
 1

ENHANCING AUTONOMY WITH TRUSTED COGNITIVE
MODELING

S. Bhattacharyya,* J. Davis,+ T. Vogl#, M. Fix @, A. McLean#, M. Matessa- and
L. Smith-Velazquez-

ABSTRACT

Autonomous Systems (AS) have been increasingly investigated for safety, avia-
tion, medical, and military applications with different degrees of autonomy. Au-
tonomy involves the implementation of adaptive algorithms (artificial intelli-
gence and/or adaptive control technologies). Advancing autonomy involves
transferring more of the decision-making to AS. For this transition to occur there
has to be significant trust and reliability in the AS.

Exhaustive analysis of all the possible behaviors exhibited by autonomy is in-
tractable. However, methods to guarantee behaviors of the intelligent agent rele-
vant to the application need to be developed. One of the approaches we explain
here is to translate from a cognitive architecture to a formal modeling environ-
ment. This approach enables developers to continue to use the tools (such as
ACT-R or Soar) that are good at cognitive modeling, while gaining trust through
the guarantees provided by formal verification. In this process, there are several
challenges to be addressed regarding the interactions within the cognitive en-
gine, maintaining the integrity of the interactions occurring based on the cogni-
tive architecture, and addressing the compositional analysis of rules. We de-
scribe an approach in this paper.

INTRODUCTION

Autonomous systems (AS) have degrees of behaving independently and deciding what to do
based on the situation. AS have been increasingly deployed for safety, aviation, medical, military,
and other business-critical applications. Depending upon the domain of application, there have
been different degrees of autonomy. Autonomy involves the implementation of adaptive algo-

* Sr. Research Engineer, Trusted Systems Group, Rockwell Collins, Cedar Rapids IA.
+Sr. Applied Mathematician, Trusted Systems Groups, Rockwell Collins, Cedar Rapids, IA
#Pr. Systems Engineer, Virtualized Flight Systems, Rockwell Collins
@Sr. Software Engineer, Precision Systems, Rockwell Collins
-Sr. Systems Engineer, VFS, Rockwell Collins

US15-BHATTACHARYYA

 2

rithms based on artificial intelligence and/or adaptive control technologies. Some of these tech-
nologies are potentially useful for responding to unforeseen situations, but they can also be a lia-
bility for safety-critical situations; cognitive modeling in autonomy has the potential to lead to
non-deterministic behavior that’s difficult to be validated for situations not considered at design
time or due to the evolving structure of autonomy due to learning. Enhancing autonomy leads to
transferring more of the decision-making to AS. For this transition to happen there has to be sig-
nificant trust and reliability in the AS. We describe a method to address some aspects of verifica-
tion of AS by representing them within formal methods based frameworks where they can be ver-
ified. Application of formal methods is limited with the potential of not being able to guarantee
certain behaviors due to out of memory or scalability issues. This is especially true with handling
non-linear dynamics which is being thoroughly researched.

Exhaustive analysis and understanding of all the possible behaviors based on the adaptive al-
gorithms implemented is challenging for large scale complex systems. However, methods can be
developed to guarantee behaviors of an intelligent agent relevant to the application as the domain
could constrain the possibilities and/or through abstraction. An intelligent agent is an agent that
adapts and changes behavior based on the situation. The behavior-checks can be formalized to
verify progress and safety. Verifying progress assures that the behavior modeled meets the mis-
sion goal. Checking safety verifies that the system never does anything harmful and never goes
into an unsafe region. This involves exhaustive analysis of the models with appropriate refine-
ments to diagnose safety violations.

