Y

A256 198
\‘||il\\l‘l\\ll\|\\I|\\|\1\|\|\|\!\ |

A Specification of the Soar Cognitive
Architecture in Z
Brian G. Milnes
with contributions from

Garrett Pelton, Robert Doorenbos, Mike Hucka.
John Laird, Paul Rosenbloom and Allen Newell

August 31, 1992
CMU-CS-92-169

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

B. Milnes. G. Pelton. B. Doorenbos may be reached at the School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA 15213-3890. A.
Newell is deceased, but his academic estate may also be reached at the
School of Computer Science. Carnegie Mellon University, Pittsburgh, PA
15213-3890. M. Hucka and J. Laird may be reached at the Electrical
Engineering and Computer Science Department. The University of Michi-
gan, Ann Arbor, MI 48109-2122. P. Rosenbloom may be reached at the
Information Sciences Institute and Department of Computer Science, Uni-
versity of Southern California, 4676 Admiralty Way, Marina del Rey, CA
90292,

This docu*nfm has been opproved
for public relecs2 and sale; its
diziribution is unlimited.

This research was sponsored by the Avionics Laboratory, Wright Research and
Development Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-
Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465. ARPA Order
No. 7597.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied, of DARPA or the U.S. government.

@ 92-26
I'IM:lhll’llllllrlllllfl’lilllllllldlﬂ S0

o p
ol
AN

Keywords: Artificial Intelligence, formal specification, integrated intelli-
gent architectures, machine learning, problem solving, Z specifications, Z nota-
tion, Soar.

Abstract

A formal specification of the sixth revision of the Soar architecture in the Z
notation was constructed to elucidate and clarify the definition ¢f Soar and to
guide its implementation. Soar is a cognitive architecture that has been success-
fully applied to many domains and has been proposed as an exemplar unified

theory of cognition. Z is a model

theoretic specification language based in set

theory that has syntax and type checking programs available. The specification
has a complete coverage of the architecture, a low level of abstraction and a

considerable implementation bias.

Yy
Disirib roen
Avaptetias

ISP
'

—
os]

v n - ——— Y

sl

For Allen Newell (1927-1992) — who taught me that com-
puter science is an empirical quantitative discipline.

—B.G.M.

Contents

1 Introduction
1.1 An Introduction and the Intended Audience
1.2 The History and Philosophy of the Specification
1.3 The Specification’s Coverage and Implementation Bias
1.4 An Overview of the Architecture
1.5 An Overview of the Specification

2 Specifying Soar’s Control: State Machines
2.1 Specifviug Soar’s Control
2.2 The Prototype State Machine

3 Base Symbol Structures

4 Temporary Memory and Production Memory
4.1 Preferences L.
4.2 Working Memory Elements
4.3 Temporary Memory Elements
44 Makes
4.5 Tests
46 WME Tests
4.7 Conditions L
4.8 SP . ..o

5 Recognition Memory
51 Bindings
5.2 Matching
5.2.1 Tests Matching Symbols
5.2.2 Matches
5.2.3 Matching against Working Memory
5.3 Imstantiation, .
5.3.1 Instantiating a Match’s Production’s Conditions

5.3.2 Instantiating the RHS of a Match’s Production

10
10
11
12
12
16

18
18
19

30

33
33
37
39
40
43
46
47
50

54
55
55
56
58
59
60
60

66

v en
[SR

Uy Ov
© g ~F ™

o

10
6.1
6.2
6.3
6.4
6.5
6.6

5.3.3 Imstantiation 67

Goal Operations and a Match’s Goal 68
Chunking 69
5.5.1 Extracting Not Tests 70
5.5.2 Variabilize Lo 72
553 Not-ify 75
554 Traces e 79
5.5.5 Chunking’s State 81
5.5.6 Changing, Initializing and Resetting Chunking 86
5.5.7 Defining Results 88
5.5.8 Chunking an Instantiation 88
5.5.9 Tracing Seeds, Locals and Grounded Potentials 91
5.5.10 Tracir.3 UnGrounded Potentials 97
5.5.11 ChunkSP 100
5.5.12 Step Chunking 101
Slots 101
Recognition Memory's State 102
Support 106
Preference Phase Operations 110
5.9.1 Initialize, Finish. Reset and Quiescence 111
5.9.2 Retracting Instantiations 111
5.9.3 Instantiate Match, 112
5.9.4 Conferring Support 114
5.9.5 Stepping Chunking 114
5.9.6 O-rejects Lo 115
5.9.7 Changing Preference Memory 116

119
Channels, Attributes and IO Mappings 119
Output Structures 121
Input Structures 121
Cycles of IO 122
IO State 122
The Input Cyele oo 125
661 Legallnput 126
6 6.2 Initializing and Starting the InputCycle 128
6.6.3 Reading NewlInputStructures 128
6.6.4 Reading ModifylnputStructures 130
6.6.5 Reading DeletelnputStructures 132
6 6.6 Reading an Input Channel 132
6.6.7 Finishing, Stepping and Resetting the InputCycle 133
The Output Cyele 134

7 Decide 137
7.1 Impasses 138

7.2 Impasser State 139
7.3 Preference Semantics State 142
7.4 Working Memory Phase State 144
7.5 Quiescence Phase State 146
7.6 Decide’s Total State 149
7.7 Impasser Transitions 151
7.8 Preference Semantics Transitions 156
7.9 Working Memory Phase Transitions 167
7.10 Quiescence Phase Transitions 173

8 Top Level 185
8.1 The States of the Top Level 185
8.2 Soar’s State Schema 186
8.3 The Top Level State Machine 188

A Numbers 194
B An Implementation Discipline 196
B.1 Observing Soar’s Operation 196
B.2 An Implementation Discipbine 197
B.3 An Estimate of the Cost of Using State Machines 198

C Finer Grained Hooks 201
C.l TM Hookso 201
C.1.1 WME Operations 202

C.1.2 Preference Operations 202

C.1.3 TME Operations 203

C.2 SPM Hooks 203
C3 GMandIM Hooks 204
C.3.1 ContextImpasses 204

C.3.2 Non-Context Impasses 204

D The Reorderer 206
D.1 Classifving WMETests 206
D.2 Deriving the Branching Factor Heuristic 209
D.3 The Reorderer’s State 218
D.4 The Reorderer’s Operations 221

List of Figures

1.1 Module and Control Block Diagram 13
1.2 Module and Data Block Diagram 14
2.1 State Machine Prototype, 20
5.1 Chunking’s State Machine 82
5.2 Preference Phase State Machine 104
6.1 Graphical Representation of 10 120
6.2 Input Cycle State Machine 123
6.3 Output Cycle State Machine 124
7.1 Impasser State Machine, 140
7.2 Preference Semantics State Machine 143
7.3 Working Memory Phase State Machine 145
7.4 Quiescence Phase State Machine 147
8.1 Top Level State Machine 187
D.1 Reorderer State Machine 219

Chapter 1

Introduction

1.1 An Introduction and the Intended Audi-
ence

A formal specification of the sixth revision of the Soar cognitive architecture
[LNR87) was constructed in the Z specification notation [Spi89, Spi88]. Soar
1s a cognitive architecture that has exhibited a wide variety of performance in
domains such as: machine learning [LRN84], cognitive modeling ;Aky90, DS90.
JRS91, development {SK91), natural language processing [LLN91], expert sys-
tems {HPS89' and robotics [LYHT91!.

This specification was written to guide the construction of implementations
of Soar and to facilitate the understanding and extension of the Soar archi-
tecture. Formal specification has simultaneously been applied to two other
related computional architectures by lain Craig of the University of Warwick,
UK [Cra91;. Craig used Z to specify blackboard architectures and his Cas-
sandra architecture and similarly applied the specification to guide Casandra’s
implementation.

The Z notations is introduced as it is used. It is largely founded upon
familiar set theory, but most readers will be better served by first reading an
introductory text, such as [PTS91, Wor92, Hay85], and the Z manual [Spi89].

Artificial intelligence researchers who have an interest in understanding the
details of Soar will find many answers to their questions here. Indeed, the pro-
cess of writing the specification has made clear many details of the architecture
to 1ts implementors and founders. Considerable knowledge of the Soar architec-
ture from less formal sources, such as [LCAS90], would ease and enhance the
reader’s understanding. Z specifiers will most likely find this difficult reading,
but we do draw some conclusions about the strengths and weaknesses of using
Z for a large, detailed, low-level specification of a computational architecture.

10

1.2 The History and Philosophy of the Speci-
fication

In January 1990 we began an effort to re-implemen: the current Soar archi-
tecture, intending only a few well understood modifications. As we proceeded,
it quickly became clear that the limiting factor was our understanding of the
details of the architecture itself. Although Soar’s architecture description pa-
pers [LNR87, LRN86] and manual {LCA590! described some of the architecture,
they were out of date with the current svstem (Soar 5.2), at too high a level of
abstraction and had obvious inconsistencies with the system.

In an earlier revision of Soar (4.2) a small module {preference semantics) had
been forralized in first order logic [Lai86]. When we updated and reorganized
this formalization, we discovered that it had a pleasing clarity and disambi-
guity that allowed ns to quickly answer precise questions about the module’s
operation.

After considerable reflection, we decided to undertake a formal specification
of the basic functionality of the architecture. Our hope is that this document
will become the definitional standard of Soar. That is, the specification’s terms
will become the language that we use to discuss the architecture. And, when
we change the architecture, we will first update the specification to flush out
our understanding of the changes, and then distribute the changed specification
for comment. This way. the detailed content of the architecture will not remain
hidden in the implementation and become obscured with time.

After an initial, unsuccessful attempt to formally specify the architecture in
an ad hoc language, we undertook a small survey of the popular specification
languages. Our intuition was that a model theoretic language would serve the
purpose of specifving a cognitive architecture better than an algebraic system
such as Larch {Gut90]. We looked at Z, VDM {Jon90. JS90], and OBJ [GW88,.
but chose Z. Z appealed most to us because of its strengths in composing small
specifications into larger specifications, the availability of good programs to
textually format, syntax and type check its specifications and the local expertise
here at Carnegie Mellon with Z [Gar91, DG89].

Although Z has proved a very capable specification language it lacks two
properties that would have considerably simplified our task. First, Z's lack of a
full execution semantics forced us to use a cumbersome state machine notation.
Second, although we agree that not all specifications written in a language
should be executable, if Z was directly interpretable it would have allowed us
to much more quickly debug the specification.

11

1.3 The Specification’s Coverage and Implemen-
tation Bias

The specification is intended to cover all the functionality of what we view as
“the Soar architecture”, and avoid details that are specific to the implemen-
tation. Initially we felt that the ideal specification would be a very abstract
specification of the architecture with little implementation bias because an ab-
stract specification would simplify the modification of the specification and help
to prevent discourse on the design from being overwhelmed in details.

