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Abstract 
This paper examines the relationship between modeling 
human sentence comprehension using cognitive architec-
tures and approaches to linguistic knowledge representation 
using construction grammars. We review multiple computa-
tional models of language understanding that vary in their 
use of construction grammar and cognitive architectures. 
We present a case study: Lucia, that uses Embodied Con-
struction Grammar (ECG) within the Soar cognitive archi-
tecture to comprehend language used to instruct an embod-
ied agent. We also examine the tradeoffs between alterna-
tive approaches to representing and accessing linguistic 
knowledge within a cognitive architecture and suggest fu-
ture research. 

Introduction   
How do human beings comprehend natural language? 
Many disciplines within cognitive science have contributed 
knowledge to help answer this question. Psychologists and 
psycholinguists have gathered empirical data on human 
eye movements, reaction times, reading times, priming 
effects, and so on related to language comprehension. 
Cognitive linguists have developed theories of image 
schemas, metaphor, lexical semantics, and construction 
grammar to gain insight into the structure of language. 
Research in cognitive architecture has provided insight on 
the computational building blocks underlying language 
processing.  
 We examine language comprehension using construc-
tion grammars embedded within cognitive models – mod-
els that attempt to model the human comprehension pro-
cess, and more specifically, models implemented within a 
cognitive architecture. Cognitive architectures define the 
fixed structures and functions underlying cognition, includ-
ing the representation, storage, and access of knowledge in 
both short-term and long-term memory, decision making, 
and interfaces to perception and action. Cognitive architec-
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tures embody the hypothesis articulated by Allen Newell 
(1990) that the same computational structures are used 
across all human mental activity, including language pro-
cessing. We consider models of language comprehension 
in both the Soar and ACT-R cognitive architectures. 
 Within the context of cognitive architecture, the question 
of how do humans comprehend natural language leads us 
to the following questions: How is knowledge about lan-
guage represented? How is that knowledge encoded in and 
retrieved from the different memories of a cognitive archi-
tecture? How is knowledge used to dynamically create 
actionable meaning representations from input sentences 
rife with ambiguities and ungrammaticalities?  
 In this paper, we explore seven different sentence pro-
cessing systems. These systems vary along many dimen-
sions: how they structure their knowledge; whether they 
attempt to model human behavior; whether they focus only 
on syntactic processing or also include semantic processing 
that creates structures that are used for producing action; 
which memories they use to represent the different types of 
knowledge used in language processing; and how they 
process that knowledge, especially to deal with ambiguity. 

Models of Linguistic Knowledge 
Fundamental to models of sentence processing is the repre-
sentation and structure of linguistic knowledge. Construc-
tion grammars (Hoffman and Trousdale, 2013) are a set of 
theories as to how linguistic knowledge is structured and 
represented. These theories posit the idea of a construction, 
which is a unit of lexical or grammatical knowledge that 
pairs a form with a corresponding meaning. Many varia-
tions of construction grammar formalisms have been de-
veloped (Goldberg 2013). The two frameworks that are 
most relevant here are Embodied Construction Grammar 
(ECG; Bergen and Chang 2013) and Fluid Construction 
Grammar (FCG; Steels 2013). 
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Embodied Construction Grammar (ECG) 
ECG (Eppe et al. 2016; Feldman, Dodge, and Bryant 2009) 
is rooted in semantic representations based on theories of 
image schemas. It relates linguistic forms to these schemas 
which can represent perception and mental models, and 
also to action schemas, which describe physical actions 
that can be performed by an agent such that the parameters 
of an action can be filled in by information from the lan-
guage input. Thus the grammatical representation is closely 
tied to the perception and action of an embodied agent. 
 Bryant (2008) created a parser using ECG as its gram-
mar definition language and a probabilistic, left-corner 
parsing algorithm which searches for a best fit representa-
tion of a sentence using the given grammar. This parser has 
been used in a number of applications of ECG (Chang, 
2008; Eppe et al. 2016). Each sentence produces a seman-
tic representation called a semspec. Recent work uses this 
parser to provide a sentence comprehension capability to 
robots. 