One of the approaches to a process of developing and verifying a system is to design a Do-
main Specific Language (DSL [1] [2]) that provides a common input for the intelligent system as
well as the formal modeling paradigm. This is then translated into each of the domains but the
challenging issue is that this approach misses upon the structural flow of cognitive models which
is different than the FM tools. The other approach which we explain here is to translate from a
cognitive architecture to a formal modeling environment. This approach could enable developers
to continue to use the tools (such as ACT-R or Soar) with which they are familiar, while gaining
the guarantee provided by formal verification. In this process of translation, there are several
challenges we need to address regarding the interactions within the cognitive engine, maintaining
the integrity of the interactions occurring based on the cognitive architecture, and addressing the
compositional analysis of rules. We describe this approach and the challenges within in the rest of
the paper. This approach guarantees behaviors for example detect and avoid, follow lost commu-
nication procedures to guarantee safe operations as indicated in Figure 1 that AS avoid each
other following the rules as outlined in pilot manuals. Models have been developed demonstrat-
ing this approach in the Soar cognitive architecture and the Uppaal model checker. The novelty of
this approach is in the translation of cognitive models to a formal analysis environment to gain
confidence in the correctness of the system. This approach could be automated and implemented,
for example, as an Eclipse plug-in.

Figure 1: Trusted autonomy to guarantee safe operations

 3

In this paper, we discuss developing autonomy using a formal approach. This approach gets us
closer to licensing [3] the autonomy with a pilot’s license by guaranteeing that the autonomy has
the correct behaviors implemented as required for a pilot. This is especially different and chal-
lenging as compared to software verification. The Practical Testing Standard (PTS) followed by
the FAA specifies the required behaviors of the pilot. Some examples of behaviors are: 1) The
pilot should be capable of recovering from flight plan deviations, 2) The pilot shall be capable of
recovering from lost communications and 3) The pilot shall ensure the aircraft is in proper operat-
ing order before initiating flight. The main objective is to develop pilot behavior using rule-based
production systems as implemented in intelligent agent architectures (SOAR, ACT-R) and then
translating to a formal analysis environment (Uppaal, ACL-2) to guarantee safety and progress
properties. Progress refers to the pilot behaviors integrated together will meet the mission intent
of flying from one location to the other.

Motivation to Enhance Autonomy with Trust

The promise of AS (making intelligent decisions in complex situations) is attractive. Enhanc-
ing the intelligence of a system leads to complex adaptive behavior. There is a lack of under-
standing of the emergent complex behavior of AS within dynamic systems. So our approach pro-
poses to prove safety properties hold even with emergent behaviors, helping us in deciding if an
unsafe operation may be performed by the autonomy, via new methods to guarantee performance
of autonomy [4]. The cognitive architectures typically used for implementing autonomy have
some characteristics that pose serious challenges when attempting to verify a system. Specifical-
ly, two such challenges are:

1. Implicit behavior: Behaviors implemented as part of a cognitive architecture are not ex-
plicitly mentioned depending on the constructs allowed in the agent modeling . For ex-
ample some of the constructs of a language might allow binding at runtime [5]. Leading
potentially to a lack of understanding of the response.

2. Non-deterministic behavior [3]: Behaviors that lead to selecting one among several
possible options from a state.

To deal with these characteristics of autonomous systems we propose the development of a
formal methods (FM) approach. FM is a set of mathematically rigorous tools and techniques for
the verification of hardware and software systems [7]. Formal verification can be used for certifi-
cation credit under DO-178C Supplement DO 333. Formal methods can address implicit and non-
deterministic behaviors by examining the bounds during design time. The bounds determine the
runtime monitors that need to be evaluated at runtime checking safety

The FM approach to developing a system model has the potential to increase the transparency
of the intelligent models. This enables one to apply methods to prove or disprove the correct and
safe operation of the system.

We enumerate two approaches to trustworthy autonomy with verification in mind as shown
below:

How do we design trustworthy intelligent systems that guarantee
safety and progress?

 4

1. Translating from a cognitive architecture to a formal verification environment: The
cognitive models are built in a cognitive architecture and then translated to a formal veri-
fication environment.

2. Design of intelligent systems using a formal methods approach: This involves devel-
oping a formal methods approach to design, develop, and implement the requirements for
autonomy.

