

Cognitive Modeling Approaches to Language Comprehension
Using Construction Grammar

Peter Lindes and John E. Laird
University of Michigan

{plindes, laird}@umich.org

Abstract
This paper examines the relationship between modeling
human sentence comprehension using cognitive architec-
tures and approaches to linguistic knowledge representation
using construction grammars. We review multiple computa-
tional models of language understanding that vary in their
use of construction grammar and cognitive architectures.
We present a case study: Lucia, that uses Embodied Con-
struction Grammar (ECG) within the Soar cognitive archi-
tecture to comprehend language used to instruct an embod-
ied agent. We also examine the tradeoffs between alterna-
tive approaches to representing and accessing linguistic
knowledge within a cognitive architecture and suggest fu-
ture research.

Introduction
How do human beings comprehend natural language?
Many disciplines within cognitive science have contributed
knowledge to help answer this question. Psychologists and
psycholinguists have gathered empirical data on human
eye movements, reaction times, reading times, priming
effects, and so on related to language comprehension.
Cognitive linguists have developed theories of image
schemas, metaphor, lexical semantics, and construction
grammar to gain insight into the structure of language.
Research in cognitive architecture has provided insight on
the computational building blocks underlying language
processing.
 We examine language comprehension using construc-
tion grammars embedded within cognitive models – mod-
els that attempt to model the human comprehension pro-
cess, and more specifically, models implemented within a
cognitive architecture. Cognitive architectures define the
fixed structures and functions underlying cognition, includ-
ing the representation, storage, and access of knowledge in
both short-term and long-term memory, decision making,
and interfaces to perception and action. Cognitive architec-

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tures embody the hypothesis articulated by Allen Newell
(1990) that the same computational structures are used
across all human mental activity, including language pro-
cessing. We consider models of language comprehension
in both the Soar and ACT-R cognitive architectures.
 Within the context of cognitive architecture, the question
of how do humans comprehend natural language leads us
to the following questions: How is knowledge about lan-
guage represented? How is that knowledge encoded in and
retrieved from the different memories of a cognitive archi-
tecture? How is knowledge used to dynamically create
actionable meaning representations from input sentences
rife with ambiguities and ungrammaticalities?
 In this paper, we explore seven different sentence pro-
cessing systems. These systems vary along many dimen-
sions: how they structure their knowledge; whether they
attempt to model human behavior; whether they focus only
on syntactic processing or also include semantic processing
that creates structures that are used for producing action;
which memories they use to represent the different types of
knowledge used in language processing; and how they
process that knowledge, especially to deal with ambiguity.

Models of Linguistic Knowledge
Fundamental to models of sentence processing is the repre-
sentation and structure of linguistic knowledge. Construc-
tion grammars (Hoffman and Trousdale, 2013) are a set of
theories as to how linguistic knowledge is structured and
represented. These theories posit the idea of a construction,
which is a unit of lexical or grammatical knowledge that
pairs a form with a corresponding meaning. Many varia-
tions of construction grammar formalisms have been de-
veloped (Goldberg 2013). The two frameworks that are
most relevant here are Embodied Construction Grammar
(ECG; Bergen and Chang 2013) and Fluid Construction
Grammar (FCG; Steels 2013).

The AAAI 2017 Spring Symposium on
Computational Construction Grammar and Natural Language Understanding

Technical Report SS-17-02

213

Embodied Construction Grammar (ECG)
ECG (Eppe et al. 2016; Feldman, Dodge, and Bryant 2009)
is rooted in semantic representations based on theories of
image schemas. It relates linguistic forms to these schemas
which can represent perception and mental models, and
also to action schemas, which describe physical actions
that can be performed by an agent such that the parameters
of an action can be filled in by information from the lan-
guage input. Thus the grammatical representation is closely
tied to the perception and action of an embodied agent.
 Bryant (2008) created a parser using ECG as its gram-
mar definition language and a probabilistic, left-corner
parsing algorithm which searches for a best fit representa-
tion of a sentence using the given grammar. This parser has
been used in a number of applications of ECG (Chang,
2008; Eppe et al. 2016). Each sentence produces a seman-
tic representation called a semspec. Recent work uses this
parser to provide a sentence comprehension capability to
robots.

Fluid Construction Grammar (FCG)
FCG (Steels and Hild, 2012) is a construction grammar
formalism that has been used with robots and for experi-
ments in learning linguistic knowledge by an agent or
group of agents. It has the feature that the same construc-
tions can be used for both comprehension and language
production.
 The comprehension processor for FCG “supports stand-
ard heuristic best-first search” (Steels, De Beule, and Wel-
lens 2012). One of the major thrusts of FCG is that the
parser has a number of facilities to enhance its robustness
(Steels and van Trijp 2011) for missing or incomplete
items. It can coerce items to change their properties, and
learning processes can deal with unknown words and
meanings.