Fluid Construction Grammar (FCG) 
FCG (Steels and Hild, 2012) is a construction grammar 
formalism that has been used with robots and for experi-
ments in learning linguistic knowledge by an agent or 
group of agents. It has the feature that the same construc-
tions can be used for both comprehension and language 
production. 
 The comprehension processor for FCG “supports stand-
ard heuristic best-first search” (Steels, De Beule, and Wel-
lens 2012). One of the major thrusts of FCG is that the 
parser has a number of facilities to enhance its robustness 
(Steels and van Trijp 2011) for missing or incomplete 
items. It can coerce items to change their properties, and 
learning processes can deal with unknown words and 
meanings. 

Analysis of Construction Grammar 
A construction grammar provides a formalization for 

representing the connections between syntactic and seman-
tic knowledge. Constructions for both lexical and gram-
matical constructions can include semantic information, 
which is a key point in construction grammar models of 
language (Goldberg 1995). As Jurafsky (1996) points out, 
construction grammars have an advantage over traditional 
context-free grammars in that an instance of a construction 
is an actual data structure, not just a label, and can thus 
hold semantic and grammatical feature data.Thus, con-
structions provide a declarative map from form to mean-
ing. The cognitive models we discuss below provide a dy-
namic process to construct meanings from input utterances 
one word at a time. 

Modeling Human Processing  
Both ECG and FCG provide theories of how linguistic 
knowledge is represented and how input sentences are 
parsed to create semantic representations. Both have been 
applied to embodied robotic agents. However, they are not 
embodied in a cognitive architecture nor do they attempt to 
model human comprehension processes. 
 In contrast, there have been multiple parsers developed 
in cognitive architectures, specifically within ACT-R (An-
derson et al. 2004) and Soar (Laird 2012; Newell 1990). 
Although ACT-R and Soar differ in many details, at an 
abstract level of analysis they share the same overall struc-
ture and processing cycle. They both have a basic pro-
cessing cycle that is controlled by knowledge retrieved 
from procedural memory. This knowledge is encoded as 
rules that test the current situation in order to decide what 
action, either internal or external, should be performed. 
The current situation is encoded as symbolic structures in 
working memory (which are buffers in ACT-R). The con-
tents of working memory come from perception and re-
trievals from long-term memories, which include the pro-
cedural memory as well as long-term declarative memo-
ries. The internal actions add, remove, or modify structures 
in working memory; or retrieve information from declara-
tive memories. The external actions initiative motor ac-
tions. All of these processes are modulated by metadata 
that the architecture maintains about its memories and pro-
cesses. For example, the retrieval of information from de-
clarative memory can be biased using the frequency and 
recency of prior accesses of long-term memory structures 
(base-level activation), as well as associations between 
memory structures (spreading activation).  

Because of the context-dependent retrieval of knowledge 
from procedural and declarative long-term memories, 
ACT-R and Soar do not have the same predetermined se-
quential execution structure that is ubiquitous in standard 
programming languages. Instead, each decision is deter-
mined by the current situation – the active goals, percep-
tion, and internal reasoning state of the system.  

Soar and ACT-R have similar procedural learning 
mechanisms that incrementally create new productions 
based on the co-occurrence of production firings. Soar’s 
mechanism, called chunking, creates productions that 
summarize the processing in subgoals, while ACT-R’s 
mechanism, called production composition, composes two 
productions that fire in sequence into a single production.  

In Soar, the processing consists of a series of decision 
cycles where a single operator is selected and applied. Any 
complex behavior, such as sentence processing, balancing 
a check book, or writing a symposium paper, is composed 
of sequences of primitive operators. When mapping to hu-
man behavior, Newell (1990) estimates that each decision 
cycle takes ~50 ms. Thus, since adult humans can read at a 
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rate of around 240 words/minute, with speech processing 
being somewhat slower, language processing should aver-
age ~4-5 decision cycles per word. This provides a tight 
constraint on models of sentence processing. We call tim-
ing measurements based on the number of decision cycles, 
assumed to take ~50 ms in humans, simulated real time 
measurements. 