The first approach seamlessly flows into the process presently used by developers. There-

fore, it can be integrated easily and quickly. However, it requires analyzing the cognitive ar-
chitectures and representations, which is a challenging task. The focus is to maintain the ex-
isting constructs in a translation to the formal methods domain, where they can be more
readily verified with a challenge of validating the translation. The second approach potential-
ly could be a complete formal approach that translates the inputs of a common DSL into the
different paradigms. This is a more challenging task as it requires developing an understand-
ing of how the DSL should be designed to represent both the paradigms (Cognitive architec-
ture and FM) with the constructs that can be implemented. so more fundamental research ef-
forts need to be conducted.

Cognitive Architectures

A cognitive architecture defines the interaction among the different components involved in
implementing the decision-making behavior. Commonly, the architectural components are classi-
fied in three different categories: perception or external interaction, the memory or the infor-
mation retrieval, and the production system rules. The perception includes different sensory mod-
ules to sense the external environment. Once this information is received, a comparison is done
with the goal as defined in the Memory. Finally, based on the understanding of the situation, rules
are fired to execute appropriate actions.

One of the cognitive architectures is shown below in Figure 2, which is that of Adaptive Con-
trol of Thought—Rational (ACT-R) [8]. Another architecture that can achieve some similar re-
sults is that of Soar (Figure 3). According to these architectures the production rules fire based on
the situation. Common methods of rule generation include statically generated or generated
through experiential learning performed by the autonomous system. In our system these rules im-
plement the pilot behavior as captured from the PTS standards. The implementation of these cog-
nitive architectures leads to several concerns as we found in our effort on Certification Considera-
tions of Adaptive Systems with NASA [4] as listed:

1. Does the integration of all the rules of the composed system still lead to successfully exe-
cuting the goal?

2. As rules are generated and added to the composition, can it lead to any unsafe operation
or execution?

3. How do we work with the rules that may deal with some implicit information like bind-
ing a value to a variable during execution?

How do we develop formal approaches to design autonomy to
guarantee correctness of autonomous behaviors?

 5

4. How do we deal with non-determinism where several rules could fire at the same time?

Figure 2: Cognitive Architecture ACT-R

We describe in the next section our process of translation to translate from a cognitive envi-
ronment to a formally verifiable environment.

Image Source: Soar Tutorial Part 1 [9]

 Figure 3: Cognitive Architecture Soar

We describe in the next section our process of translation from a cognitive environment to a
formally verifiable environment.

Formal Verification
The goal of the translation is to map the cognitive model into a formal language, where progress
and safety requirements can be verified completely [6]. There are several options for the formal
language. We have chosen to map to the formalisms of the language supported by Uppaal. Mod-
els in Uppaal are finite state machines. In Figure 4, we have a representation of a cognitive archi-
tecture (rules) on the top and the formal model (finite state machines) at the bottom. The compo-

How do we instantiate formal approaches to design autonomy to
guarantee correctness of autonomous behaviors?

 6

sition of the rules as finite state machines allows the representation of formal modeling using
temporal logics. This modeling paradigm allows the execution of requirements as temporal logic
queries to exhaustively check the satisfaction of the properties. We describe the mathematical
representation and the different properties that can be verified next. We then discuss an alternate
formal verification approach (using the ACL2 theorem prover).

Mathematical representation in formal environment
The rules are translated to formal, mathematically rigorous representations known as timed au-

tomata [6], a subset of hybrid automata. According to timed automata, one of the essential re-
quirements in the design is to model the time associated with the execution of operations or rules.
To represent time, the components need be modeled as timed automata. A timed automaton is a
finite automaton extended with a finite set of real-valued clocks. Clock or other relevant variable
values can be used in guards on the transitions within the automata. Based on the results of the
guard evaluation, a transition may be enabled or disabled. Additionally, variables can be reset and
implemented as invariants at a state. Modeling timed systems using a timed-automata approach is
symbolic rather than explicit and is similar to program graphs. This allows verification of safety
properties to be a tractable problem rather than an intractable infinite one with continuous time.
So timed automata considers a finite subset of the infinite state space on-demand, i.e., using an
equivalence that depends on the property and the timed automaton, which is referred to as the
region automaton.