Analysis of Construction Grammar
A construction grammar provides a formalization for

representing the connections between syntactic and seman-
tic knowledge. Constructions for both lexical and gram-
matical constructions can include semantic information,
which is a key point in construction grammar models of
language (Goldberg 1995). As Jurafsky (1996) points out,
construction grammars have an advantage over traditional
context-free grammars in that an instance of a construction
is an actual data structure, not just a label, and can thus
hold semantic and grammatical feature data.Thus, con-
structions provide a declarative map from form to mean-
ing. The cognitive models we discuss below provide a dy-
namic process to construct meanings from input utterances
one word at a time.

Modeling Human Processing
Both ECG and FCG provide theories of how linguistic
knowledge is represented and how input sentences are
parsed to create semantic representations. Both have been
applied to embodied robotic agents. However, they are not
embodied in a cognitive architecture nor do they attempt to
model human comprehension processes.
 In contrast, there have been multiple parsers developed
in cognitive architectures, specifically within ACT-R (An-
derson et al. 2004) and Soar (Laird 2012; Newell 1990).
Although ACT-R and Soar differ in many details, at an
abstract level of analysis they share the same overall struc-
ture and processing cycle. They both have a basic pro-
cessing cycle that is controlled by knowledge retrieved
from procedural memory. This knowledge is encoded as
rules that test the current situation in order to decide what
action, either internal or external, should be performed.
The current situation is encoded as symbolic structures in
working memory (which are buffers in ACT-R). The con-
tents of working memory come from perception and re-
trievals from long-term memories, which include the pro-
cedural memory as well as long-term declarative memo-
ries. The internal actions add, remove, or modify structures
in working memory; or retrieve information from declara-
tive memories. The external actions initiative motor ac-
tions. All of these processes are modulated by metadata
that the architecture maintains about its memories and pro-
cesses. For example, the retrieval of information from de-
clarative memory can be biased using the frequency and
recency of prior accesses of long-term memory structures
(base-level activation), as well as associations between
memory structures (spreading activation).

Because of the context-dependent retrieval of knowledge
from procedural and declarative long-term memories,
ACT-R and Soar do not have the same predetermined se-
quential execution structure that is ubiquitous in standard
programming languages. Instead, each decision is deter-
mined by the current situation – the active goals, percep-
tion, and internal reasoning state of the system.

Soar and ACT-R have similar procedural learning
mechanisms that incrementally create new productions
based on the co-occurrence of production firings. Soar’s
mechanism, called chunking, creates productions that
summarize the processing in subgoals, while ACT-R’s
mechanism, called production composition, composes two
productions that fire in sequence into a single production.

In Soar, the processing consists of a series of decision
cycles where a single operator is selected and applied. Any
complex behavior, such as sentence processing, balancing
a check book, or writing a symposium paper, is composed
of sequences of primitive operators. When mapping to hu-
man behavior, Newell (1990) estimates that each decision
cycle takes ~50 ms. Thus, since adult humans can read at a

214

rate of around 240 words/minute, with speech processing
being somewhat slower, language processing should aver-
age ~4-5 decision cycles per word. This provides a tight
constraint on models of sentence processing. We call tim-
ing measurements based on the number of decision cycles,
assumed to take ~50 ms in humans, simulated real time
measurements.

The need to keep up with the continual stream of new
words leads the sentence processing systems we describe
below to perform as much processing as possible on each
word, including lexical access, syntactic, and semantic
processing. Although there may be additional processing at
clause and sentence boundaries, there is insufficient time
for extensive processing of the complete sentence, so it is
critical that as much syntactic and semantic processing as
possible is done as individual words arrive. This leads to
incremental, left-to-right, word-at-a-time, processing,
where a data structure representing both the semantic and
the syntactic structure of the input sentence is built up. In
order to produce actionable meanings, and to assist in re-
solving ambiguities, semantic structures are grounded to
the agent’s perception and action capabilities as soon as
possible (Just and Carpenter 1987). When mistakes are
made, as they inevitably are in ambiguous sentences, the
system attempts to make to make a local repair (Lewis
1993), or if that fails, just keep processing and extract
whatever meaning it can. It is possible to attempt a com-
plete reparse during reading, by starting over at the begin-
ning of a clause or sentence.

Although the cognitive systems we discuss have many
similarities (many later systems were inspired by earlier
systems), they vary in how linguistic knowledge is struc-
tured, whether semantic processing is done, how linguistic
knowledge is distributed over long-term memories, wheth-
er there are explicit predictions of future structures, and
how ambiguities are handled.