The need to keep up with the continual stream of new 
words leads the sentence processing systems we describe 
below to perform as much processing as possible on each 
word, including lexical access, syntactic, and semantic 
processing. Although there may be additional processing at 
clause and sentence boundaries, there is insufficient time 
for extensive processing of the complete sentence, so it is 
critical that as much syntactic and semantic processing as 
possible is done as individual words arrive. This leads to 
incremental, left-to-right, word-at-a-time, processing, 
where a data structure representing both the semantic and 
the syntactic structure of the input sentence is built up. In 
order to produce actionable meanings, and to assist in re-
solving ambiguities, semantic structures are grounded to 
the agent’s perception and action capabilities as soon as 
possible (Just and Carpenter 1987). When mistakes are 
made, as they inevitably are in ambiguous sentences, the 
system attempts to make to make a local repair (Lewis 
1993), or if that fails, just keep processing and extract 
whatever meaning it can. It is possible to attempt a com-
plete reparse during reading, by starting over at the begin-
ning of a clause or sentence. 

Although the cognitive systems we discuss have many 
similarities (many later systems were inspired by earlier 
systems), they vary in how linguistic knowledge is struc-
tured, whether semantic processing is done, how linguistic 
knowledge is distributed over long-term memories, wheth-
er there are explicit predictions of future structures, and 
how ambiguities are handled. 

NL-Soar 
NL-Soar (Lehman, Lewis, and Newell 1991; Newell 1990) 
was the first attempt to apply a cognitive architecture to 
sentence processing. NL-Soar did integrated, incremental 
processing based on comprehension operators, each of 
which maps form to meaning for a single input word. Us-
ing the Soar features of impasses, subgoals, and chunking, 
these operators compiled different types of knowledge that 
initially required deliberative processing, into reactive pro-
cessing that modeled adult performance. In NL-Soar, all 
temporary parsing data was stored in Soar’s working 
memory. 
 The dynamic process of parsing in NL-Soar follows a 
single path rather than maintaining several alternative op-
tions. Expectations can be generated at each word so that 
processing for later words can combine both bottom-up 

and top-down knowledge. When an earlier choice later 
turns out to be incorrect, limited local repair can correct it. 
Lewis (1993) showed that this model can run in simulated 
real time and exhibits limitations similar to humans in 
dealing with garden path sentences and difficult center 
embeddings.  
 Grammatical knowledge in NL-Soar was stored in hand-
written production rules in procedural memory. Early ver-
sions used a dependency grammar representation (Lehman, 
Lewis, and Newell 1991a), while Lewis (1993) changed 
this to use X-bar theory and Government and Binding. 
During processing, both a syntactic and a semantic model 
of an utterance were built. 
 Rubinoff and Lehman (1994) report on a version of NL-
Soar which included language production as well as com-
prehension, and that interleaved this production with other 
task processing. They describe two systems built where 
NL-Soar was used to provide language comprehension and 
production. NTD-Soar simulated a NASA test director, and 
TacAir-Soar simulated the pilot of a military aircraft. 
 Lonsdale (2011) created a variation of NL-Soar, called 
XNL-Soar, that was designed to use the Minimalist Pro-
gram theory of language. This system built semantic repre-
sentations, but without any grounding in an external envi-
ronment. A version of XNL-Soar processed Japanese (in-
stead of English) with only a few changes to the grammar 
other than replacing the lexical items. The XNL-Soar sys-
tem used an order of magnitude fewer production rules 
than NL-Soar because it stored much of its lexical and se-
mantic knowledge in Soar’s declarative semantic memory. 