Several problems quickly derailed our aspirations for an abstract specifi-
cation. We wanted the specification to guide our re-implementation of Soar.
We desired an easily instrumented and flexibly modified implementation. This
drove us to produce a more detailed specification that could be used as an index
into the implementation. Also, as we have never had any specification of the
architecture that was more concrete than general prose but less concrete than
code, we found it difficult to produce abstract specifications that had sufficient
detail to guide the implementation.

The result is a specification that abstracts away from manyv implementation
details but is a very detailed accounting of the operation of the system. Some
implementation oriented details, such as techniques for inserting “hooks” into
the system, Soar’s use of numbers, and a conjunctive match condition ordering
algorithm have been included in appendixes. We leave the problem of how to
produce a more abstract specification to future Soar researchers as they attempt
to understand, modify and implement new revisions of the architecture.

1.4 An Overview of the Architecture

Figure 1.1 diagrams a module and control oriented view of Soar, and Figure 1.2
diagrams a module and data oriented view. Soar is composed of four modules
and is enclosed in an interface, which we call the external interface. Figure 1.1
represents each module by a rectangle, each state machine control by a circle or
oval, and the calling hierarchy by arrows. Figure 1.2 represents each module in
a rectangle, each state machine with a circle or oval, each memory with a heavy
lined rectangle, and the reading and writing of each memory with arrows.

The External Interface Soar is designed as a situated autonomous agent
that directly interacts with the external world, but an actual implementation
of the architecture is a program that allows a user to run Soar as if it is an
embedded agent. We distinguish Soar the program, from Soar the architecture.
by wrapping Soar in the external interface. This interface contains the user
interface that allow users to view, control and modify the execution of Soar.
The architecture provides only one operation to the external interface, StepTL.

12

External Interface .?.‘I‘:'P

Soar Architecture

Top Level !
(’I‘op Level >
\
Steplnput StepOutput StepWM \
StepPS Ste
P Cycle Cycle Phase Qphnlip
kM Y Decide
10
Preference
Phase Y
Step
Chunking
ChunkiIg
Chunking Input
Cycle Preference
Semantics

Figure 1.1: Module and Control Block Diagram

13

10
Soar
Input
Cycle
A
Decide
- / /"—-\\
Chunking |/ ™
Y

A

M
WM

——
Chunking / /

~
I

Preference

Semantics

Ve PM

AN

VAN

Impasser

Preference
Phase

SPM

/
= \

GM [

Figure 1.2: Module and Data Block Diagram

StepTL moves Soar one step forward. It acts much like a clock line of a CPU
that an engineer externally pulses.

Soar’s four modules are: the top level, recognition memory (RM) including
chunking, input output (IO) and the decision procedure (Decide).

Recognition Memory Recognition memory is Soar’s memory model; it con-
tains a long term memory in the form of production rules called production
memory, ot SPM. Its short term memory is temporary memory, TM, which is
split into two parts called working memory, WM, and preference memory, PM.
As all of the modules of Soar read and write temporary memory, Figure 1.2 de-
picts it as global to the entire system. The preference phase is a loop that recalls
information from long term memory until no new recollections are available.

Chunking Chunking is Soar’s learning mechanism. It observes the changes
to temporary memory and preference phase’s recollections and stores them in
two trace memories (TrM). From these and Decide’s goal stack, it learns new
memories and adds them to production memory. The external interface steps
the top level, which calls StepPS to step recognition memory’s preference phase,
which calls StepChunking to step the chunking module.

IO The IO module allows Soar to communicate with the outside world. The
top level steps IO’s input and output cycles with StepInputCycle and StepOut-
putCycle. The input cycle reads perceptions from input channels, and adds
them to temporary memoryv. The output cycle finds the subsets of temporary
memory that represent motor actions and ships them out output channels to
the outside world.

IO requires transducers to map Soat’s motor commands into a form that
simulated or real motor controllers can understand, and to map the perceptions
of simulated or real perceptual devices into Soar’s form. These transducers are
housed in the external interface, and are also viewed as being part of SoarlO,
but not part of the architecture.

Decide The decision procedure is Soar’s universal subgoaling mechanism. It
maintains two goal memories, GM and IM, and interprets the contents of pref-
erence memory as requests to change the contents of pieces of working memory.
Whenever a set of requested changes are not consistent, or do not provide a
unique change to working memory, decide generates a new goal to represent
the problem. The decision procedure has two state machines: working memory
phase (WMPhase) and quiescence phase (QPhase), stepped by StepWMPhase
and StepQPhase. The working memory phase and the quiescence phase both
step the impasser and preference semantics, with StepImpasser and StepPrefer-
encePhase.

15

1.5 An Overview of the Specification

The specification is organized into eight chapters and is supplemented with four
appendixes on implementation related considerations.

1.

=~

Chapter 1, Introduction — this introduction and overview of the specifi-
cation.

Chapter 2, Specifving Soar’s Control: State Machines — introduces the
state machine convention for specifying the high level control of Soar.

. Chapter 3, Base Symbol Structures — introduces the basic symbol types

which Soar composes into more complicated symbol structures.

Chapter 4, Temporary Memory and Production Memory — defines the
temporary memory and production memory data structures that are used
throughout the specification.

Chapter 5, Recognition Memory — defines the operation of the recognition
memory, including Soar’s learning mechanism, Chunking.

Chapter 6, IO — specifies Soar’s mechanism for communicating with the
external world.

Chapter 7, Decide — define’s Soar’s universal subgoaling mechanism.

. Chapter 8, Top Level — specifies the top level control loop that orches-

trates the execution of Soar’s modules.

. Appendixes —

(a) Appendix A, Numbers — specifies how to augment the base symbol
structures of Soar with a single type of numeric type.

(b) Appendix B, An Implementation Discipline — describes techniques
for creating an implementation that is very close to the specification.

(c) Appendix C, Finer Grained Hooks -—— describes a technique that
would allow an implementation to observe and modify the imple-
mentation at a finer granularity than would otherwise be supported
by the specification.

(d) Appendix D, The Reorderer — specifies a greedy heuristic reordering
algorithm to sort the conditions of individual Soar productions into
an order that on average matches faster.

Chapters 2, 3 and 4 cover introductory structure and are required to un-
derstand the remaining chapters. Chapters 5, 6, 7 and 8 cover the details of
the major components of Soar, and may be read in any order. Although the Z

16

specification language requires a bottom-up definitional approach. chapters 5.
7 and 8 refer forward in prose and backwards in Z and prose. Two readings
of these chapters is probably required to clearly understand their complicated
interactions.

17

Chapter 2

Specifying Soar’s Control:
State Machines

This chapter describes how the structure of Z and the desired properties of the
design and implementation of Soar conspire to produce many constraints on
the specification of Soar. Section 2.1 discusses the alternative representations of
control in Z. Section 2.2 describes the technique adopted to handle this problem:
state machines.

2.1 Specifying Soar’s Control

Z’s technique for modeling a computational system is called a “sequential svs-
tem model” ({Spi89] 130-141). Unfortunately, Z's sequential system model does
not provide sufficiently rich execution semantics. As Soar is a computational
model of cognition, a large part of its design is its flow of control. Although a
specification that abstracts away from Soar’s detailed control could prove use-
ful, to guide our implementation effort, we would prefer that our specification
carefully specify Soar’s flow of control.

We have investigated three alternative techniques for specifying Soar’s con-
trol in Z: prose, execution sequences and state machines.

We began by specifying pieces of the architecture’s flow of control in prose.
This prose described how individual state changes were combined in sequences
and loops. However, it lacked clarity, coverage and precision.

Next. we experimented with specifving control by defining execution se-
quences. We constructed the set of all sequences of states of Soar, and then
constrained them .o start with an initial state and only follow defined state
changes. However, as Soar contains several components each of which contains
isolated control. this quickly became cumbersome. Finally, we settied upon a
state machine control paradigm.

18

The state machine control makes explicit the legal sequencing of operations
in the Soar model by using state diagrams, a Z representation of the states
of the machine and a Z sequential operation for each transition of the state
machine. The individual transitions of the state machine are composed into a
single operation that moves the machine forward one of the possible transitions
with each application.

In this chapter we construct a prototype state machine format that allows
state machines to:

e initialize

e take one step of a possible set of transitions

e step an embedded sub-state machine

e determine when a state machine has finished executing and
e reset

The individual state machines that control parts of Soar are constructed
following the form of this prototype, and then composed into a single machine
that drives all of Soar. The resulting implementation of the architecture is
controlled from an interface that we call the external interface. This interface
drives Soar step by step, much like an engineer externally pulses the clock of a
computer processor.

2.2 The Prototype State Machine

This section defines the state machine control conventions by exhibiting a state
machine prototype. The prototype state machine is diagrammed in Figure 2.1.
The states of the machine are diagrammed with ovals, and the operations that
move the system between states are diagrammed as arrows.

The Names of the States The names of the states of the machine are
represented in Z using the free type StateCounter. In this case, StateCounter is
defined to be a type that is a set of five distinct variables named: SMInitialState,
SMS1State, SMS2State, SMS3State, and SMFinishedState.

StateCounter ::= SMInitialState | SMS1State SMS2State ;
SMS3State | SMFinishedState

Free types are Z's method for constructing disjoint unions ({Spi89] 81). They
are similar to union types in C ({[KR88] 147). but are mathematically motivated
((BW90! 258). In this case, the free type definition introduces only new variables
so it acts more like a C enumeration ([KR88] 39).

19

SMinitialState

SMReset SMinitialize

SMFinishedState

SMS1State

SMReset

SMS2State SMS20P2

SMReset
SMStartS3

SMFinish

{ sMs3state SMStepS3

SMReset

Figure 2.1: State Machine Prototype

20

Z defines the free type notation by expansion into an equivalent Z basic tvpe
definition ({Spi89] 50) with a set of new variables of disjoint values. In the first
part of this expansion, StateCounter is introduced as a basic type; e.g., a set of
values with no predetermined structure.

[StateCounter;

An axiomatic description is then used to introduce the five new variables.
The part of the axiomatic definition above the bar is called the declaration or
signature. The part below the bar is called the predicate. The declaration intro-
duces the five new variables, typing them as elements of the set StateCounter.
The scope of variables defined in an axiomatic description is everything after
the bar ir the rest of the specification. The predicate part defines predicates on
the variables introduced by the declaration. In this case, the built-in Z pred-
icate disjoint is applied to a sequence of the singleton sets of the variables to
constrain the values to which they are bound to be distinct.

SMInitialState, SMS1State, SMS2State, SMS3State,
SMFinishedState : StateCounter

disjoint ({ SMInitialState}, {SMS1State}, { SMS2State}, { SMS3State},
! {SMFinishedState})

The Functions of the States The five different states each perform unique
functions in the prototype state machine.

1. SMFinishedState — when the machine is not being used. it rests in this
state. The driver for this machine calls an initialize action to move it into
the SMInitialState.

(3%

SMInitialState — this is the state from which the machine begins compu-
tation.