NL-Soar
NL-Soar (Lehman, Lewis, and Newell 1991; Newell 1990)
was the first attempt to apply a cognitive architecture to
sentence processing. NL-Soar did integrated, incremental
processing based on comprehension operators, each of
which maps form to meaning for a single input word. Us-
ing the Soar features of impasses, subgoals, and chunking,
these operators compiled different types of knowledge that
initially required deliberative processing, into reactive pro-
cessing that modeled adult performance. In NL-Soar, all
temporary parsing data was stored in Soar’s working
memory.
 The dynamic process of parsing in NL-Soar follows a
single path rather than maintaining several alternative op-
tions. Expectations can be generated at each word so that
processing for later words can combine both bottom-up

and top-down knowledge. When an earlier choice later
turns out to be incorrect, limited local repair can correct it.
Lewis (1993) showed that this model can run in simulated
real time and exhibits limitations similar to humans in
dealing with garden path sentences and difficult center
embeddings.
 Grammatical knowledge in NL-Soar was stored in hand-
written production rules in procedural memory. Early ver-
sions used a dependency grammar representation (Lehman,
Lewis, and Newell 1991a), while Lewis (1993) changed
this to use X-bar theory and Government and Binding.
During processing, both a syntactic and a semantic model
of an utterance were built.
 Rubinoff and Lehman (1994) report on a version of NL-
Soar which included language production as well as com-
prehension, and that interleaved this production with other
task processing. They describe two systems built where
NL-Soar was used to provide language comprehension and
production. NTD-Soar simulated a NASA test director, and
TacAir-Soar simulated the pilot of a military aircraft.
 Lonsdale (2011) created a variation of NL-Soar, called
XNL-Soar, that was designed to use the Minimalist Pro-
gram theory of language. This system built semantic repre-
sentations, but without any grounding in an external envi-
ronment. A version of XNL-Soar processed Japanese (in-
stead of English) with only a few changes to the grammar
other than replacing the lexical items. The XNL-Soar sys-
tem used an order of magnitude fewer production rules
than NL-Soar because it stored much of its lexical and se-
mantic knowledge in Soar’s declarative semantic memory.

Lewis’s ACT-R Model
Lewis and Vasishth (2005) developed a sentence pro-
cessing model using the ACT-R cognitive architecture.
This model uses many concepts derived in terms of word-
by-word processing from NL-Soar, but its internal pro-
cessing differs in how it accesses intermediate linguisitic
structures as they are constructed. Lewis, Vasishth, and
Van Dyke (2006) discuss the architectural principles un-
derlying this model.
 Central to the model is that ACT-R has a very limited
working memory, with only a few items being available in
buffers. Therefore, declarative memory is used in this
model to store both lexical knowledge and the intermediate
results of parsing. Knowledge to match grammatical con-
structions is encoded in production rules that are built by
hand. The division of knowledge between declarative and
procedural memories in this model is based in part on cog-
nitive neuroscience models (Ullman 2004). Lexical
knowledge is in declarative memory while all grammatical
knowledge is stored procedurally.
 The parsing process in this model is based on cue-based
parsing theory (Van Dyke and Lewis 2003). As words are

215

processed, the feature bundles representing the words and
expectations for larger grammatical structures are stored in
declarative memory. Then later words can encode cues that
are used to search this memory for the previous expecta-
tions. For example, in the sentence Melissa knew that the
toy from her uncle in Bogotá arrived today. when the verb
arrived is processed, a cue is created that searches declara-
tive memory for the expected sentence structure built for
the toy as the subject but not yet having a verb. When this
structure is found, the verb is merged in. This model focus-
es on syntax and does not produce a semantic representa-
tion. Its linguistic knowledge is, like later versions of NL-
Soar, based on X-bar theory and Government and Binding.
 This model takes advantage of the activation mecha-
nisms in ACT-R to give precise predictions of processing
times that are then compared to empirical measurements of
human processing times. Lewis and Vasishth (2005) ex-
plain in detail several experiments with their ACT-R model
and compare them to human data.