Figure 4: Translation representation

Timed automata can be used to model and analyze the timing behavior of computer systems,
e.g., real-time systems or networks. Methods for checking both safety and liveness properties
have been developed [7, 8],. It has been shown that the state reachability problem for timed au-
tomata is decidable, which makes this an interesting sub-class of hybrid automata. Extensions
have been extensively studied, among them stopwatches, real-time tasks, cost functions, and
timed games. These provide capabilities in mapping real time system requirements. There exists a
variety of tools to input and analyze timed automata and extensions, including the model checkers

 7

Uppaal [11, 12], Kronos [13], and Temporal Logic Actions (TLA) [14]. These tools are becoming
more and more mature. Formal representation of timed automata is defined below.

Figure 5: Formal Automata Description

Translation into the formal representation as described here strengthens the approach by en-
forcing explicitly representing all the relevant important characteristics of the system to guarantee
correctness.

Formal verification of autonomous behaviors
The translation of a cognitive model to a formal methods environment supporting temporal logics
allows the formulation of properties as described next.
1. E<> p – it is possible to reach a state in which p is satisfied, i.e., p is true in (at least) one

reachable state (Figure 6).
2. A[] p – p holds invariantly, i.e., p is true in all reachable states (Figure 7).
3. A<> p: The automaton is guaranteed to eventually reach a state in which p is true, i.e., p is

true in some state of all paths (Figure 8).
4. E[] p – p is potentially always true, i.e., there exists a path in which p is true in all states

(Figure 9).
5. q  p satisfaction of q eventually leads to p being satisfied (Figure 10)

Figure 6: E<>p Figure 7: A[]p Figure 8: A<>p

Figure 9: E[]p Figure 10: q-->p

Formally, timed automata can be defined as (Q, inv, ∑, C, E, q0) where

Q is finite set of states or locations

inv are location invariants

∑ is finite set of events or actions

C is finite set of clocks

E a set of edges, where an edge is a tuple (q, g, σ, r, q’) defining a transition from
state q to state q’ with a guard or clock constraint g, an action or event σ, and an update or
reset r.q0 is the initial state or location

 8

Algorithms Translating a Cognitive Architecture to a Formal
Methods Environment

In this section, we discuss different approaches of translation to a formal analysis environ-
ment. One of the approaches involves model checking, and the other uses a theorem prover.

Translation to the Uppaal Model Checker
We elaborate on the algorithm to translate from a cognitive architecture (ACT-R or Soar) to

Uppaal, highlighting challenges in the translation process from agent-based cognition to a more
mathematical, state-machine-based model. The first step in the translation process is to translate
the production rules. This translation involves creating a template for each of the rules. Each tem-
plate is a state machine model implementing the condition evaluation and the corresponding ac-
tion. This translation exposes implicit references to variables, which need to be identified and
explicitly indicated during the translation process. Additionally, the translation process should
maintain the architectural integrity, which deals with the interaction among the components.
Some of the characteristics of the cognitive engine dealing with phases of operation as well as
interaction among the rules are challenges to be addressed by the translator. Once the rules are
translated, models of the external components interacting with the production rules are created.
This approach translates the cognitive architecture interactions to the formal environment. After
generating the architectural components, instances of all the state-machine templates are created
that represent the system. Figure 11 shows the algorithm for manually translating from ACT-R
and Soar to Uppaal.The translation process indicates certain general properties and certain prop-
erties specific to the cognitive modeling framework. In Figure 11 we indicate the general aspects
of translating from a rule-based agent cognitive modeling tool. Figure 12 elaborates on the gener-
ic approach to handling implicit information. This is the information when binding occurs at
runtime. These need to be explicitly represented for FM to prove properties related to these repre-
sentations.