3. SMS1State — in this state the SMS1 operation is applied to the state.

4. SMS2State — in this state the SMS20P1 or SMS20P2 operations are
applied to the state, or SMStartS3 is applied, moving the machine to
state S3.

w

SMS3State — in this state the SMStepS3 operation 1s applied to step a
sub-state machine. When the sub-state machine has finished, the SMFin-
ish operation ends the execution of the state machine.

Z’s sequential system model uses schemas to specify almost all of the parts
of a computational model. A schema can specify a data structure, like a record
structure in a programmng language. A schema can represent the environment

21

(or state) of a computational model, like the declaration of global variables in
a programming language. A schema can specify predicates on an environment,
like a boolean function in a program or a program invariant. A schema can
also specify an operation that changes the environment, like a procedure in a
programming language. Perhaps Z’s greatest strength is its schema calculus.
The calculus provides a rich and unifo.m way to combine schemas that are
plaving any of these roles.

The Total State of the Machine The prototype state machine’s compu-
tational state is represented here using a schema named StateSchema (/Spi89]
51). Like an axiomatic declaration, the part above the bar is a declaration and
below the bar is a predicate. The scope of variables defined in a schema is only
the text from the bar to the end of the schema box. The scope of the name of
the schema is all the specification past the bottom bar of the schema definition.
The prototype’s state schema defines only state_counter to remember the state
the machine currently occupies. In the specification of an actual Soar state
machine, the declaration’s ellipses (...) would declare other variables to enrich
the state model, and the predicate’s ellipses would define state invariants.

— StateSchema
i state_counter . StateCounter
l

Initial States fo. the Machine The Z convention to define a predicate on
the initial states of a sequential svstem model is to prefix the name of the state
schema with “Init” ('Spi89; 131). Thus the InitStateSchema defines a predicate
which initial states of the prototype state machine must satisfy. The declaration
part of this schema references the schema StateSchema. 7 defines this reference
to mean that the new zchema contains all of the declarations of the referenced
schema and all of the referenced schemas’s predicates are conjoined with the
new schema’s predicate ([Spi89] 53).

__InitStateSchema
i StateSchema

state_counter = SMFinishedState

22

The expanded definition of InitStateSchema, shown below, is that of a
schema with the same signature as the state schema, but the state counter
is constrained to start in the finished state. Again, the ellipses is used to sigmfv
that the initial state schemas of state machines might contain other restrictions.

T__Im‘tSta.te.S'chema
i state_counter : StateCounter

state_counter = SMFinishedState

The General Form of Operations After defining the form for the state of
our sequential svstem model and constrained its initial values, we must define
operations that move the system through its state space. Operations that change
the state of the sequential system are called sequential operations ({Spi89' 130).
A sequential operation is a relation on pairs of states. Z uses relations instead of
functions to allow the specification of non-deterministic operations. The speci-
fication takes good advantage of this: for example. decide non-deterministically
selects between indifferent operator candidates by using an non-deterministic

sequential operation schema.
For a schema to define a relation betwesn two states it must have a way to

teference the component variables of both states. Z’s technique is to construct
a schema that references both the state schema and a copy of the state schema
in which all of the components have been decorated (post appended} with an
singie quote (') (ISpi89 32). The undecorated state variables refer to the start
state and the decorated components refer to the resultant state For example.
the SMOperation schema defines all of the components of StateSchema and a
decorated copy of the components.

— SMOperation
' state_counter, state_counter’' : StateCounter

23

Decorating all of the components of a schema is common enough that dec-
orating the schema name is defined to decorate all of its components. For
example, SMOperation could be defined by referencing both a decorated and
an undecorated copy of the state schema.

— SMOperation
StateSchema
StateSchema’

However. sequential operations are so common that a second short hund, A,
is defined to mean the schema and a decorated copy of the schema.

— SMOperation
ASiateSchema

The Form of a State Transition Now that we have defined the state of
the system, its initial states and the general form of a state changing operation,
we need to define the form of typical state machine operations. When a state
machine’s caller wants to initialize the system, it calls an initialization operation.
Operations of this form pairs state schemas with counters in the finished state
to state schemas with counters in the initial state.

— SMinitialize
AStateSchema

state_counter = SMFinishedState

state_counter' = SMInitialState

24

Start Transitions When a state machine can loop in a state, the operation
that starts the loop by moving to the state is named with “Start”.

— SMStartS1
AStateSchema

i
I
l state_counter = SMInitialState

state_counter’ = SMS1State

Simple Transitions The SMSI operation provides the form for the simplest
type of operation. It performs its one and only change to the state, represented
by ellipses. At the same step it moves the state machine into the next state,
SMSs2.

—SMS1
! AStateSchema

state_counter = SMS1State

state_counter' = SMS2State

25

Looping and Compound Transitions SMS2 style operations are more
complex than the SMSI style operation. At each step the machine can change
the sequential system state by either the SMS20P1 operation or the SMS20P2
operation. After the application of these operations, the machine remains in
SMS2State allowing SMS2 to loop until SMS20P1 and SMS20P2 are both no
longer applicable.

— SMS20P1
| AStateSchema

! state_counter = SMS2State = state_counter’
|

!

—_SMS20P2
AStateSchema

state_counter = SMS2State = state_counter’

We would like to be able to define an operation that allows the state machine
to take either an SMS20P1 or an SMS20P2 transition. The Z schema calculus
(ISpi89! 74) allows the convenient combination of schemas by extending the
standard logical operations of and (A), or (V) and not (=) to apply to schemas.
Two schemas may be combined with A or v if their signatures give all shared
variables the same types. The signature of the resulting schema contains all
of the signature elements of both of the schemas and conjoins or disjuncts the
predicates of the two schemas. Any schema may be negated: the resulting
schema has the same signature and the negation of the predicate.

SMS2 = SMS20P1 v SMS20P2

The SMS2 operation is defined as an “or” of the SMS20P1 transition and
the SMS20P2 transitions. The = operation names a new schema to be the value
of a schema calculus expression. This new transition satisfies the conditions of
either SMS20P1 or SMS20P2. The SMS2 operation schema does not actually
need to be defined; the machine works identically with just the SMS20P1 and
the SMS20P2 transitions installed. (We define such transitions only to give
the users of Soar an easy way to observe related operations: such as all the
operations that leave a state, see Appendix B.) The state diagrams will not
have an item representing the compound transitions because they are difficult
to draw: some cases only require one arrow with two different names, but some
would require a graphic merging of arrows.

In a sequential system model not all operations are applicable to all states.

26

The schema calculus provides an operation, called pre-condition (pre) to cal-
culate if an operation is applicable ([Spi89! 72). The pre-condition operation
maps a sequential operation to a predicate that checks if all of the conditions
on the initial state of the operation are satisfied. Essentially, it tests a schema

for membership in the domain of the transition relation.
SMStartS3 checks that SMS2 is no longer applicable by using the pre-

condition of SMS2. When SMS2 is no longer applicable, SMStartS3 moves
the state into SMS3State. This exit transition makes SMS2State a while-do
looping state: it applies SMS2 until it is no longer applicable and then exits.

r_SMStartSS

[A StateSchema

b

state_counter = SMS2State
— pre SMS52
| InitializeSubStateMachine
state_counter’ = SMS3State

SubState Machine Transitions Soar is too complicated to specify with just
one state machine. We need to compose machines such that one state machine
can step another state machine. SMS3 prototypes a state that is implemented
by a sub-state machine, named SubStateMachine. When SMStartS3 applies,
it initializes the sub-state machine using InitializeSubStateMachine. SMStepS3
loops in the SMS3State and applies the StepSubStateMachine to step the sub-
state machine.

SMStepS3
‘ A StateSchema

| state_counter = SMS3State = state_counter’

StepSubStateMachine

SMS3 = SMStartS3 v SMStepS3

27

SMFinish checks that the sub-state machine is finished by checking the pre-
condition of StepSubStateMachine, and moves the state machine into its SMFin-
ishedState.

SMFinish
A StateSchema

r
|

| state_counter = SMS3State
— pre StepSubStateMachine
|
I
|

state_counter’ = SMFinishedState

Stepping a Machine The caller of a state machine requires a single com-
pound operationr to step a sub-machine. SMStep is a prototype of an operation
to step an entire machine forward one step. The stepper allows the machine to
move through one step of any operation except its initialization.

SMStep = SMStartS1 v SMS1v SMS2 v SMS3 v SMFinish

The SMReset operation resets the state machine to the finished state. It
is designed to be called when the state machine’s execution is interrupted, and
would be drawn as an arrow from every state to the finished state. As it 1s
also cumbersome to draw this, it will not be shown in the other state machine
diagrams. In an implementation, SMReset is designed to take actions to recover
the state of the implementation that would otherwise be lost by an initialize
operation.

__SMReqet
AStateychema

I state_counter’ = SMFinishedState
i
!

The prototype state machine provides a convention for representing compli-
cated control, a single step at a time, using Z’s weak state relation sequentxal
operation semantics. The convention provides templates for:

e initialization

e start transitions

simple transitions

looping and compound transiticns

28

e substate machine transitions
e finishing transitions and
e machine stepping transitions.

T2 specification defines each piece of Soar’s control flow in a state machine,
and composes them into a single operation that moves Soar one atomic control
step.

29

Chapter 3

Base Symbol Structures

This chapter defines the base sets of symbols that Soar uses to construct its
knowledge representations. Soar uses two base set of symbols: £ and the Spe-
cialSymbol set. T is a set of base general symbols for knowledge representation.
Soar composes these symbols to construct all of its knowledge structures. Spe-
cialSymbols are the reserved words of Soar. They are symbols with meanings
specific to the operation of Soar.

(X, SpecialSymbol

Soar partitions ¥ into the sets of variable symbols, identifier symbols. and
constant symbols. The three subsets of T are typed as elements of P T, the set
of all subsets of T ({Spi89! 27). The Z partition predicate relates a sequence of
sets to a set if and only if the sets in the sequence are disjoint and their union
is equal to the set ({Spi89: 125).

Variable, Identifier, Constant : P T

| { Variable, Identifier, Constant) partition I

As many definitions allow either variables or constants in their domain we
define VariableOrConstant for brevity.

! VariableOrConstant - P &

! VariableOrConstant = Variable U Constant

Also many definitions use either an identifier or a constant in their domain.
Soar users commonly refer to these as Symbols.

| Symbol : P T

Symbol = Identifier _ Constant

30

The SpecialSymbols are partitioned into PreferenceSvmbols and Relation-
Symbols. The PreferenceSymbols appear in the preference slot of preferences.
The RelationSymbols appear in the syntax of relational tests inside of produc-
tions. Typographically. we use single quoted variable names to emphasize that
these are constants of Soar, but to Z they are just Z variables. As the symbol
"="1s Soar’s name for both the equality relation and the indifferent preference,
to we distinguish them with subscripts of “r” for relation and “p” for preference.