Ball’s ACT-R Model
Ball et al. (2010), as part of the Synthetic Teammate Pro-
ject, developed a language processing model implemented
in ACT-R that attempts “adherence to well established
cognitive constraints.” It is based on Ball’s “The Double R
Theory of Language Comprehension” (Ball 2004). This
theory incorporates models of grammar and the compre-
hension process.
 The grammar model represents both “relational and ref-
erential meaning” (hence “Double R”) in a form that en-
codes both structure and meaning, as do construction
grammars. Although the grammatical notation allows for
representing syntax and semantics together, it is loosely
based on X-bar theory and does not provide the strong
connection between non-lexical items and their meanings
that construction grammars typically do.
 This model avoids the constraints on short-term memory
in ACT-R by adding additional buffers to store intermedi-
ate results of parsing. Thus, it avoids using cue-based re-
trieval as in Lewis’s ACT-R model, simplifying the pro-
cessing, but also straying from modeling human parsing. It
uses a bottom-up parsing strategy. Grammar knowledge is
stored in declarative memory, and at each step, a produc-
tion rule creates a cue to retrieve relevant knowledge from
that memory. Spreading activation is used to select the
item to be retrieved when several items match the cue.

The Rosie Parser
Laird developed a parser in Soar that is embedded within
the Rosie robotics system (Kirk, Mininger, and Laird
2016). This semantic parser is based on ideas from NL-
Soar and construction grammar. It produces actionable
meaning representations that allow the agent to be instruct-

ed and directed for a variety of tasks. Lexical and gram-
matical knowledge are stored in Soar’s long-term declara-
tive (semantic) memory. The incremental processing re-
trieves lexical items from semantic memory, as well as
grammatical constructions based on previously retrieved
lexical items and derived structures. Grammatical con-
structions include both semantic mappings from syntactic
structures and expectations of future syntactic structures.
The word-by-word processing is done with language-
independent procedural knowledge. This includes merging
expectations with new structures, building up semantic
structures based on constructions, and grounding referents
in language to the agent’s perceptual world model and pre-
viously mentioned referents. Soar’s chunking mechanism
dynamically converts the language processing into rules
that move semantic knowledge into procedural memory,
leading to better simulated real time performance.

Lucia
Lucia (Lindes and Laird 2016) is a language comprehen-
sion system also built within Rosie. In addition to being
built on the Soar cognitive architecture, it directly uses
ECG to define its linguistic knowledge. An ECG to Soar
translator converts a grammar for the Rosie domain, writ-
ten in the ECG formalism defined by Bryant (2008), into
Soar production rules. Lucia then uses these rules to pro-
duce the same meanings needed by the Rosie agent as pro-
duced by the Rosie parser.

This model goes to the extreme of having all its linguis-
tic knowledge, lexical, grammatical, and semantic, stored
in procedural memory. Even though, as in all these sys-
tems, this knowledge is hand-written instead of learned, the
task of engineering the grammar is easier since it can be
written in the ECG language. Additional hand-written pro-
duction rules to implement grounding, repair, etc. are in-
cluded, but these are independent of the grammatical
knowledge. Almost two thirds of the production rules are
generated automatically by the ECG to Soar translator.
 Lucia correctly parses all 98 sentences selected from the
Rosie corpus attempted to far, as well as a Spanish transla-
tion of 50 of these sentences. Parsing proceeds mostly bot-
tom-up, driven by the ECG constructions. Top-down pro-
cessing is possible for more complex grammars, and is
implemented by creating expectations, similar to what is
done in the Rosie parser, NL-Soar, and the Lewis’ ACT-R
parser. In the case of ambiguity, Lucia considers and se-
lects among multiple alternatives, and it does destructive
local repair in a way similar to the other incremental mod-
els.
 The current version of Lucia processes its 98 sentences,
using 184 ECG constructions, at a simulated average rate
of 132 words/minute. This is within a factor of two of hu-

216

man processing speed, and likely can be improved when
we utilize chunking.

A Case Study: Lucia
Given this convergence of both cognitive modeling and
construction grammars in the Lucia model of comprehen-
sion, we present details of it below. Additional details are
available in Lindes and Laird (2016).

A Simple Example
Consider a simplified description of the processing of the
simple sentence in (1).

(1) Pick up the green sphere.
The dynamic comprehension process processes one

word at a time using a Soar operator we call comprehend-
word. This operator enters a substate in which a lexical-
access operator always fires first. This operator puts one or
more lexical items on the current state, one for each sense
of the current word. For (1) after the word up we have an
UP item on the top of the stack and a PICK underneath it
(upper case names are lexical items). Next a match-
construction operator is selected, removing these two items
from the stack and replacing them with an instance of the
composite PickUp construction.

The next three words, THE, GREEN, and SPHERE, are
pushed onto the stack and then two different match-
construction operators fire like this:

After
sphere.

Match
SpecPropNoun

Match
TransitiveCommand

SPHERE
GREEN
THE
PickUp[
 PICK
 UP
]

SpecPropNoun[
 THE
 GREEN
 SPHERE
]
PickUp[..]