Figure 11: General modules for translation to Uppaal

 9

Figure 12: Generic approach dealing with implicit representation

For reference, see a simple counting example in Soar translated to Uppaal. To handle large
scale complex systems this approach can be extended with relevant refinements like assumptions
and guarantees. One of the rules for the example is to increment a counter. The Soar implementa-
tion of this rule is shown in Figure 13. Based on the translation described in Figure 11, the Uppaal
model in the formal verification environment (Figure 14-15) is manually generated. The translat-
ed model in the Uppaal environment allows the model checker to prove that on all paths eventual-
ly we can reach the goal state. The translation allows exhaustive analysis on specific requirements
for agent-based models.

Figure 13: Counter increment rule in Soar

Implicit to Explicit representation

• For all the variables in the condition of a rule
– If value bound to variable or constant, match to value

 continue executing the rule
 else

 do not execute the rule

 endif

– If variable is unbound,
 If value is nil,

 rule does not fire
 else

bind variable to value and continue executing the rule

endif

sp {counter*apply*increment
 (state <s> ^name counter
 ^operator <op>
 ^num <c>)
 (<op> ^name increment
 ^first <c>)
-->
 (<s> ^num (+ <c> 1)
 ^num <c> -)
}

 10

Figure 14: Counter increment rule translated to Uppaal

Translation to the ACL2 Theorem Prover
A Computational Logic for Applicative Common Lisp (ACL2) is a highly automated theorem

proving system. ACL2 is a functional subset of Lisp. There are admission criteria for function
definitions, and a subset of the language is executable. A formal model in ACL2 is implemented
as a set of function definitions (rather than state machines). Properties to be verified are stated as
theorems, and human intervention is typically required to build up the infrastructure (definitions
and lemmas) so that ACL2’s rewriting system can prove the theorem. Figure 16 shows the ad-
vantages (+) and disadvantages (-) of ACL2 and Uppaal. These categories of advantages and dis-
advantages are common to most theorem provers (such as ACL2) and model checkers (such as
Uppaal). Note that Uppaal has several advantages that reduce the level of human effort required
to model and prove properties. Hence, Uppaal is our preferred modeling approach.

Figure 15: Uppaal and ACL2 Comparison for the Modeling and Verification of Soar Agents

 11

The Soar rules are logical statements of the form “If X, then do Y.” These naturally translate
into ACL2 functions with an if-then-else construct (where the else clause just returns the current
working memory). Working memory in Soar is a directed graph structure. The elements of work-
ing memory are triples (one corresponding to each edge in the graph) of the form (identifier
(node), attribute (edge), value (node)). There are no isolated nodes. Hence working memory can
be represented as a list of triples in ACL2. The counter increment rule shown in Figure 13 can be
translated to the ACL2 function shown in Figure 16. (Here “num” is the variable ‘c’, and ‘wmem’
is the list of triples containing the contents of working memory.)

Figure 16: Counter increment rule translated to ACL2

Rather than translating Soar rules directly to functions in ACL2, one can develop an interpret-
er for Soar rules in ACL2. This forces the semantics to be made explicit and makes it possible to
reason about the semantics and to prove that a translation is correct. On the other hand, translators
can be completed and optimized more quickly since they are less formal. We implemented some
basic functionality for an ACL2 interpreter but did not complete it.

Case study on a pilot licensing approach
In this section, we discuss the implementation of the pilot behavior in the cognitive architec-

ture Soar. Currently the behavior is pertaining to the preflight checklist conducted by a pilot.
Other behaviors will be added into the modular architecture. We discuss the architecture followed
by the formal verification approach with Uppaal.