PreferenceSymbol, RelationSymbol : P SpecialSymbol
@1, w =TS <’ =p’, & : SpecialSymbol
‘=R, <>, <=>": SpecialSymbol

{ PreferenceSymbol. RelationSymbol) partition SpecialSymbol

I
!
l
! RelationSymbol = { =", ' <>, "<=>"}
: PreferenceSymbol =

(@, 1 — T s e = k)

The decision procedure’s input language is the set of preferences. Prefer-
ences describe properties of the structure of Soar’s short term memory. The
preferences may describe a property of a single object in memory. called unary.
or may describe a property of two objects in memory, called binary. The sets
UnaryPreferenceSymbol and BinarvPreferenceSvmbol partition the preference
symbols into those that can appear in unary preferences and those that can ap-
pear in binary preferences. All of the binary preference symbols are also unary.
but some of the unary preferences (such as ") can not appear in binary pref-
erences.

| UnaryPreferenceSymbol. BinaryPreferenceSymbol : P PreferenceSymbol

i UnaryPreferenceSymbol =
(@ U, o T s e = k)

] BinaryPreferenceSymbol = {'>","<","& ", =p '}

31

The specification of the Soar architecture references 17 constant symbols.
The disjoint predicate ensures that the variables all take no distinct values from
the set of constants. No specific identifiers or variables are defined because
Soar uses these as placeholders that describe the structure of its knowledge
representations, but not the specific content.

‘NIL®,"T" "GOAL ", "PROBLEM-SPACE ", "STATE . "OPERATOR ",
"IMPASSE","OBJECT °, "ITEM ", "ATTRIBUTE *, " CHOICES *,
"CONSTRAINT-FAILURE ", " CONFLICT’,"TIE *, ' NO-CHANGE ",
"NONE’,"MULTIPLE ", " QUIESCENCE ", " TYPE ’ : Constant

disjoint /{* NIL*},{" T}, {*GOAL"}.{" PROBLEM-SPACE ‘}.
. {*STATE '}, {' OPERATOR *}, {* IMPASSE '},
| {*OBJECT '}, {"ITEM "}.{" ATTRIBUTE °},
|
|

{* CHOICES '},{* CONSTRAINT-FAILURE '}, {* CONFLICT °},
{*TIE"},{" NO-CHANGE "}.{" NONE '},

{* MULTIPLE "} {" QUIESCENCE '},{" T"},

{*TYPE'}

32

Chapter 4

Temporary Memory and
Production Memory

This chapter specifies the elements of two of Soar’s memories: temporary mem-
ory (TM) and production memory (PM). Temporary memory holds TMEs, a
disjoint union type constructed from Preferences and WMEs. The preferences
are also stored in preference memory (PM), and the working memory elements
in working memory (WM). Temporary memory is the union of preference and
working memory. Production memory holds productions that match against
working memory, instantiate, fire and retract to modify preference memory.

4.1 Preferences

Soar’s preferences are the input language of the decision procedure. Decide
reads preference memory to determine how to change working memory. Soar

has two types of preferences: unary and binary.
A Unary preference describe a property of an identifier, attribute, value

triple. The most common property is that a value is acceptable for installation
in WM for an identifier, attribute combination, called a slot.

— UnaryPreference
| id : Identifier

| attribute, value : Symbol

' preference : UnaryPreferenceSymbol

We must de-structure the data elements contained in top level memories to
specify general data invariants of Soar, such as the set of all identifiers currently
in use anywhere within Soar. Components mappings are used to de-structure
an element of some type into the set of its basic symbols.

33

The UnaryPreferencesComponents mapping extracts the identifier, attribute
and value symbols from a unary preference.

UnaryPreferencesComponents : UnaryPreference — P X

‘ ¥ u : UnaryPreference o
UnaryPreferencesComponents(u) = {u.id, u.attribute. u.value}

Binary preferences describe a property of two values for a slot to Decide. A
common property described is that the identifier, attribute and value triple is
a better choice for installation in working memory than the identifier, attribute
and referent triple.

BinaryPreference
rid : Identifier

attribute. value : Symbol

preference : BinaryPreferenceSymbol

referent : Symbol

The BinaryPreferencesComponents mapping extracts the identifier, attribute,
value and referent symbols from a preference.

BinaryPreferencesComponents : BinaryPrefererce — P T

Y b: BinaryPreference o
! BinaryPreferencesComponents(b) =
i {b.id, b.attribute, b.value, b.referent}

The preference free type constructs the disjoint union of unary preferences
and binary preferences. The UnaryP and BinaryP total injections ([Spi89: 106)
are used to construct a Preference from a unary or binary preference.

Preference ::= UnaryP {{UnaryPreference) ' BinaryP{ BinaryPreference)

34

Given a preference, you can check if it is constructed from a unary prefer-
ence or a binary preference by testing it for membership in the range of the
injectors p € ran UnaryP or p € ran BinaryP ([Spi89] 9). The inverse func-
tions, UnaryP™ or BinaryP™ can then be used to unpack a preference into its
unary or binary preference ({Spi89] 101). PreferencesComponents de-structures

a preference using this technique.

¥V p : Preference
((p € ran UnaryP =
3 PreferencesComponents(p) =
UnaryPreferencesComponents(UnaryP™~(p))) A
{(p € ran BinaryP =
PreferencesComponents(p) =
BinaryPreferencesComponents(BinaryP~(p))))

| PreferencesComponents : Preference — P Symbol

The specification frequently creates preferences, so two functions are pro-
vided to map the components of preferences to a preference. The u operator
acts much like a programming language's let construct and the 6 operator in-
stantiates a schema using the values for its components provided in the current
scope ({Spi89l 61, 64).

make UnaryPreference :
\ Identifier x Symbol x Symbol x UnaryPreferenceSymbol
— Preference
makeBinaryPreference :
Identifier x Symbol x Symbol x BinaryPreferenceSymbol x Symbol
— Preference

Vi : Identifier; a,v : Symbol;, p : UnaryPreferenceSymbol
makeUnaryPreference(i,a,v.p) =
\ UnaryP ({(u UnaryPreference |
| id = i A attribute = a A value = v A preference = p o
! 8 UnaryPreference))
|

v i - Identifier: a,v.r : Symbol; p : BinaryPreferenceSymbol o
makeBinaryPreference(i.a.v,p, r) =
BinaryP ((u BinaryPreference |
id = 1 A attribute = a » value = v A
preference = p A referent = r e
6 BinaryPreference))

35

PreferencesId is defined to allow easy access to the identifier slot of both
unary and binary preferences.

Preferencesld : Preference — Identifier

V p : Preference o
. ((p € ran UnaryP = Preferencesld(p) = (UnaryP~(p)).1d) A
‘; (p € ran BinaryP => Preferencesid(p) = (BinaryP~(p)).id))

The architecture specifies that only preferences which are accessible from
the most recent goal, or any impasse object, should remain in preference mem-
ory. We start the formal definition of accessible with the concept of connecting
identifiers over a universe set of preferences. Connectedp,cforence 15 @ Mapping
that takes a set of preferences to a relation between identifiers. Two identifiers
are related over a set of preferences if there exists a preference that holds the
first identifier in its id slot and the second in its value or referent slot.

Connectedp eforence © Preference — (Identifier — Identifier)

v P : P Preference; |, r : Identifier o
| (1, r_) € (Connectedp,aference (F)) &
| (3p:Pe
! {(p € ran UnaryP =
| (UnaryP~(p)).id = I A (UnaryP~(p)).value = r) A
j (p € ran BinaryP =
! (3 b : BinaryPreference | b = BinaryP~{p) e

b.id = L A (b.value = r v b.referent = r))}))

The connection formed is roughly analogous to a directed edge in a graph:
here each unary preference would be viewed as an attribute labeled edge from
id to value. and each binary preference would be viewed as constructing two
attribute labeled edges from id to value and from id to referent. However, the
correspondence is not very natural because the node set of a graph of preferences
would also have to contain all of the constants. Soar allows only identifiers to
be augmented with a preference (e.g., appear in the id slot of a preference) and
so the graph would require the additional constraint that only identifier nodes
have out edges.

36

TClp,eference eXtends the concept of a single preference connecting pairs of
identifiers to a path of preferences connecting sets of identifiers. The * operation
calculates the reflexive transitive closure of the relation Connectedp,oforence ()
{!Spi89} 102). The closure is then imaged ({Spi89: 101) over all of the identifiers
in the start set. This produces an operation that finds all of the identifiers
connected to any identifier in the start set through a path o preferences. The
syntax _[_} is used to denote the image of a function on a set of argum-=.ts
({Spi89] 101). The image of a function on a set, S, 1s the set of the function
applied to all of the elements of S.

TClp,eference : P Preference — (P Identifier — P Identsfier)

vV P : P Preference; I : P Identifier e
(TClpreference (P))(1) = ((Connectedp eference (F))")

A OadPreference extracts from a set of prgferpnces those preferences that hold
in their id component any element of the given set of identifiers.

Ofldp eference - P Identifier » P Preference — P Preference

v [P Identifier; P : ¥ Preference e
Ofldp eference (- P) = {p: P Preferencesld(p) < I}

4.2 Working Memory Elements

Soar’'s working memory 1s a set of elements named working memory elements.
Working memory elements have an id component. and an attribute and value
components. They are of two types: those that are a copy of an acceptable pref-
erence for a contzxt slot and those that are not The context_acceptable_prefereice
component holds a flag of the free tvpe. YesOrNo to distinguish these two tvpes.

YesOrNo ::= Yes No

— WME
id : Identifier
attribute, value : Symbol
conlezl_acceptable _preference : YesOrNo

The components of a working memory element is the set of its identifier.
attribute and value.

i WMEsComponents : WME — P X
| Yw: WME ¢ WMEsComponents(w) = {w.id, w.attribute, w.value}

The makeWME constructor is defined to simplify the instantiation of work-
Ing memory element schemas.

| make WME : Identifier x Symbol x Symbol x YesOrNo — WME

Vi : Identifier; a,v : Symbol; c: YesOrNo e
make WME (i, a,v,c) =
| (¢ WME | id = i A attribute = a A value = v A
' contezt_acceptable_preference = c o
E 6 WME)

Connectedyyprp defines the notion of connectedness of identifiers across a
single working memory element from a universe set of working memory elements.

Connectedyypp : P WME — (Identifier — Identifier)
i YW :P WME, L, r: Identifier ¢
|

(I,7) € (Connectedyyg(W)) &

(Sw: Wewid =1, wovalue=r)

TClypE extends the connectedness definition, in the same way TCIp,oference
did. to include a set of identifiers and any path of wmes.

TCIypmE - P WME — (P Identifier — P Identifier)

: vW . P WME, I:P Identifier o
(TCIywME(W))(I) = ((Connectedwpyrp (W))*) ()

Ofld g extracts from a set of working memory elements, the ones that
contain any element of a given set of identifiers in their id component.

; OfldywpE © P Identifier x P WME — P WME

v 1 : P Identifier; W : P WME o
Ofldwyp(I, W)={w: W |wid £ I}

38

4.3 Temporary Memory Elements

Temporary memory is almost a disjoint union of working memory elements and
preferences. Elements of temporary memory are of type TME, a disjoint union
type of Preference and WME. Temporary memory is not exactly a disjoint union
of working memory and preference memory. The one distinction is that the
context acceptable preferences from preference memory are copied into working
memory so that they can be matched by productions (see Chapter 3).

