications, the SAMMS architecture could provide the basis for a small
low-cost UAV to be used by untrained personnel, thus opening up new market sectors.

Apart from actual implementation, several improvements more specifically related to the Soar agents can be planned. First is the issue of
improving search objectives; new search patterns can be implemented, as well as search-area orientation and the possibility to interrupt and
reprise searches. A second issue is represented by the nearest-neighbor algorithm used during the plan-sequencing phase; literature on the subject
is abundant, and a better heuristic could be used. Finally, other functionality could be added in order to further improve the flight plans being
generated; for example, the interaction between the fuel-check and priority-check algorithms could be improved, and the execution agent might
bemodified so as to execute smoother flight trajectories, especially when altitude changes are involved (a slow descent can lead to significant fuel
savings).
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