TransitiveCommand[
 PickUp[..]
 SpecPropNoun[..]
]

The first matches SpecPropNoun, which is a subcase of

RefExpr (short for referring expression), and the second
combines the verb and its object into a TransitiveCom-
mand, which can be interpreted to tell the agent to perform
this action. As each construction is instantiated its corre-
sponding meaning structures are built. These trigger
grounding operators that look up the schema for a PickUp
action and search the world model to find the object there
which matches the green sphere. All this information can
be used to help resolve ambiguities.

An Example of Attachment and Repair
Now consider a more complicated case where preposition-
al phrases come into the picture as in (2).

(2) a. Put the green block on the stove.

b. Pick up the green block on the stove.
In (2a) the phrase on the stove should modify the verb

put, giving its target location. In (2b), however, the phrase
should modify the green block to specify which block to
pick up. The key to making this choice is knowledge about
whether the verb needs a target location or not.
 When Lucia process one of these sentences, a Transi-
tiveCommand construction is built up for everything up
through the word block. After on the stove a PrepPhrase
construction is built. At this point an attach-prep-phrase
operator examines the context to decide where the phrase
should be attached. For (2a) this gives:

After
stove.

Match
ImperativeWithLocation

PrepPhrase[..]
Transitive Command[..]

ImperativeWithLocation[
 TransitiveCommand[..]
 PrepPhrase[..]
]

For (2b) the verb does not allow an attached target. The

attach operator analyzes this case and performs a snip op-
eration, which deletes the TransitiveCommand from the
stack, and replaces it with its constituents like this:

After
stove.

After
attach-prep-phrase

PrepPhrase[..]
TransitiveCommand[
 PickUp[..]
 SpecPropNoun[..]
]

PrepPhrase[..]
SpecPropNoun[..]
PickUp[..]

This allows a RefExprPrepPhrase construction, another

subcase of RefExpr, to be matched, so that after the snip
we match two more constructions to complete the sen-
tence:

Match
RefExprPrepPhrase

Match
TransitiveCommand

RefExprPrepPhrase[
 PrepPhrase[..]
 SpecPropNoun[..]
]
PickUp[..]

TransitiveCommand[
 PickUp[..]
 RefExprPrepPhrase[..]
]

Once the prepositional phrase is attached to the referring

expression, the grounding of that expression is done over
again taking into account the new information.

Tanenhaus et al. (1995) performed a human experiment
using the sentences in (3).

(3) a. Put the apple on the towel in the box.
b. Put the apple that is on the towel in the box.

The visual scene has two towels, one with an apple and
one without, an open box, and distractor. With the ambigu-
ity at towel in (3a) human subjects focus on the second

217

towel, then correct this at box. For (3b) this incorrect fixa-
tion is not made. When Lucia parses sentences like these, it
makes an incorrect attachment of the first prepositional
phrase in (3a), then corrects this with a repair. For a sen-
tence like (3b), the incorrect attachment is never made and
no repair is needed. This suggests that the local repair pro-
cess used by Lucia, NL-Soar, and the Rosie parser corre-
sponds to something similar in human processing.

Essential Processes
The Lucia model accomplishes comprehension by a unique
algorithm, rooted in the Soar architecture, which inter-
leaves dynamically the several processes needed to pro-
duce its results in simulated real time. These processes can
be divided into two broad groups: those directly required
by the grammatical knowledge, and those needed to inte-
grate with various levels of context.
 The grammar processes begin with recognition, which
finds a match between the current input state and what’s on
the stack and then constructs an instance of the matched
construction. Then evocation instantiates the meaning pole
of that construction. Generalization elaborates these struc-
tures with information inherited from constructions and/or
schemas in the ECG grammar’s subcase of hierarchy. Uni-
fication of the meaning structures connects different in-
stances to each other according to constraints given in the
grammar.
 Context effects begin with selection among multiple
alternatives that suggested by recognition. Grounding at-
taches meaning structures to objects in the agent’s world
model or ontology of properties, relations, and actions. A
prepositional phrase causes attachment to choose where to
attach that phrase. A repair process detects incorrect struc-
tures, deletes them, and allows new correct ones to be
built.

A key element of the Lucia comprehension theory is that
these processes are not sequential phases but rather they
are interleaved dynamically as needed in small atomic in-
crements. For example, when a construction is recognized
its meaning is immediately evoked and then grounded, so
the resulting knowledge is available for subsequent selec-
tion or attachment decisions. Thus the order in which op-
erations are performed is not fixed but determined dynami-
cally using the properties of the Soar architecture.