TME ::= Preference TME {{ Preference)) | WMETME (WME))

A TME’s components are defined to be the components of the underlying
preference or working memory element.

| TMEsComponents : TME — P T

Vt: TME e
((t € ran Preference TME =
TMEsComponents(t) =
PreferencesComponents(Preference TME™(t))) A
(t € ran WMETME =
| TMEsComponents(t) =
l WMEsComponents(WMETME ™~ (t))))

1

Connected Ty defines connectedness of identifiers through a single tempo-
rary memory element over a universe of temporary memory elements.

| Connectedpyp : P TME — (Identifier — Identifier)

‘ vT:P TME; |, r: Identifier o
(L.r) € Connectedryp(T) &
(L)
| Connectedypyp(WMETME™ (™ Nran WMETME))u
\ Connectedp,oforence (Preference TME™ (T (M ran Preference TMEY))

TCITpE extends the notion of connectedness to sets of identifiers over paths
of temporary memory elements.

| TCltpmpg : P TME — (P Identifier — P Identifier)

| YT :P TME; I:P Identifier o
(TCIpppE(TH() = ((ConnectedTME(T))')GID

39

Ofld pqE extracts the subset of temporary memory elements that hold one
of the given identifiers in their id slot.

i OfldE : P Identifier x P TME — P TME

| VI :P Identifier; T : P TME o

' Ofldppyge(l. T) =

! WMETME (Ofldyypg (I, WMETME™~ (T . ran WMETME)))U
|

Preference TME (OfId pofarence (I+ Preference TME™ (T ™ ran Preference TMEY)|

4.4 Makes

The process of recall from long term memory is modeled by the matching of
productions. When productions match, their right hand sides are instantiated
to find preferences to add to preference memory. The right hand side is a set of
makes. The makes form a language that describes how productions create new
preferences, given the variable bindings from the left hand side of the production

match. . .
The data type schema, UnarvMake is instantiated to create a unary prefer-

ence. Makes must contain a variable in the identifier slot. but can contain either
a constant or a variable in the attribute and valve fields.

— UnaryMake

i id: Variable

i attribute, value : VariableOrConstant
preference : UnaryPreferenceSymbol

A unary make’s components is the set of its identifier, attribute and value.

UnaryMakesComponents : UnaryMake — P T

‘ YV u: UnaryMake o
f UnaryMakesComponents(u) = {u.id, u.attribute, u.value}

A BinaryMake is instantiated to make a binary preference.

~— BinaryMake
¢ 1d: Variable
attribute, value : VariableOrConstant
preference : BinaryPreferenceSymbol

i
!
1 referent : Variable OrConstant

40

A binary make’s components are the set of its identifier, attribute, value and
referent.
BinaryMakesComponenis : BinaryMake — P T

i

i

! Vb : BinaryMake o

BinaryMakesComponents(b) = {b.id, b.attribute, b.value, b.referent}

The free type Make is defined to join the phrases of the language of makes
into a single phrase.

Make ::= UnaryM { UnaryMake)) | BinaryM { BinaryMake))

A make’s components are the components of the underlying unary or binary
make.

i MakesComponents : Make — P T

vV m : Make o
({(m € ran UnaryM =
MakesComponents(m) =
! UnaryMakesComponents(UnaryM ™~ (m))) A
| (m € ran BinagryM =
MakesComponents(m) =
BinaryMakesComponents(BinaryM ~(m))))

|
|
i
|

4]

makeUnarvMake and makeBinaryMake instantiate copies of the unary or
binary make schema, and wrap them in the make free type.

make UnaryMake :
Identifier x VariableOrConstant x VariableOrConstant x
UnaryPreferenceSymbol — Make
| makeBinaryMake :
' Identifier x VariableOrConstant x VariableOrConstant x
BinaryPreferenceSymbol x VariableOrConstant — Make

Vi : Identifier; a,v : VariableOrConstant; p : UnaryPreferenceSymbol o
make UnaryMake(i, a, v, p) =
UnaryM ((p UnaryPreference |
id = { A attribute = a A value = v A preference = p e
6 UnaryMake))

makeBinaryMake(i, ¢, v,p,) =
BinaryM ({u BinaryPreference |
| id = i A attridbute = a A value = v A
! preference = p A referent = r e
| 6 BinaryMake))

Connectedpg, o defines connectedness for makes. It is parallel to the con-
nectedness for preferences, with the exception that makes hold constants or
variables in their components instead of constants or identifiers, but connected-
ness only flows through variables.

Connectedprare - P Make — (Variable — Variable)

| YM:P Make; |,r: Variable o
(I,r) € (Connectedprpre(M)) &
(Zm:Me
((m € ran UnaryM =
{(3u: UnaryMake | v = UnaryM™~(m) o
w.id = [A u.value = r)) A
{m € ran BinaryM =
(36 : BinaryMake | b = BinaryM ~(m) o
b.id = I A (b.value = r v b.referent = r)))))

42

t Vi: Identifier; a,v,r : VariableOrConstant; p : BinaryPreferenceSymbol o

TCIMake extends the definition of connectedness to cover sets of variables
and paths of makes.

TClppake : P Make — (P Variable — P Variable)
' YM :P Make; V : P Variable o
| (TCIpfake(M))(V) = ({(Connectedppa (M))V}

Ofld gy, ke extracts a subset of a set of makes that holds any element from
a set of variables in their identifier slot.

OﬂdMake : P Varigble x P Make — P Make

VvV :P Variable; M : P Make o
Ofidppape(V M) =
' {m: M|
! (m € ran UnaryM = (UnaryM~(m)).id € V') v
(m € ran BinaryM = (BinaryM~(m)).id € V)}

4.5 Tests

Productions require a language to describe how to match against the contents
of working memory. The terminal phrases of this language are called Tests and

match against the symbols found in the fields of working memory elements.
Test 1s defined as a free type, both to construct a disjoint union and to allow

tests to recursively contain tests ([Spi89] 81-83). Three of the test types are
constant, and five are constructed from arguments, one of which takes a set of
tests as arguments.

Test ::= BlankTest
I YesTest
i NoTest
| EqualityTest{(X)
i NotTest(ZT)
| SameTypeTest((T})
| DisjunctiveTest{{P Constant))
| Conjunctive Test (P Test))

As a production matches, it constructs a binding of variables to symbols,
much like an environment in a programming language. When a test matches
against a symbol, if the test is constructed using a variable it will match using
the binding of the variable instead of the variable itself.

There are eight types of tests.

43

1. BlankTest — matches any symbol.
2. YesTest — matches against a value of type YesOrNo that is a Yes.
3. NoTest — matches against a value of type YesOrNo that 1s a No.

4. EqualityTest — matches against a svmbol if it is the same symbol used to
create the equality test, or the binding of the variable used to create the
test.

5. NotTest — matches against a symbol, only if is not the same symbol
used to create the NotTest, or not the same symbol as the binding of the
variable used to create the test.

6. SameTypeTest — matches against a symbol only if the symbol and the
constructing argument of the SameTypeTest (or its binding) are both in
Identifier or both in Constant.

-1

DisjunctiveTest — matches a symbol only if it is in the sl of constants
used to create the disjunctive test.

8. ConjunctiveTest — matches a symbol only if the svmbol matches all of
the set of tests that were used to create the conjunction.

Although Soar could support recursive conjunctive tests they provide no
extra matching power over a single layer of conjunctions. The predicate below
constrains all conjunctive tests to be constructed only from equality tests, not
tests, same type tests and disjunctions.

¥ ct : ran Conjunctive Test o
ConjunctiveTest™ (ct) C
(ran EqualityTest _ ran NotTestu
ran Same Type Test U ran Disjunctive Test)

44

The compenents of tests are collected from the arguments used to construct
the test.

TestsComponents : Test — P X

Vi: Test o
((t € {BlankTest, YesTest, NoTest} =
TestsComponents(t) = &) A
(t € ran Equality Test =
TestsComponents(t) = { EqualityTest™ (t)}) A
| (t € ran NotTest =
! TestsComponents(t) = { NotTest™ (t)}) A
? (t € ran Same Type Test =
: TestsComponents(t) = { Same TypeTest™(1)}) A
|
!
I

(t € ran Disjunctive Test =
TestsComponents(t) = DisjunctiveTest™(t)) A
(t € ran Conjunctive Test =
| TestsComponents(t) = | J(TestsComponents (Conjunctive Test™(t)})))

Soar’s conditions have a notion of a positive versus a negative test. A positive
test is one that checks for equality with a constant or a variable’s binding. and
a negative test 1s one that does not. The TestsPositiveComponents mapping
is defined to extract the set of constants and variables that a test positively
checks.

1 TestsPositiveComponents : Test — P Symbol

Vi: Test o
((t < {BlankTest, YesTest. NoTest}_
ran Same Type Test _ ran NotTest =
TestsPositiveComponents(t) = &) »
(t € ran EqualityTest =
TestsPositiveComponents(t) = { EqualityTest™(t)}) »
(t € ran Disjunctive Test =
TestsPositiveComponents(t) = Disjunctive Test™ (t)) A
(t € ran Conjunctive Test =
TestsPositive Components(t) =
{J(TestsPositiveComponents | Conjunctive Test™(t)))))

45

While describing operations on tests, it is often necessary to describe one
action for conjunctive tests and another action for all other types of tests. The
abbreviation definition ({Spi89 52) below defines a new type set. SimpleTest.
that simplifies checking whether a test is not conjunctive.

Simple Test == (Test \ ran Conjunctive Test)

4.6 WME Tests

Tests are composed in structures. called a WMETest, that tests against a work-
ing memory element. A WMETest matches a working memory element if and
only if all of the working memory element test’s tests match the corresponding
fields of the working memory element.

— WMETest
id, attribute : Test ' {BlankTest. YesTest, NoTest}
value : Test' {YesTest. NoTest}
contezt_acceptable _preference : { YesTest, NoTest}

makeWMETest instantiates a working memory element test given its four
component tests.

make WME Test : Test \ {BlankTest. YesTest, NoTest} x
Test \ { YesTest, NoTest} x
Test \ {YesTest, NoTest} x
{YesTest, NoTest} x {YesTest, NoTest} — WMETest

vid : Test' {BlankTest. YesTest, NoTest};
attribute, value - Test \ { YesTest. NoTest};
contezt _acceptable_preference : { YesTest. NoTest} o
make WMETest(1d. attribute. value, contezt_accepiable _preference) =
(w13d : {3d}; attribute : {attribute}; value : {value};
i contezt_acceptable_preference : {contezt_acceptable_preference} o
6 WMETest)

The components of a working memory element test are the components of
its id, attribute and value fields.