Pilot behavior modeled as cognitive agent
Soar agents are being developed to conduct preflight/inflight checklists and procedures. Real-

world checklists often contain ambiguities and can be interpreted to have multiple valid paths to
completion. Checklists can also be misinterpreted by human operators who miss items or take
shortcuts that are actually invalid. Our agents are being designed to provably avoid invalid steps,
and to learn to complete checklists in the most efficient manner, given the duration times of vari-
ous checks and the dependency among the tasks. The completed design still provides the agents
to execute different paths to complete a behavior which allows non-determinism to be present in
the system and thus makes it challenging to guarantee correctness.

In our current implementation, a Soar agent is able to traverse a portion of a preflight checklist
modeled as a graph whose nodes are checklist items, and whose links are the ‘next’ relation. All
checklist items (except for the first and last item) will have one or more outgoing next links, and

 12

one or more incoming next links. For any given checklist item, all incoming next links must pass
before that checklist item can be verified. Some checklist items are modeled to take negligible
time, while others (such as starting up certain avionics components) may have a time duration
associated with them. The agent is guaranteed to visit each checklist item, and utilizes rein-
forcement learning (RL) to explore different valid paths through a checklist over time, learning an
optimal solution. The current system architecture is depicted in Figure 17.

Figure 17: Software Architecture for the autonomous system

Our current implementation utilizes Soar’s built-in Reinforcement Learning (RL) capabilities
to attempt to learn the most efficient path through a given checklist. The Soar RL mechanism
provides reward value to the agent when the checklist is completed. As more and more runs are
completed, rewards accumulate in state-operator pairs that have shown to be more advantageous
to achieving our goal state. After a sufficient amount of iterations over a given checklist domain,
the accumulated numerical reward values should converge to a point that the optimal path is al-
ways taken.

One of the challenges in implementing learning mechanisms involves dealing with the con-
vergence to a solution. The system in general should be able to respond to changing situations
quickly, which means convergence should occur at a fast rate; but this has the potential of leading
to unstable behavior. This is discussed in several research efforts [15, 16] In RL-specific Soar,
configuration values (Epsilon-greedy and Boltzmann and their associated parameters) deal with
aspects of convergence controlling the exploration. In many cases, it is crucial to allow a Soar
RL model some flexibility to lessen the chances of settling too early on a local sub-optimal solu-
tion. Additionally, Soar includes both Q-learning and Sarsa RL policies, which can be configured
to effect learning behavior along with their learning rate and discount rate parameters. Finally,
there are some ‘decay-rate’ configuration parameters that gradually reduce the probability of ex-
ploration and/or the learning-rate over time, which should reduce some of the inherent oscilla-
tions between taking an optimal path and exploring a suboptimal path. Further enhancement is
being developed in collaboration with Florida Institute of Technology [17].

The learning methods feed into the Soar rules that implement the behavior of the agent (pilot).
These rules include evaluation of conditions followed by taking actions. This is similar to the rep-

 13

resentation in formal analysis tools with state machines that evaluate guards and then execute ac-
tions. Translation of these cognitive rules into the formal environment enables compositional
analysis of the rule-based agent, thus guaranteeing the pilot behavior—one of the crucial aspects
of verifiable autonomy.

Guaranteeing pilot behavior with formal analysis
The pilot behavior is represented as a hierarchical architecture as described further in Figure

18. The hierarchical representation decomposes the expected behavior of a pilot into different
levels: the Strategy/ Decision making behavior, the Operational behavior and the Execution be-
havior. The Strategy/Decision making behavior implements the highest level of abstraction of a
task that is communicated to the autonomy by humans. The model decomposes the request re-
ceived into tasks at lower levels. For example, the behavior of the pilot to perform a preflight
checklist is represented as shown in Figure 19, Figure 20, and Figure 21. Figure 19 represents the
set of equipment to be evaluated to perform the preflight checklist, followed by checking a par-
ticular category of equipment as a set of operations, as shown in Figure 20. Finally, Figure 21
shows the direct interaction with the physical equipment to send the request, followed by evalua-
tion of the received response to find out if the equipment is functioning correctly.