Dealing with Ambiguity
Many situations in natural language are ambiguous in a
variety of different ways. Typical parsers try to resolve
ambiguities by searching a space of possible parses to find
the best fit (eg. Bryant 2008). This approach does not
work in an incremental, real-time comprehension system.
Lucia uses its selection, attachment, and repair processes
to deal with many ambiguous situations. This approach

works for many cases and seems promising within the con-
text of a cognitively plausible, embodied comprehension
algorithm.
 We have seen in (2) how attachment and repair can work
for prepositional phrase attachment. A kind of lexical se-
lection can be seen in the sentences in (4).

(4) a. Turn left.
b. Turn on the stove.

In (4a) we simply have the verb turn which can be com-
bined with a direction argument to define an action to be
performed. Sentence (4b), however, has a completely dif-
ferent sense of turn, possibly motivated by turning a nob
on a stove to change its state. Here we treat turn on as a
single grammaticalized lexical item using a lexical con-
struction in ECG whose orthography is set to the whole
phrase turn on.
 In (5) two very different senses of the word that are
used, as a deictic pronoun and as a relative pronoun.

(5) a. Put that in the pantry.
b. Pick up the green block that is small.

In (5a) we have a simple example of lexical selection to
choose the deictic meaning of that which will be grounded
to whatever object is currently being pointed to in the sce-
ne. But in (5b) we use all of selection, attachment, and
repair for relative that, similar to what we saw with (2b).
 Sentence (6) shows a more complicated example of lexi-
cal ambiguity with two senses of the word square.

(6) Put the square in the square box.
This example can be processed using all three processes

of selection, attachment, and repair.

Exploring the Architectural Space
Table 1 summarizes of some of the main characteristics of
the seven systems we have examined.

Table 1: Summary of model characteristics
 Cognitive

architecture
Construction

grammar
Incremental
processing

Linguistic
knowledge

ECG ECG
FCG FCG

NL-Soar Soar Yes Procedural
Lewis ACT-R Yes Mixed
Ball ACT-R Yes Declarative

Rosie Soar Ad hoc Yes Declarative
Lucia Soar ECG Yes Procedural
To build a cognitive model of language comprehension,

many different approaches toward using a cognitive archi-
tecture are possible. One key dimension relates to linguis-
tic knowledge: how is it represented, where is it stored, and
how is it retrieved. Lucia provides an initial example of
using ECG as a representation for linguistic knowledge
within a cognitive architecture and as a potential model for

218

human processing. Within the cognitive architecture sys-
tems, there is a split between representing linguistic
knowledge in either procedural memory (rules) or declara-
tive memory.
 If the grammar is represented in declarative rather than
procedural memory, how does this affect an incremental
parser? Initially a declarative representation is more flexi-
ble because there is not a single method for accessing the
knowledge (matching rule conditions), but it is less effi-
cient because every construction has to be deliberately re-
trieved from declarative memory and then instantiated be-
fore it can be used. However, if comprehension operators
are chunked as in NL-Soar, the agent will, with experience,
convert this declarative knowledge into efficient procedur-
al knowledge. Nevertheless, having constructions in de-
clarative memory may make it much easier for future work
on acquiring linguistic knowledge from experience. Lew-
is’s ACT-R model stores all lexical knowledge in declara-
tive memory, but still uses procedural memory for all
grammatical knowledge.
 In Lucia, we directly compile the grammar from a de-
clarative ECG representation into production rules, similar
to the full procedural knowledge built by chunking in NL-
Soar. This has helped experiment with whether ECG is a
good representation for grammar in a cognitive model. We
are furthering this research by also experimenting with
translating ECG into a declarative representation in Soar’s
semantic memory instead of into production rules. Our
hypothesis is that spreading activation will allow construc-
tion and lexical retrieval to be dependent on the context as
defined by the contents of working memory. Ball’s ACT-R
parser uses a single-depth spread, but in Soar, we are able
to use much deeper spreads, potentially using more indirect
associations to influence retrieval in ambiguous cases. Ini-
tially these retrievals will slow the comprehension process,
but chunking has the potential to convert declarative
knowledge into procedural knowledge, and real-time com-
prehension.
 Another architectural issue is connecting new infor-
mation into the developing intermediate result of parsing.
NL-Soar, the Rosie parser, and Lucia all use explicit data
structures in working memory and production rules to
match items that need to be connected. Lewis’s ACT-R
model uses a different method called cue-based retrieval.
When each word is processed, expectations are created and
stored in declarative memory, which acts as both a short-
term and long-term memory. Later words (and derived
structures) are used as cues to retrieve a previous expecta-
tion that is then combined with the new structure. Lewis
and Vasishth (2005) show that this approach produces be-
havior that matches human timing data fairly well. In Soar,
however, short-term results are held in working memory,
and working memory has no cue-based retrieval mecha-
nism. Given the success of cue-based retrieval, it is worth

considering whether some modifications to Soar are need-
ed to accommodate it.