Lewis’s ACT-R Model 
Lewis and Vasishth (2005) developed a sentence pro-
cessing model using the ACT-R cognitive architecture. 
This model uses many concepts derived in terms of word-
by-word processing from NL-Soar, but its internal pro-
cessing differs in how it accesses intermediate linguisitic 
structures as they are constructed. Lewis, Vasishth, and 
Van Dyke (2006) discuss the architectural principles un-
derlying this model. 
 Central to the model is that ACT-R has a very limited 
working memory, with only a few items being available in 
buffers. Therefore, declarative memory is used in this 
model to store both lexical knowledge and the intermediate 
results of parsing. Knowledge to match grammatical con-
structions is encoded in production rules that are built by 
hand. The division of knowledge between declarative and 
procedural memories in this model is based in part on cog-
nitive neuroscience models (Ullman 2004). Lexical 
knowledge is in declarative memory while all grammatical 
knowledge is stored procedurally. 
 The parsing process in this model is based on cue-based 
parsing theory (Van Dyke and Lewis 2003). As words are 
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processed, the feature bundles representing the words and 
expectations for larger grammatical structures are stored in 
declarative memory. Then later words can encode cues that 
are used to search this memory for the previous expecta-
tions. For example, in the sentence Melissa knew that the 
toy from her uncle in Bogotá arrived today. when the verb 
arrived is processed, a cue is created that searches declara-
tive memory for the expected sentence structure built for 
the toy as the subject but not yet having a verb. When this 
structure is found, the verb is merged in. This model focus-
es on syntax and does not produce a semantic representa-
tion. Its linguistic knowledge is, like later versions of NL-
Soar, based on X-bar theory and Government and Binding. 
 This model takes advantage of the activation mecha-
nisms in ACT-R to give precise predictions of processing 
times that are then compared to empirical measurements of 
human processing times. Lewis and Vasishth (2005) ex-
plain in detail several experiments with their ACT-R model 
and compare them to human data. 

Ball’s ACT-R Model 
Ball et al. (2010), as part of the Synthetic Teammate Pro-
ject, developed a language processing model implemented 
in ACT-R that attempts “adherence to well established 
cognitive constraints.” It is based on Ball’s “The Double R 
Theory of Language Comprehension” (Ball 2004).  This 
theory incorporates models of grammar and the compre-
hension process. 
 The grammar model represents both “relational and ref-
erential meaning” (hence “Double R”) in a form that en-
codes both structure and meaning, as do construction 
grammars. Although the grammatical notation allows for 
representing syntax and semantics together, it is loosely 
based on X-bar theory and does not provide the strong 
connection between non-lexical items and their meanings 
that construction grammars typically do. 
 This model avoids the constraints on short-term memory 
in ACT-R by adding additional buffers to store intermedi-
ate results of parsing. Thus, it avoids using cue-based re-
trieval as in Lewis’s ACT-R model, simplifying the pro-
cessing, but also straying from modeling human parsing. It 
uses a bottom-up parsing strategy. Grammar knowledge is 
stored in declarative memory, and at each step, a produc-
tion rule creates a cue to retrieve relevant knowledge from 
that memory. Spreading activation is used to select the 
item to be retrieved when several items match the cue. 

The Rosie Parser 
Laird developed a parser in Soar that is embedded within 
the Rosie robotics system (Kirk, Mininger, and Laird 
2016). This semantic parser is based on ideas from NL-
Soar and construction grammar. It produces actionable 
meaning representations that allow the agent to be instruct-

ed and directed for a variety of tasks. Lexical and gram-
matical knowledge are stored in Soar’s long-term declara-
tive (semantic) memory. The incremental processing re-
trieves lexical items from semantic memory, as well as 
grammatical constructions based on previously retrieved 
lexical items and derived structures.  Grammatical con-
structions include both semantic mappings from syntactic 
structures and expectations of future syntactic structures. 
The word-by-word processing is done with language-
independent procedural knowledge. This includes merging 
expectations with new structures, building up semantic 
structures based on constructions, and grounding referents 
in language to the agent’s perceptual world model and pre-
viously mentioned referents. Soar’s chunking mechanism 
dynamically converts the language processing into rules 
that move semantic knowledge into procedural memory, 
leading to better simulated real time performance. 