WMETestsComponents : WMETest — P Symbol

vwt: WMETest o
WME TestsComponents(wt) =
(J(TestsComponents [{wt.id. wt.atiribute, wt.value}})

46

WMFETestsPositiveComponents extends the concept of a positive component
to the level of a working memory element test.

t WMETestsPositiveComponents : WMETest — P Symbol

i
Vwt: WMETest o

WME TestsPositiveComponents(wt) =
\U(TestsPositiveComponents ({wt.id, wt. attribute, wt.value}))

v

Two working memory element tests are connected if either of their identifier
tests share positive components, or the first test’s value test shares components
with the second one’s id test.

'

- ConnectedWMETest _: WMETest - WMETest

’ Y wty, wly : WMETest o
| wi; CO""eCtedWMETest wi; <
|

((TestsPosstive Components(wty.id)r
TestsPositive Components(wtz.2d)) = C v
(TestsPositiveComponents(wt, .value)™

|
) ‘
TestsPositive Components(wty.id)) = Q)

4.7 Conditions

Soar’s productions check working memory for the existence of elements matching
working memory element tests, but they must also check if working memory does
not contain matching patterns of elements. Working memory element tests ate
bundied into structures, called Conditions, that match on the existence and

non-existence of patterns of elements.
PositiveConditions match when there exists a working memory element that

their WMETest matches. NegativeCondition match the non-existence of a el-
ement that matches their WMETest. NegativeConjunctiveConditions match
when all of their conditions fail to simultaneously match working memory.

Condition ::= PosstiveCondition{ WME Test))
| NegatwveCondition({ WME Test))
| NegativeConjunctiveCondition (P, Condition))

47

Conjunctive negations are restricted to contain at least one positive condi-
tion.

V ¢ : ran Negative Conjunctive Condition e
Jes : P Condition | cs = Negative ConjunctiveCondition™(c) o
ran PositiveCondition Ncs = &

While specifying operations on conditions cased by type, it is convenient
to have a sub-type of conditions, SimpleCondition, that excludes the negative
conjunctive conditions.

SimpleCondition == ran Positive Condition | ran Negative Condition

ConditionsComponents extracts the components of a condition from its
working memory element tests or recursively from its embedded conditions.

ConditionsComponents : Condition — P Symbol

| V¢: Condition e
({¢ € ran PositiveCondition =

ConditionsComponents(c) =
; WME TestsComponents(PositiveCondition™ (c))) A
| (¢ € ran NegativeCondition =
i ConditionsComponents(c) =
| WME Tests Components{ Negative Condition™ (c))) A
{c € ran NegativeConjunctive Condition =

ConditionsComponents(c) =

U(ConditionsComponents | Negative Conjunctive Condition™ (c)})))

The positive components of a condition are defined to be all of the positive
components of its working memory element test or embedded conditions.

ConditionsPositive Components : Condition — P Symbol

Y ¢ : Condition e

{((c € ran PositiveCondition =
} ConditionsPositiveComponents(c) =
| WMETestsPositive Components(Positive Condition™(c))) »
; (¢ € ran Negative Condition =

ConditionsPositiveComponents(c) =

: WME TestsPositive Components(Negative Condition™(c))) A
| (¢ € ran Negative Conjunctive Condition =
: ConditionsPositiveComponents(c) =
| |J(ConditionsPositive Components { Negative Conjunctive Condition™ (c)} }}))

Soar constrains the conditions of the left hand side of the production to

48

be connected, and chunking’s inner loops calculate the transitive closures of
conditions. Unfortunately. negated conditions and conjunctive negations do not
allow the definition of connectedness of conditions to be parallel with those of
preferences, working memory elements, temporary memory elements and makes.

Connected - Jition 1S defined to connect sets of conditions to sets of con-
ditions, instead of connecting pairs of identifiers over a universe of conditions.
This allows the definition to support Soar’s use of multiple starting conditions
to connect into a conjunctive negation.

Two sets of conditions, A and B, are connected if and only if B holds a
positive condition, b, whose WMETest is connected to the WMETest of any
positive condition in A, and A union the set of b is connected to B’s other
conditions. Similarly, a negated condition, b in B, is connected to A if there is
a positive condition in A whose WMETest connects to b, and A connects to the
remaining elements of B. Notice that only positive conditions in A may connect

to a elements of B. . . o
A set of conditions, A, is connected to a set of conditions, B, containing a

conjunctive negation, b if and only if A connects to all of the sub-conditions of
b and A union the set of b connects to B’s remaining conditions. This connects
any conjunctive negation whose sub-conditions are all connected to A, either
directly or through a path in the sub-conditions.

P Connected oy ndition - ° P Condition — P Condition

Y A : P Condition e A Connected,paeyin @

‘ V A, B : P Condition e
A Connectedconditl-on B &
(3b:Be
(b € ran PositiveCondition =
(Sa:Ae
PositiveCondition™(a) Connected yyprETest PositiveCondition™(b))) A
! (b € ran NegativeCondition =
(Sa:4Ae
PositiveCondition™ (a) ConnectedyyprETest NegativeCondition™ (b))) A
(b € ran NegativeConjunctive Condition =
(A Connected oy dition IVegative Conjunctive Condition™(b))) A

A U {b} Connected o gjtion B \ {b})

49

TClondition transitively closes a set of conditions S over a universe U. The
definition constructs the closure using the maximal set under the set inclusion
ordering. The image of a form of the reflexive transitive closure could be used,
but it would be cumbersome due to Connected,pdision’s different signature.

TCICondition : P Condition x P Condstion — P Condition

|

| ¥S,U:P Condition e
i zC:PU|
i

(S8 Connected o, pdition €) A
(YB:P U e S Connectedrypdition 3= B C C)e
TCIcondition(S: V) = €

Ofld > ondition €Xtracts the positive and negative conditions of a set that
match any constant in their identifier. It does not extract the negative con-
junctive conditions that hold the set of symbols in their identifier because this
requires a full recursive definition of connectedness. Where this is required,
Ofld condition 's used in conjunction with Connected,ndition SO that it can
connect into the conjiinctive negations.

Ofldcondition - P £ x P Condition — P Condition

i YI:PE; C:P Condition e
| Ofld condition(!- C) =
c:C . 31:1e
{c € ran PositiveCondition =
t € TestsPositiveComponents((Positive Condition™(c)).id)) »
(¢ < ran Negative Condition =
1 & TestsPositiveComponents((NegativeCondition™ (c)).1d)}}

4.8 SP

Productions are Soar’s model of long term memories. They match against the
contents of working memory, instantiate and fire to augment support memory
with preferences.

Soar’s definition of match requires that every variable that is tested against
(with NotTest, or SameTypeTest) must be bound in some condition (with an
EqualityTest). TestedVariablesBound is a predicate that checks that the vari-
ables a condition tests against are all ir. .he set of bound variables

i TestedVariablesBound _ : P(Condition x P Variable)

v bound : P Variable; ¢ : Condition e
Tested VariablesBound (¢, bound) &
(¢ € ran PositiveCondition =
{ ConditionsComponents{c) ™ Variable) C bound) A
(¢ £ ran NegativeCondition =
(ConditionsComponenis(c) N Variable) C
(bound U (ConditionsPositive Components(c) ~ Varwable))) A
t (¢ € ran NegativeConjunctive Condition =
(= cs : { NegativeConjunctiveConditic.™(c)} o
{(3bv: P Yariable i
bv = bound
{(U(+ nditionsPositiveComponentsfcs " ran Positive Conditioni)
N Variable) o

(vc:cs eTec.edVariablesBound (¢, bv)))})

51

Soar’s productions, SPs, have a name, a set of left hand side conditions, lhs,
that describe how they match against working memory and a right hand side
set of actions, rhs. The Ths must contain at least one positive condition, or the
ths would have no variables bound to use in make actions. Each condition may
onlv test against variables that are bound with a equality test somewhere on
the left hand side.

— SP
name : Symbol
lhs : P, Condition
rhs : B Make

roots : P Variable

Sc: lhs o c € ran PositiveCondition

Y ¢ : lhs o ConditionsComponents(c) N Identifier = &

rootls =

1 {v : U(ConditionsPositive Components((lhs N ran PositiveCondition)))
1 = (Z ¢ : lhs " ran PositiveCondition e

i v € TestsPositiveComponents((Positive Condition™(c)).value))}

ths = TCI¢opdition (O Condition(T00ts, ths), ths)

|
| 3 boundvariables : P Variable |
boundvariables =
(U(CondstionsPositiveComponents (ks N ran Positive Condition))
| M Variable)
i (V c : lhs eTestedVariablesBound (¢, boundvariables) A
i rhs = Ofld ppa ke (TCIpfa ke (7hs)(boundvariables). rhs))

Conditions are stored in two places in Soar: in productions they describe
when and how productions match, and in chunking they record which patterns
their productions matched against. Chunking’s counditions may have matched
against identifiers and so they are instantiated with identifiers to record the
match. However, productions are constrained not to use identifiers in their
match, otherwise they would be terribly specific to the set of identifiers in use
(except for internal chunksj.

A root of a production is an identifier that is not positively tested in any value
of the positive conditions. Soar constrains these variables to match against goal
ot impasse identifiers. All of the conditions of the lhs must be in the transitive
closure of the roots; this ensures that productions only match working memory
elements which are in the transitive closure of the context stack or an impasse.

The right hand side is also constrained to be transitively closed over the
bound variables of the left hand side. This ensures that the instantiations only
make new preferences that are accessible from a goal or impasse.

52

makeSP is used to construct a new production data schema. It takes only
three arguments, the name, the left hand side and the right hand side, as the
roots are a derived component of the left hand side.

| makeSP : Symbol x P, Condition x P Make — SP

Y name : Symb:l; ths : P, Condition; rhs : P Make o
3, roots : P Variable | SP o

makeSP (name, lhs, rhs) = §SP

The components of productions are all of the components of its left hand
side and the components of its right hand side.

SpsComponents : SP — P L

| Vsp:SP e
SpsComponents(sp) =
U(ConditionsComponents {sp.lhs) U MakesComponents(sp.rhs))

53

Chapter 5

Recognition Memory

Recognition memory is where Soar holds, processes and acquires long term

memories. Long term memories are stored as productions that match against

short term memories in working memory. Recognition memory matches the

productions against working memory, stores the matches, instantiates matches

to produce new preferences, and calculates support for preferences and chunks.
The chapter is divided into nine sections:

Section 5.1 Bindings — introduces bindings that map variables to values

Section 5.2 Matching — defines how productions match against working
memory

Section 5.3 Instantiation — specifies how matches are instantiated

Section 5.4 Goal Operations — defines some operations on Decide’s goal
stack for use by support

Section 5.5 Chunking — defines chunking, Soar’s learning mechanism
Section 5.6 Slots — defines the concepts of a slot.

Section 5.7 Recognition Memory’s State — constructs the state of recog-
nition memory

Section 5.8 Support — specifies how instantiations support preferences
and

Section 5.9 Preference Phase Operations — defines the state machine for
recognition memory’s control loop, called preference phase.