Both Bryant (2008) and Jurafsky (1996) annotate con-
structions in their grammars with probabilities as a way of
resolving ambiguities. These probabilities are derived from
off-line statistical processing of a corpus. Although statis-
tics certainly play a role in human language processing, the
cognitive models we have discussed do not use probabilis-
tic grammars. Instead they use local context, both situa-
tional and linguistic, to resolve ambiguities. When declara-
tive memories are used, this is done by biasing retrievals
from long-term memory. Embedded within that retrieval
process is the use of activation that incorporates recency
and frequency (base-level activation), and historic co-
occurrence of both lexical and grammatical constructions
(spreading activation). We are exploring how to structure
the parsing processes and long-term memory to best take
advantage of both base-level and spreading activation.

None of these models deals with the problem of acquir-
ing new linguistic knowledge. However, there is much
psychological research in this area (e.g. Tomasello 2003;
Krashen 2003). Research on acquisition has also been done
in both the ECG (Chang 2008; Mok 2008) and FCG (Gar-
cia-Casademont and Steels 2015, 2016) communities.
Starting with constructions represented in declarative
memory will probably be important in extending this re-
search into cognitive models of comprehension. New con-
structions can be added and existing ones modified in this
memory, with chunking making it efficient in real time.

Conclusions
In this paper we have briefly reviewed research showing
that models based on the general capabilities of a modern
cognitive architecture can be used to comprehend natural
language, that this comprehension can take place in simu-
lated real time, and that it can be grounded in the percep-
tion and action capabilities of an embodied agent. We have
also explored using Embodied Construction Grammar
(ECG) for representing the linguistic knowledge in a cog-
nitive model of comprehension, demonstrating that useful
comprehension can be achieved, including resolving some
kinds of ambiguity. This system uses ECG in an incremen-
tal processing model that does not use holistic optimization
over a whole utterance or statistical knowledge gathered
off line from a large corpus.
 Considering the current state of the art, many questions
for future research emerge. What is the best way to apply
the different capabilities of a cognitive architecture to the
language comprehension problem? What does human data
tell us about an architecture and how to apply it? Are there
enhancements to an architecture that will allow it to better
model human comprehension? Are there extensions to
construction grammar formalisms and their implementa-

219

tion in cognitive models that will help expand the coverage
of these models to a wider range of natural language with
all its ambiguities and ungrammaticalities? How well can
we achieve effective communication between humans and
embodied agents using these models? Finally, how can
these models acquire their linguistic knowledge from their
experience? Many challenges lie ahead.

Acknowledgments
The work described here was supported by the Air Force
Office of Scientific Research under Grant Number
FA9550-15-1-0157. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressly or implied, of the AFOSR or the U.S. Government.

References
Anderson, J. R.; Byrne, M. D.; Douglass, S.; Lebiere, C.; and
Qin, Y. 2004. An Integrated Theory of the Mind. Psychologi-
cal Review 111, 1036-1060.
Ball, J. T. 2004. The Double R Theory of Language Compre-
hension. United States Air Force Research Laboratory report
AFRL-HE-AZ-TR-2003-0110.
Ball, J.; Freiman, M; Rodgers, S.; and Myers, C. 2010. To-
ward a Functional Model of Human Language Processing.
Presented as a poster at 32nd Annual Conference of the Cogni-
tive Science Society. Portland, OR.
Bergen, B. and Chang N. 2013. Embodied Construction
Grammar. In Thomas Hoffman and Graeme Trousdale, eds,
The Oxford Handbook of Construction Grammar, 168-190.
New York: Oxford University Press.
Bryant, J. E. 2008. Best-Fit Constructional Analysis. Ph.D.
diss., Computer Science, University of California, Berkeley,
CA.
Chang, N. C. 2008. Constructing grammar: A computational
model of the emergence of early constructions. Ph.D. diss.,
Computer Science, University of California, Berkeley, CA.
Eppe, M.; Trott, S.; Raghuram, V.; Feldman, J.; and Janin, A.
2016. Application-Independent and Integration-Friendly
Natural Language Understanding. GCAI 2016. 2nd Global
Conference on Artificial Intelligence. Easy Chair Publications.
Feldman, J.; Dodge, E.; and Bryant, J. 2009. Embodied Con-
struction Grammar. In The Oxford Handbook of Linguistic
Analysis, Bernd Heine and Heiko Narrog eds. Oxford Hand-
books Online.
Garcia-Casademont, E. and Steels, L. 2015. Usage-based
Grammar Learning as Insight Problem Solving. CEUR Work-
shop Proceedings 1419: 258-263.
Garcia-Casademont, E. and Steels, L. 2016. Insight Grammar
Learning. Journal of Cognitive Science 17-1: 27-62.
Goldberg, A. E. 1995. Constructions: A Construction Gram-
mar Approach to Argument Structure. The University of
Chicago Press.