Lucia 
Lucia (Lindes and Laird 2016) is a language comprehen-
sion system also built within Rosie. In addition to being 
built on the Soar cognitive architecture, it directly uses 
ECG to define its linguistic knowledge. An ECG to Soar 
translator converts a grammar for the Rosie domain, writ-
ten in the ECG formalism defined by Bryant (2008), into 
Soar production rules. Lucia then uses these rules to pro-
duce the same meanings needed by the Rosie agent as pro-
duced by the Rosie parser. 

This model goes to the extreme of having all its linguis-
tic knowledge, lexical, grammatical, and semantic, stored 
in procedural memory. Even though, as in all these sys-
tems, this knowledge is hand-written instead of learned, the 
task of engineering the grammar is easier since it can be 
written in the ECG language. Additional hand-written pro-
duction rules to implement grounding, repair, etc. are in-
cluded, but these are independent of the grammatical 
knowledge. Almost two thirds of the production rules are 
generated automatically by the ECG to Soar translator. 
 Lucia correctly parses all 98 sentences selected from the 
Rosie corpus attempted to far, as well as a Spanish transla-
tion of 50 of these sentences. Parsing proceeds mostly bot-
tom-up, driven by the ECG constructions. Top-down pro-
cessing is possible for more complex grammars, and is 
implemented by creating expectations, similar to what is 
done in the Rosie parser, NL-Soar, and the Lewis’ ACT-R 
parser. In the case of ambiguity, Lucia considers and se-
lects among multiple alternatives, and it does destructive 
local repair in a way similar to the other incremental mod-
els. 
 The current version of Lucia processes its 98 sentences, 
using 184 ECG constructions,  at a simulated average rate 
of 132 words/minute. This is within a factor of two of hu-
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man processing speed, and likely can be improved when 
we utilize chunking. 

A Case Study: Lucia 
Given this convergence of both cognitive modeling and 
construction grammars in the Lucia model of comprehen-
sion, we present details of it below. Additional details are 
available in Lindes and Laird (2016). 

A Simple Example 
Consider a simplified description of the processing of the 
simple sentence in (1). 

(1) Pick up the green sphere. 
The dynamic comprehension process processes one 

word at a time using a Soar operator we call comprehend-
word. This operator enters a substate in which a lexical-
access operator always fires first. This operator puts one or 
more lexical items on the current state, one for each sense 
of the current word. For (1) after the word up we have an 
UP item on the top of the stack and a PICK underneath it 
(upper case names are lexical items). Next a match-
construction operator is selected, removing these two items 
from the stack and replacing them with an instance of the 
composite PickUp construction. 

The next three words, THE, GREEN, and SPHERE, are 
pushed onto the stack and then two different match-
construction operators fire like this: 
 

After 
sphere. 

Match 
SpecPropNoun 

Match 
TransitiveCommand 

SPHERE 
GREEN 
THE 
PickUp[ 
  PICK 
  UP 
] 

SpecPropNoun[ 
  THE 
  GREEN 
  SPHERE 
] 
PickUp[..] 

TransitiveCommand[ 
  PickUp[..] 
  SpecPropNoun[..] 
] 

 
The first matches SpecPropNoun, which is a subcase of 

RefExpr (short for referring expression), and the second 
combines the verb and its object into a TransitiveCom-
mand, which can be interpreted to tell the agent to perform 
this action. As each construction is instantiated its corre-
sponding meaning structures are built. These trigger 
grounding operators that look up the schema for a PickUp 
action and search the world model to find the object there 
which matches the green sphere. All this information can 
be used to help resolve ambiguities. 

An Example of Attachment and Repair 
Now consider a more complicated case where preposition-
al phrases come into the picture as in (2). 