5.1 Bindings

Soar’s productions match against working memory using a binding of the pro-
duction’s variables to symbols. Bindings are similar to environments in pro-
gramming languages. In Soar, bindings are modeled as partial functions from
variables to symbols.

Binding == Variable - Symbol

When productions match, they check that there is no possible way to instan-
tiate their negated conditions to allow them to match working memory. The
negative conditions must not be able to add bindings for their local variables
that allow them to match working memory elements. To formalize the match
of negative and negative conjunctive conditions, we define the concepts of two
bindings being consistent, a binding covering a set of variables, and one binding

being a consistent extension of another.
Two bindings are consistent if they both bind every variable that they share

to the same symbol. A binding covers a set of variables if it gives a binding
to every variable in the set. A binding, A, is a consistent extension of another
binding, B, if it is consistent with it and A possibly binds variables that B does
not.

'~ Consistent _, _ ConsistentExtension _ : Binding ~— Binding
i _ Covers _: Binding - P T

Y a,b : Binding o
(a Consistent b) <
(vv:dome "domb e a(v) = b(v))

v b : Binding e Vr: P Variable
b Covers r < r Cdomb

YV a.b : Binding
a ConsistentExtension b <
(a Consistent b A (dom b C dom a))

5.2 Matching

The core result of matching a production against working memory is a corre-
spondence between the positive conditions of the production and the working
memory elements they match. In this section, we define how a test matches a
symbol, and how a working memory element test matches a working memory
element. We use this to define the concept of a match to a production, and then
define when a match is consistent with the contents of working memory.

55

5.2.1 Tests Matching Symbols
A test can match a symbol, under a binding, in one of six ways.
1. The test can be the blank test, which matches any symbol.

2. Equality tests only match a symbol, A, if their argument is A, or a variable
bound to A. The & notation is Z's way of function overriding ([Spi89]
108). (a @ b)(z) 1z b(z) if z € dom b or a(z) if z € dom a and undefined
otherwise. The (id £) is the identity function on £ ([Spi89] 97). The
overriding of (id £) with the binding, b, produces a function that returns
the binding of the equality test’s variable, or the equality test’s constant.

3. Not tests match a symbol, A, only if their symbol or variable’s binding is
not equal to A.

4. Same type tests match a symbol, A, against their symbol or variable’s
binding, B, only if A and B are both identifiers or both constants.

5. A disjunctive test matches only constants that are elements of the dis-
Junction’s argument set.

6. Conjunctive tests match a symbol only if the symbol matches all of the
conjunction’s sub-tests.

LMatchesg;f;bol —: P(Binding x Test x Symbol)

, Vb : Binding; t : Test; v : Symbol o
((t = BlankTest) v

(t € ran EqualityTest A v = ((id) & b)(EqualityTest~ (1)) v
(t € ran NotTest A v £ ((id) @ b)(NotTest~(1))) v
(¢ € ran Same Type Test A

(Fv2: {{(id Symbol) ® b)(SameTypeTest™ (L))} o
((v € Identifier A v2 € Identifier) v
(v € Constant A v2 € Constant)))) A
(t € ran DisjunctiveTest A v € DisjunctiveTest™(t)) v
(t € ran Conjunctive Test A

(V subt : Conjunctive Test™(t) OMatchesg;f;t]bol (b, subt, v))))

56

A working memory element test matches a working memory element if its
id, attribute, value and context acceptable preference fields match the element’s
test’s id, attribute, value and context acceptable preference test.

Matches YMETest _ . p(Binding x WMETest x WME)

, Vb : Binding, wt: WMETest: w: WME e
| Matches%METeSt (b, wt, w) &

(Matchesg®St, (b, wt.id, w.id) A

Matchess‘ff;bo] (b, wt.attribute, w.attribute) A

Matchess‘sﬁbol (b, wt.value, w.value) A

{wt.contezt _acceptable_preference = YesTest =
[w.contezt_acceptable_preference = Yes) A
(wt.contezt _acceptable_preference = NoTest =
w.context_acceptable_preference = No))

5.2.2 Matches

The full result of a production matching is recorded in a match schema. The
match contains: the production that matched, the correspondence between
its positive conditions and the working memory elements it matched, called a
matching, the binding that allows this correspondence, and the set of matched
working memory elements.

The matching is actually a correspondence between the positive conditions
and working memory element, number pairs. As each working memory element
could be added to working memory, later removed and the re-added, we identify
each instance of a working memory element uniquely using a natural number
tag.

— Match
| production : SP
' matching : ran PositiveCondition — (WME x N)
binding : Binding
lhs : P WME

dom matching = (production.lhs " ran Positive Condition)
lhs = first(ran matching]

i dom binding =
U(ConditionsPositive Components [production.lhs " ran PositiveCondilion))
N Variable

! Y ¢ : dom matching e
Matches&-%ETeSt {(binding. PositiveCondition™ (c), first(matching(c)))

makeMatch constructs a new match given the production and the matching
between the positive conditions and the working memory elements that they
matched. The match’s binding and left hand side are uniquely determined
by the production and the matching, so they are not required arguments to
construct a match.

| makeMatch :
‘ SP x {ran PositiveCondition — (WME x N)) — Match

Vv production : SP;
matching : (ran PositiveCondition — (WME x N)) e
' 2, binding : Binding; lhs : P WME | Match o
makeMatch(production, matching) = 6 Match

58

5.2.3 Matching against Working Memory

The definition of match checks the correspondence between the positive condi-
tions and the working memory elements that they matched, but it makes no
statement that these elements must be in working memory. Nor does it require
that the negative corditions do not have any matches in woriing memory. We
rectify this by constraining how a condition matches against the contents of
working working memory

Matches C;?"dmo" takes a binding, a condition and a set of working memory
elements, and checks if the condition matches working memory. A positive
condition matches working memory if there is a element in working memory
that its WMETest matches under the binding. A negative condition matches
against working memory if there 1s no way to consistently extend the binding to
cover the variables of the negated condition and then find an element in working
memory whose test matches. A negative conjunctive condition matches working
memory if there 1s no way to extend the binding and to match all of its sub-
conditions against working memory.

Matchesg%}d‘.“o" _: P(Binding x Condition ~ P WME)

v b : Binding; pc : tan PositiveCondition: WM : P WME o
MatchesGOndition (4 pe Wif)
(Zw: WMe
Mazches&r%ETe“ {5, PosstriveCondition™ (pc), w))

v b : Binding: nec :ran NegativeCondstion; WM : P WME »
Matchesﬁ?ﬁd‘“o" (b.nc, WM) =
= {3 nb: Binding
nb ConsistertExtension b .
! nb Covers (ConditionsComponents(nc) ™ Variable) o
(Zw: WM e
f Matches&-%ETe“ (nb, Negative Condition™ (nc), w)))

I
| % b : Binding; ncc : ran NegativeConjunctiveCondition; WM : ® WME o
| Matc{esgf’ﬁd‘t‘é“ (b, ncc, WM) &
| ~ {3 nb : Binding .
I nb ConsistentExtension b A
| nb Covers (ConditionsComponents(ncc) ™ Variable) o
" V ¢ . NegativeConjunctiveCondition™(ncc) o
Matches%?ﬁd“'on (nb.c, WM))

59

A match is satisfied by working memory if and only if all of its conditions
match against working memory under the match’s binding, and the elements
they match have the current working memory numbering, i.e., the elements are
the copies that are currently in memory.

| MatchesMaich _ . p(Match x P WME x (WME = N))

| vm: Match; WM : P WME o

' Matches%%}d’ (m, WM, WM#) &

} . (¥ ¢: m.production.lhs e

l Matches%%’}dition (m.binding, c, WM) A

‘\ WM#(m.maltching(c)) = second(m.matching(c)))

5.3 Instantiation

When Soar finds a match for a production. it instantiates it and adds it to
instantiation memoty. The act of instantiation generates an instantiated version
of the match’s production’s conditions and a set of preferences from the match’s
production’s right hand side maxes. Soar adds the support conferred by the
instantiation to each preference’s entry in support memory. Soar checks the
support of preferences to decide how to change preference memory. Soar then
passes the preference memory changes to decide, which changes the contents of
working memory to reflect the new contents of preference memory.

This section defines how a match’s production’s conditions are instantiated.
and then how a match’s production’s right hand side is instantiated, and then
the instantiation data structure schema.

5.3.1 Instantiating a Match’s Production’s Conditions

This section defines, in bottom-up order, seven recursive functions that instan-
tiate the conditions of a match’s production using the match’s binding. The
end result is a partial function, called a matching, that maps the conditions of

the production to their corresponding instantiated condition.
InstantiateVariableOrConstant returns a variable’s binding, if it is bound,

or returns the variable, if it i1s unbound, and otherwise returns a constant.

Instantiate VariableOrConstant :
{ Variable o Constant) x Binding — Symbol

v cv : Constant _ Variable: b : Binding
Instantiate Variable OrConstant(cv. b) = ((id L) & b)(cv)

60

InstantiateSimpleTest returns tests with no arguments unmodified. Equality,
same type and not tests, it destructures, instantiates their variable or constant
and returns.

InstantiateStmple Test : Simple Test x Binding — Simple Test

YVt : SimpleTest; b: Binding e
(((t = BlankTest v t = YesTest vV t = NoTest V t ¢ ran Disjunctive Test)
=> InstantiateSimple Test(t, b) = t) A
(t € ran EqualityTest =
InstantiateSimple Test(t, b) =
Equality Test(Instantiate VariableOrConstant(Equality Test™ (1), b))) A
(t € ran Same Type Test =
InstantiateSimple Test(t, b) =
Same Type Test(Instantiate Variable OrConstant(Same Type Test™(t), b))) A
(t € ran NotTest =
InstantiateSimple Test(t. b) =
NotTest(Instantiate VariableOrConstant(NotTest™ (1), b))))

InstantiateSetOfSimpleTests iterates the simple test instantiator across a set
of tests.

i InstantiateSetOfSimple Tests : -
‘ P SimpleTest x Rinding — P Simple Test

; VS : P SimpleTest; b: Binding e
w ((§ = € = InstantiateSetOfSympleTests(S, b) = D) A
i (S22 =
(8:S e

InstantiateSetOfSimple Tests(S, b) =
‘ {InstantiateSimple Test(s, b)}U
InstantiateSetOfSimple Tests(S \ {s}.b))))

61

InstantiateTest instantiates a test by calling either instantiate simple test,
or by unpacking a conjunctive test, instantiating its component tests and re-
packing.

Instantiate Test : Test x Binding — Test

t: Test; b: Binding e
((t ¢ ran Conjunctive Test =
Instantiate Test(t, b) =
InstantiateSimple Test(t, b)) A
(t € ran Conjunctive Test =
Instantiate Test{t, b} =
Conjunctive Test(
InstantiateSet OfSimple Tests(Conjunctive Test™ (t), b))))

Instantiate WMETest instantiates a working memory element test by instan-
tiating its component parts, and giving the new test the same context acceptable
preference test.