Goldberg, A. E. 2013. Constructionist Approaches. In Thom-
as Hoffman and Graeme Trousdale, eds, The Oxford Hand-
book of Construction Grammar, 15-31. New York: Oxford
University Press.
Hoffman, T., and Trousdale, G., eds. 2013. The Oxford Hand-
book of Construction Grammar. New York: Oxford Universi-
ty Press.
Jurafsky, D. 1996. A Probabilistic Model of Lexical and
Syntactic Access and Disambiguation. Cognitive Science 20,
137-194.
Just, M. A. and Carpenter, P. A. 1987. The Psychology of
Reading and Language Comprehension. Boston, MA: Allyn
and Bacon.
Kirk, J.; Mininger, A.; and Laird, J. 2016. Learning task goals
interactively with visual demonstrations. 2016 Annual Inter-
national Conference on Biologically Inspired Cognitive Archi-
tectures, New York City, NY.
Krashen, S. D. 2003. Explorations in Language Acquisition
and Use: The Taipei Lectures. Portsmouth, NH: Heineman.
Laird, J. E. 2012. The Soar Cognitive Architecture. Cam-
bridge, MA: The MIT Press.
Lehman, J. F.; Lewis, R. L.; and Newell, A. 1991. Integrating
Knowledge Sources in Language Comprehension. The Soar
Papers, Vol. II. Cambridge, MA: MIT Press.
Lewis, R. L. 1993. An Architecturally-based Theory of Hu-
man Sentence Comprehension. Ph.D. diss., Computer Science,
Carnegie Mellon University, Pittsburgh, PA.
Lewis, R. L. and Vasishth, S. 2005. An Activation-Based
Model of Sentence Processing as Skilled Memory Retrieval.
Cognitive Science 29, 375-419.
Lewis, R. L.; Vasishth, S.; and Van Dyke, J. A. 2006. Compu-
tational principles of working memory in sentence comprehen-
sion. TRENDS in Cogntive Science 10(10): 447-454.
Lindes, P. and Laird. J. E. 2016. Toward Integrating Cognitive
Linguistics and Cognitive Language Processing. Proceedings
of the 14th International Conference on Cognitive Modeling
(ICCM 2016). Penn State: University Park, PA.
Lonsdale, D.; McGhee, J.; Glenn, N.; and Anderson, T. (2011).
The XNL-Soar Sandbox. Presentation at The 31st Soar Work-
shop, June 13-17, 2001, University of Michigan.
Mok, E. H. 2008. Contextual Bootstrapping for Grammar
Learning. Ph.D. diss., Computer Science, University of Cali-
fornia, Berkeley, CA.
Newell, A. 1990. Unified Theories of Cognition. Cambridge,
MA: Harvard University Press.
Rubinoff, R. and Lehman, J. F. 1994. Real-time Natural
Language Generation in NL-Soar. 7th International Genera-
tion Workshop, Kennebunkport, Maine.
Steels, L. 2013. Fluid Construction Grammar. In Thomas
Hoffman and Graeme Trousdale, eds, The Oxford Handbook of
Construction Grammar. Oxford University Press, New York,
pp. 153-167.
Steels, L.; De Beule, J.; and Wellens, P. 2012. Fluid Construc-
tion Grammar in Real Robots. In Steels and Hild eds. Lan-
guage Grounding in Robots. Springer.
Steels, L., and Hild, M. eds. 2012. Language Grounding in
Robots. Springer.

220

Steels, L. and van Trijp, R. (2011). How to Make Construc-
tion Grammars Fluid and Robust. In Luc Steels ed. Design
Patterns in Fluid Construction Grammar, 301-330. Amster-
dam: John Benjamins.
Tanenhaus, M. K.; Spivey-Knowlton, M. J.; Eberhard, K. M.;
and Sedivy, J. C. 1995. Integration of Visual and Linguistic
Information in Spoken Language Comprehension. Science
268:1632-1634.
Tomasello, M. 2003. Constructing a Language: A Usage-
Based Theory of Language Acquisition. Cambridge, MA:
Harvard University Press.
Ullman, M. T. 2004. Contributions of memory circuits to
language: the declarative/procedural model. Cognition 92,
231-270.
Van Dyke, J. A. and Lewis, R. L. 2003. Distinguishing effects
of structure and decay on attachment and repair: A cue-based
parsing account of recovery from misanalyzed ambiguities.
Journal of Memory and Language 49, 285-316.

221