(2) a. Put the green block on the stove. 

b. Pick up the green block on the stove. 
In (2a) the phrase on the stove should modify the verb 

put, giving its target location. In (2b), however, the phrase 
should modify the green block to specify which block to 
pick up. The key to making this choice is knowledge about 
whether the verb needs a target location or not. 
 When Lucia process one of these sentences, a Transi-
tiveCommand construction is built up for everything up 
through the word block. After on the stove a PrepPhrase 
construction is built. At this point an attach-prep-phrase 
operator examines the context to decide where the phrase 
should be attached. For (2a) this gives: 
 

After 
stove. 

Match 
ImperativeWithLocation 

PrepPhrase[..] 
Transitive Command[..] 

ImperativeWithLocation[ 
  TransitiveCommand[..] 
  PrepPhrase[..] 
] 

 
For (2b) the verb does not allow an attached target. The 

attach operator analyzes this case and performs a snip op-
eration, which deletes the TransitiveCommand from the 
stack, and replaces it with its constituents like this:  
 

After 
stove. 

After 
attach-prep-phrase 

PrepPhrase[..] 
TransitiveCommand[ 
  PickUp[..] 
  SpecPropNoun[..] 
] 

PrepPhrase[..] 
SpecPropNoun[..] 
PickUp[..] 

 
This allows a RefExprPrepPhrase construction, another 

subcase of RefExpr, to be matched, so that after the snip 
we match two more constructions to complete the sen-
tence: 
 

Match 
RefExprPrepPhrase 

Match 
TransitiveCommand 

RefExprPrepPhrase[ 
  PrepPhrase[..] 
  SpecPropNoun[..] 
] 
PickUp[..] 

TransitiveCommand[ 
  PickUp[..] 
  RefExprPrepPhrase[..] 
] 

 
Once the prepositional phrase is attached to the referring 

expression, the grounding of that expression is done over 
again taking into account the new information. 

Tanenhaus et al. (1995) performed a human experiment 
using the sentences in (3). 

(3) a. Put the apple on the towel in the box. 
b. Put the apple that is on the towel in the box. 

The visual scene has two towels, one with an apple and 
one without, an open box, and distractor. With the ambigu-
ity at towel in (3a) human subjects focus on the second 
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towel, then correct this at box. For (3b) this incorrect fixa-
tion is not made. When Lucia parses sentences like these, it 
makes an incorrect attachment of the first prepositional 
phrase in (3a), then corrects this with a repair. For a sen-
tence like (3b), the incorrect attachment is never made and 
no repair is needed. This suggests that the local repair pro-
cess used by Lucia, NL-Soar, and the Rosie parser corre-
sponds to something similar in human processing. 

Essential Processes 
The Lucia model accomplishes comprehension by a unique 
algorithm, rooted in the Soar architecture, which inter-
leaves dynamically the several processes needed to pro-
duce its results in simulated real time.  These processes can 
be divided into two broad groups: those directly required 
by the grammatical knowledge, and those needed to inte-
grate with various levels of context. 
 The grammar processes begin with recognition, which 
finds a match between the current input state and what’s on 
the stack and then constructs an instance of the matched 
construction. Then evocation instantiates the meaning pole 
of that construction. Generalization elaborates these struc-
tures with information inherited from constructions and/or 
schemas in the ECG grammar’s subcase of hierarchy. Uni-
fication of the meaning structures connects different in-
stances to each other according to constraints given in the 
grammar. 
 Context effects begin with selection among multiple 
alternatives that suggested by recognition. Grounding at-
taches meaning structures to objects in the agent’s world 
model or ontology of properties, relations, and actions. A 
prepositional phrase causes attachment to choose where to 
attach that phrase. A repair process detects incorrect struc-
tures, deletes them, and allows new correct ones to be 
built. 

A key element of the Lucia comprehension theory is that 
these processes are not sequential phases but rather they 
are interleaved dynamically as needed in small atomic in-
crements.  For example, when a construction is recognized 
its meaning is immediately evoked and then grounded, so 
the resulting knowledge is available for subsequent selec-
tion or attachment decisions.  Thus the order in which op-
erations are performed is not fixed but determined dynami-
cally using the properties of the Soar architecture. 