Figure 18: Architectural representation of Pilot Model

Figure 19: Preflight checklist (Strategy)

 14

Figure 20: Checking a particular category of equipment (Operations)

Figure 21: Executing behavior interacting with the physical equipment

Once this representation is modeled, the expected range of inputs are generated and exhaust-
ively evaluated to guarantee the behavior of the pilot. This is conducted by formulating temporal
logic queries. These temporal logic queries exhaustively evaluate all the generated traces to check
if the requirement modeled as the query is satisfied by the model or not. Examples of queries are:

a. “Always eventually the pilot checks the equipment (instance: radio) ”
• A<> radioCheck1.RadioChecking

The final response to the query comes back as satisfied, indicating that the autonomy always
checks the radio.

b. “Pilot responds to faulty instrument (instance: altimeter) ”
• ((airportElevationValue-altimeterValue) >=1 || (altimeterValue-

airportElevationValue) >=1)&& pilotAltimeterChk1.AltimeterCheck -->
altimeterFault

The response indicates that the autonomy (the “pilot”) always responds to faulty equipment.

If the response is not satisfied, Uppaal comes back with a counterexample, as shown in Figure
22, with the trace of states that lead to the failure. The model can then be modified to satisfy the
query—i.e., the property being verified.

 15

Figure 22: Trace showing counterexample

Challenges in Developing Trustable Autonomy
The fundamental difference between cognitive modeling and formal verification makes it

challenging to develop cognition with trust. This is because cognitive architectures model the in-
telligence based on human psychology. This approach to modeling autonomy leads to several
challenges: non-determinism, concurrent execution of rules, and representation of the knowledge
base.

In the algorithms we have been developing for the Soar and ACT-R environments, the specific
challenges we dealt with were:

• Maintaining rule formalisms in the formal environment
– Addressed by limiting execution to one rule at a time using a locking mechanism

between state machines
• Maintaining the cognitive architectural lifecycle, such as Soar’s propose-select-apply cy-

cle
– Addressed with a scheduler state machine to manage the lifecycle and ensure all

the appropriate rules are fired
• Addressing concurrency (e.g., for Soar’s propose rules)

– Addressed by attempting to fire all possible propose rules in sequence. (In our
examples to date, the order that propose rules fire does not affect the outcome
since they only affect working memory elements below their own operator ver-
tex.)

• Maintaining architectural integrity
– Addressed by implementing methods to properly order the binding of variables,

manage the flow of data, and evaluate the condition during translation

 16

Additional challenges that still need to be addressed are the following:

• Expand to support instantiation
– For example, not “o” for an operator but “o1”, “o2”, etc., since there can be mul-

tiple operators and even different instantiations of the same operator
– Deciphering instantiations from rules without interfacing with the working

memory
• Working memory generates a tree structure for variables during execu-

tion to assign values, even without accessing the tree structure the in-
stances can be generated

• Representing knowledge
– How best to represent knowledge or learned information?
– Do we automate the knowledge representation through translation?
– Specific knowledge information might need to be added manually

Our translation approach has not yet been implemented in an automated fashion, so additional
challenges may arise during implementation. Many of the challenges described here are common
among cognitive architectures, so our approach could be extended to address similar concerns and
develop translators for other cognitive architectures.

Conclusion and Application
In this paper, we outlined our approach to the development of trusted autonomous systems

through translation to a formal methods environment for verification. This can be a key compo-
nent in realizing the promise of autonomous systems by verifying their behavior in mission-
critical systems to established standards. This will lead to developing formal approaches to learn-
ing to be able to reason about learning outcomes. Therefore, we will be able to guarantee proper-
ties related to learning that would lead to successful completion of a mission or executing safer
operations. Formal reasoning for autonomy can be extended to handle a system of systems, where
each system is an autonomous system with its own autonomy. This would allow verification of a
group of autonomous systems working collaboratively by executing local missions to accomplish
a global mission. This discussion provides a formal approach to verifying autonomy to get closer
to licensing autonomy as a pilot.