Dealing with Ambiguity 
Many situations in natural language are ambiguous in a 
variety of different ways.  Typical parsers try to resolve 
ambiguities by searching a space of possible parses to find 
the best fit (eg. Bryant 2008).  This approach does not 
work in an incremental, real-time comprehension system.  
Lucia uses its selection, attachment, and repair processes 
to deal with many ambiguous situations.  This approach 

works for many cases and seems promising within the con-
text of a cognitively plausible, embodied comprehension 
algorithm. 
 We have seen in (2) how attachment and repair can work 
for prepositional phrase attachment. A kind of lexical se-
lection can be seen in the sentences in (4). 

(4) a. Turn left. 
b. Turn on the stove. 

In (4a) we simply have the verb turn which can be com-
bined with a direction argument to define an action to be 
performed. Sentence (4b), however, has a completely dif-
ferent sense of turn, possibly motivated by turning a nob 
on a stove to change its state. Here we treat turn on as a 
single grammaticalized lexical item using a lexical con-
struction in ECG whose orthography is set to the whole 
phrase turn on. 
 In (5) two very different senses of the word that are 
used, as a deictic pronoun and as a relative pronoun. 

(5) a. Put that in the pantry. 
b. Pick up the green block that is small. 

In (5a) we have a simple example of lexical selection to 
choose the deictic meaning of that which will be grounded 
to whatever object is currently being pointed to in the sce-
ne. But in (5b) we use all of selection, attachment, and 
repair for relative that, similar to what we saw with (2b). 
 Sentence (6) shows a more complicated example of lexi-
cal ambiguity with two senses of the word square. 

(6) Put the square in the square box. 
This example can be processed using all three processes 

of selection, attachment, and repair. 

Exploring the Architectural Space 
Table 1 summarizes of some of the main characteristics of 
the seven systems we have examined. 

Table 1: Summary of model characteristics 
 Cognitive 

architecture 
Construction 

grammar 
Incremental 
processing 

Linguistic 
knowledge 

ECG  ECG   
FCG  FCG   

NL-Soar Soar  Yes Procedural 
Lewis ACT-R  Yes Mixed 
Ball  ACT-R  Yes Declarative 

Rosie  Soar Ad hoc Yes  Declarative 
Lucia Soar ECG Yes  Procedural 
To build a cognitive model of language comprehension, 

many different approaches toward using a cognitive archi-
tecture are possible. One key dimension relates to linguis-
tic knowledge: how is it represented, where is it stored, and 
how is it retrieved. Lucia provides an initial example of 
using ECG as a representation for linguistic knowledge 
within a cognitive architecture and as a potential model for 
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human processing. Within the cognitive architecture sys-
tems, there is a split between representing linguistic 
knowledge in either procedural memory (rules) or declara-
tive memory.  
 If the grammar is represented in declarative rather than 
procedural memory, how does this affect an incremental 
parser? Initially a declarative representation is more flexi-
ble because there is not a single method for accessing the 
knowledge (matching rule conditions), but it is less effi-
cient because every construction has to be deliberately re-
trieved from declarative memory and then instantiated be-
fore it can be used. However, if comprehension operators 
are chunked as in NL-Soar, the agent will, with experience, 
convert this declarative knowledge into efficient procedur-
al knowledge. Nevertheless, having constructions in de-
clarative memory may make it much easier for future work 
on acquiring linguistic knowledge from experience. Lew-
is’s ACT-R model stores all lexical knowledge in declara-
tive memory, but still uses procedural memory for all 
grammatical knowledge. 
 In Lucia, we directly compile the grammar from a de-
clarative ECG representation into production rules, similar 
to the full procedural knowledge built by chunking in NL-
Soar. This has helped experiment with whether ECG is a 
good representation for grammar in a cognitive model. We 
are furthering this research by also experimenting with 
translating ECG into a declarative representation in Soar’s 
semantic memory instead of into production rules. Our 
hypothesis is that spreading activation will allow construc-
tion and lexical retrieval to be dependent on the context as 
defined by the contents of working memory. Ball’s ACT-R 
parser uses a single-depth spread, but in Soar, we are able 
to use much deeper spreads, potentially using more indirect 
associations to influence retrieval in ambiguous cases. Ini-
tially these retrievals will slow the comprehension process, 
but chunking has the potential to convert declarative 
knowledge into procedural knowledge, and real-time com-
prehension.  
 Another architectural issue is connecting new infor-
mation into the developing intermediate result of parsing. 
NL-Soar, the Rosie parser, and Lucia all use explicit data 
structures in working memory and production rules to 
match items that need to be connected. Lewis’s ACT-R 
model uses a different method called cue-based retrieval. 
When each word is processed, expectations are created and 
stored in declarative memory, which acts as both a short-
term and long-term memory. Later words (and derived 
structures) are used as cues to retrieve a previous expecta-
tion that is then combined with the new structure. Lewis 
and Vasishth (2005) show that this approach produces be-
havior that matches human timing data fairly well. In Soar, 
however, short-term results are held in working memory, 
and working memory has no cue-based retrieval mecha-
nism. Given the success of cue-based retrieval, it is worth 

considering whether some modifications to Soar are need-
ed to accommodate it. 

Both Bryant (2008) and Jurafsky (1996) annotate con-
structions in their grammars with probabilities as a way of 
resolving ambiguities. These probabilities are derived from 
off-line statistical processing of a corpus. Although statis-
tics certainly play a role in human language processing, the 
cognitive models we have discussed do not use probabilis-
tic grammars. Instead they use local context, both situa-
tional and linguistic, to resolve ambiguities. When declara-
tive memories are used, this is done by biasing retrievals 
from long-term memory. Embedded within that retrieval 
process is the use of activation that incorporates recency 
and frequency (base-level activation), and historic co-
occurrence of both lexical and grammatical constructions 
(spreading activation). We are exploring how to structure 
the parsing processes and long-term memory to best take 
advantage of both base-level and spreading activation.  

None of these models deals with the problem of acquir-
ing new linguistic knowledge. However, there is much 
psychological research in this area (e.g. Tomasello 2003; 
Krashen 2003). Research on acquisition has also been done 
in both the ECG (Chang 2008; Mok 2008) and FCG (Gar-
cia-Casademont and Steels 2015, 2016) communities. 
Starting with constructions represented in declarative 
memory will probably be important in extending this re-
search into cognitive models of comprehension. New con-
structions can be added and existing ones modified in this 
memory, with chunking making it efficient in real time. 

Conclusions 
In this paper we have briefly reviewed research showing 
that models based on the general capabilities of a modern 
cognitive architecture can be used to comprehend natural 
language, that this comprehension can take place in simu-
lated real time, and that it can be grounded in the percep-
tion and action capabilities of an embodied agent. We have 
also explored using Embodied Construction Grammar 
(ECG) for representing the linguistic knowledge in a cog-
nitive model of comprehension, demonstrating that useful 
comprehension can be achieved, including resolving some 
kinds of ambiguity. This system uses ECG in an incremen-
tal processing model that does not use holistic optimization 
over a whole utterance or statistical knowledge gathered 
off line from a large corpus. 
 Considering the current state of the art, many questions 
for future research emerge. What is the best way to apply 
the different capabilities of a cognitive architecture to the 
language comprehension problem? What does human data 
tell us about an architecture and how to apply it? Are there 
enhancements to an architecture that will allow it to better 
model human comprehension? Are there extensions to 
construction grammar formalisms and their implementa-
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tion in cognitive models that will help expand the coverage 
of these models to a wider range of natural language with 
all its ambiguities and ungrammaticalities? How well can 
we achieve effective communication between humans and 
embodied agents using these models? Finally, how can 
these models acquire their linguistic knowledge from their 
experience? Many challenges lie ahead. 
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