References
1. Jones, R. M., Crossman, J. A., Lebiere, C., & Best, B. J. (2006). An abstract language for

cognitive modeling. In Proceedings of the Seventh International Conference on Cognitive
Modeling (pp. 160-165). Trieste, Italy.

Fundamental differences between autonomy and formal verification

need to be addressed to develop trusted autonomy

 17

2. Christian Hahn and Klaus Fischer, The Formal Semantics of the Domain Specific Model-
ing Language for Multiagent Systems. Agent-Oriented Software Engineering IX, Lecture
Notes in Computer Science Volume 5386, 2009, pp 145-158

3. S. Bhattacharyya, D. Cofer, D. Musliner, E. Engstrom and J. Mueller, “Certification Con-
siderations for Adaptive Systems”, Technical Report, NASA/CR–2015-218702.

4. M. Fisher, L. Dennis, M. Webster, "Verifying Autonomous Systems", Communications of
the ACM, Vol. 56 No. 9, Pages 84-93.

5. John E. Laird and Clare Bates Congdon et.al, The Soar User’s Manual Version
9.3.1December 5, 2011

6. M. O’Connor, S. Tangirala, R. Kumar, S. Bhattacharyya, M. Sznaier, and L.E. Holloway.
A bottom-up approach to verification of hybrid model-based hierarchical controllers with
application to underwater vehicles. In Proceedings of ACC’06, page 6 pp. IEEE, 2006

7. What is Formal Methods? http://shemesh.larc.nasa.gov/fm/fm-what.html
8. Bothell, D. (2007). ACT-R 6.0 Reference Manual. From the ACT-R Web site: http://act-

r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/actr6/reference-manual.pdf.
9. Laird, John. The Soar 8 Tutorial. May 14, 2006.

Available at: http://ai.eecs.umich.edu/soar/sitemaker/docs/tutorial/TutorialPart1.pdf.
10. Rajeev Alur, David L. Dill. 1994 A Theory of Timed Automata. In Theoretical Computer

Science, vol. 126, 183-235
11. Uppaal: A toolbox for modeling, simulation and verification of real time systems,

www.uppaal.com
12. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi , UPPAAL— a Tool Suite for

Automatic Verification of Real-Time Systems, , BRICS Report, RS-96-58, 1996.
13. M. Bozga et.al, Kronos: A Model-Checking Tool for Real-Time Systems, Formal Tech-

niques in Real-Time and Fault-Tolerant Systems, Denmark 1998.
14. L. Lamport , Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers, , Addison Wesley Professional 2004.
15. Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, Karthik Sridharan; Learnability, Sta-

bility and Uniform Convergence Volume 11 Journal of Machine Learning
(Oct):2635−2670, 2010.

16. Nguyen NT, Robust adaptive optimal control modification with large adaptive gain
American Control Conference 2009 June 10-12.

17. VanderHorn, N, Haan, B, Carvalho, M, Perez, C (2010) Distributed policy learning for the
cognitive network management system. The 2010 military communications conference—
unclassified program—cyber security and network management (MILCOM 2010-CSNM).

http://act-r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/actr6/reference-manual.pdf
http://act-r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/actr6/reference-manual.pdf
http://ai.eecs.umich.edu/soar/sitemaker/docs/tutorial/TutorialPart1.pdf
http://www.uppaal.com/

	ENHANCING AUTONOMY WITH TRUSTED COGNITIVE MODELING
	Motivation to Enhance Autonomy with Trust
	Cognitive Architectures
	Formal Verification
	Mathematical representation in formal environment
	Formal verification of autonomous behaviors
	Algorithms Translating a Cognitive Architecture to a Formal Methods Environment
	Translation to the Uppaal Model Checker
	Translation to the ACL2 Theorem Prover

	Case study on a pilot licensing approach
	Pilot behavior modeled as cognitive agent
	Guaranteeing pilot behavior with formal analysis

	Challenges in Developing Trustable Autonomy
	Conclusion and Application
	References