Instantiate WMETest : WMETest x Binding — WME Test

vw: WMETest; b: Binding e
Instantiate WME Test(w, b) =
(pid - {InstanttateTest w.id, b)} e
(p attribute : {Insta.ntmte Test(w.attribute, b)} o
(1 value . {Instantiate Test(w value b)} o
(p WME Test |
contezt_acceptable_preference =
w.contezt _acceptable _preference o

§ WME Test))))

62

InstantiateCondition and InstantiateSetOfConditions recurse through con-
ditions instantiating their component working memory element tests or condi-
tions. Z requires that they are defined in a single axiomatic definition to aliow
them to be mutually recursive.

InstantiateCondition : Condition x Binding — Condition
InstantiateSetOfConditions : P Condition x Binding — P Condition

V ¢ : Condition; b: Binding e
((¢ € ran PositiveCondition =

‘ Instantiate Condition(c, b) =
! PositiveCondition(Instantiate WME Test(Positive Condition™(c¢), b))) A
; (¢ € ran Negative Condition =

Instantiate Condition(c, b) =

NegativeCondition(Instantiate WME Test(NegativeCondition™ (c), b))) A

' (¢ € ran NegativeConjunctiveCondition =
E InstantiateCondition(c, b) =
!
!

Negative Conjunctive Condition
(InstantiateSetOfConditions
(Negative ConjunctiveCondition™ (¢}, b))))

({S = @ = InstantiateSetOfConditions(S,b) = &) A
 (szes
! (35:S5e
| InstantiateSetOfConditions(S, b) =
i {InstantiateCondition(s, b)}u
InstantiateSetOfConditions(S \ {s}. b))))

i
; VS : P Condition; b : Binding e

63

InstantiateConditionsWME instantiates a condition that corresponds to the
working memory element that a positive condition matched.

Instantiaie Conditions WME : WME — Condition

Yw: WME e
((w.contezt_acceptable_preference = Yes =
Instantiate Conditions WME (w) =
PositsveCondition(
make WME Test(Equality Test(w.id), Equality Test(w.attribute),
Equality Test(w.value), YesTest)))

A
(w.contezt_acceptable_preference = Yes =
Instantiate Conditions WME (w) =
PositsveCondition(
make WME Test(Equality Test(w.id), Equality Test(w.attribute),
EqualityTest(w.value), NoTest))))

64

InstantiateConditionMatching instantiates a set of conditions under a bind-
ing to produce a partial function that maps each of the conditions to their in-
stantiation. The positive conditions are mapped to a simple instantiated version
of the working memory element that they matched. It contains an equality test
for each value in the element and the appropriate context acceptable preference
test. The negative conditions are recursively instantiated to retain their test
structures. but have their variables replaced with identifiers. This retains max- -
imal inforruation about their matching which can be utilized when the chunk is
built.

| InstantiateConditionMatching :

} (ran PositiveCondition — (WME x N))x

} P(Condition \ ran PositiveCondition) x Binding
i — (Condition — Condition)

¥ CM : (ran PositiveCondition — { WME x N)); C : P Condition: b : Binding e
((CM =@ A C = @ = Instantiate ConditionMatching(C. b) = J) »
(CM £Q0 >

(Scun: CM e
InstantiateConditionMatching(CM, C. b) =
{(first(cwn) — Instantiate Conditions WME (first(second(cwn)))}o
Instantiate ConditionMatching(CM \ cwm, C, b)) A
(CM=0rCz2=
(3c:Ce
Instantiate ConditionMatching(CM , C, b) =
{(¢ — InstantiateNegative Condition(c, b)}}u

Instantiate ConditionMatching{(Z, C \ {c}, &)

65

5.3.2 Instantiating the RHS of a Match’s Production

MakesPre.erence takes a binding and produces a function that translates a make
into a preference using the binding. The different argument format allows the
function to be easily imaged across a set. The binding must cover all of the
variables of an argument preference, or MakesPreference is undefined.

MakesPreference : Binding — (Make — Preference)

Vb : Binding ¢ YV m : Make o
Zo. ¥ — X o0=(id Constant @ b) e
({m £ ran UnaryM =
(Z up : UnaryPreference | up = UnaryM ~(m) e
MakesPreference(b)(m) =
make UnaryPreference(o{up.id), o{ up.atiribute),
o(up.value), up.preference))) A
{(m < ran ZineryM =
(= bp . BinaryPreference bp = BinaryM ™~ (m) e
MakesPreference{b)(m) =)
makeBinaryPreference{o(bp.id), o(bp. attribute). o(bp.value),
bp.preference, o(bp.referent)))))

66

5.3.3 Instantiation

An instantiation contains a match, a binding and a matching. The binding is
a consistent extension of the match’s binding that covers all of the variables
of the production’s right hand side. The instantiation’s right hand side is the
set of preferences made from instantiating the production’s makes under the
instantiation’s binding.

The instantiation also contains a matching. The matching is a correspon-
dence between all of the conditions of the production and new conditions. The
new conditions are instantiated copies of the production’s conditions under the
match’s binding; these record for chunking how the conditions of the productions
matched.

Instantiation
rmatch : Match
binding : Binding
matching : Condition — Condition
{ lhs : P Condition
i ths : P Preference

binding ConsistentExtension match.binding

dom binding =
(U(MakesComponents(match.production.rhs)) N Variable)
i dom match.binding

rhs = (MakesPreference(binding))(match.production.rhs)

matching =
Instantiate ConditionMatching(match.matching,
match.production.lhs ' ran Positive Condition, match.binding)

|
!
| lhs = ran matching
L

makelnstantiation constructs a new instantiation data structure schema given
a match and a condition matching. The instantiation’s binding, left hand side
and right hand side are all uniquely determined from the match and the condi-
tion matching.

makelnstantiation : Match x (Condition — Condition) — Instantiation

‘.

L

|V match : Match; matching : (Condition — Condition) e

| 3, binding : Binding; lhs : P Condition; rhs : P Preference | Instantiation e
makelnstantiation(match, matching) = 6Instantiation

67

5.4 Goal Operations and a Match’s Goal

Recognition memory reads the contents of goal memory and working memory to
determine the support that instantiations confer on preferences. The goal stack
is defined in Chapter 7, but is represented in working memory elements. This
section defines operations that read from working memory the state, operator
and ancestors of a goal, and determine the newest goal that a match matches
against.

The state of a goal is the value of the single working memory element of the
goal that has attribute state.

i GoalState : Identifier x P TME — Identifier

. Vg: Identifier; TM : P TME o

| 3,t: TM Nran WMETME e

[Zw: WME | w= WMETME™~(t) A
w.id = g A w.attribute = “STATE " A
w.contezt_acceptable _preference = No

e GoalState(g, TM) = w.value

The operator of a goal is the value of the single working memory element of
the goal that has attribute operator.

GoalOperator : Identifier x P TME - Identifier

i Vg: Identifier; TM : P TME o
' 3t:TM "ran WMETME e
Tw: WME | w= WMETME™~(t) A
w.id = ¢ A w.attribute = *OPERATOR " A
w.contezt_acceptable_preference = No
e GoalOperator(g, TM) = w.value

GoalAncestors returns the set of identifiers of ancestor goals of a goal.

i GoalAncestors : Identifier x P TME — P Identifier

' Vg: Identifier; TM : P TME o
GoalAncestors("NIL", TM) =2 A
(3 g2 : Identifier | WMETME (make WME (g, " OBJECT ", g5, No)) € TM »
GoalAncestors(g, TM) = {g2} © GoalAncestors(g,, TM))

68

The support an instantiation confers depends upon the deepest of the goals
that it matched, called the match’s goal. Soar constrains its productions to
match each root variable with an identifier of a goal or attribute impasse. A
root variable is one that appears only in the identifier field of the production’s
conditions.

I MatchGoals : Match — P Identifier
i MatchGoal : Match x P TME — Identifier
!

vm: Match o
MatchGoals(m) = m.binding(m.production.roots)

Ym: Match; TM : P TME o
i S g: MatchGoals(m)
: =~ (392 : MatchGoals(m) e g; # g A g € GoalAncestors(gs, TM)) »
| MatchGoal(m, TME) = ¢

5.5 Chunking

Chunking is Soar’s explanation based learning mechanism [RL86!. It watches
and records some of recognition memory’s and decide’s operation into two trace
memories. When decide fills a slot in working memory, it augments the work-
ing memory trace, TrW. TrW maps each working memory element instance to
the require or acceptable preference for the slot and value. After recognition
memory instantiates a match, it passes the instantiation to chunking. Chunking
creates a data structure called a trace from the instantiation. The trace records
the working memory element instances that were matched in the form of instan-
tiated conditions. The instantiated conditions are split into three groups. called
grounds, potentials and locals. Each preference instance of the instantiation is
marked as dependent upon this trace in the preference memory trace, TrP.

After chunking has created the instantiation’s trace, it determines if the
instantiation augments the match goal’s parent with new preferences. If so, the
results are used as a starting point for a search through the trace memories.
The trace generated conditions in this search are collected and variabilized to
produce a new left hand side for a production, and the results are vanabilized
to produce a new right hand side.

Chunking is presented in eleven sections.

e Section 5.5.1 Extracting Not Tests — instantiations test values from their
working memory elements for inequality. The resulting chunks must also
check these inequalities, so we extract the not tests of each instantiation,
store them in the traces and re-introduce them in Section 5.5.3 Not-ify.

e Section 5.5.2 Variabilize — this section generalizes the sets of instantiated

69

conditions that chunking finds into conditions by assigning variables to
each identifier.

Section 5.5.3 Not-ify — re-introduces not tests.

Section 5.5.4 Traces — specifies what is in a trace and provides utilities
for constructing them.

Section 5.5.5 Chunking’s State — this section defines chunking’s state
schema.

Section 5.5.6 Changing, Initializing and Resetting Chunking — we define
constraints on each step of chunking, as well as the standard initialization
and resetting for chunking.

Section 5.5.7 Defining Results — results are the preferences that an in-
stantiation adds to its parent goal, which are also the starting point for
chunking’s backtracing.

Section 5.5.8 Chunking an Instantiation — this section provides the oper-
ation to build the trace for an instantiation, and to start the search back
through the trace memones.

Section 5.5.9 Tracing Seeds, Locals and Grounded Potentials — this sec-
tion specifies the basic tracing operations.

Section 5.5.10 Tracing UnGrounded Potentials — this section defines how
to trace a special type of condition that may or may not be included in
the chunk’s condition.

Section 5.5.11 ChunkSP — this section specifies how chunking builds the
new chunk when backtracing has finished.

5.5.1 Extracting Not Tests

In this section, we specify how to extract the nots from a condition. The nots
are doubletons of identifiers that the condition constrained to be different. The
presentation is bottom up, starting with a not extractor for tests, then working
memotry element tests and then condition’s nots.

Not == {c¢1, ¢z : Identifier | c; # c2 @ {c1,¢2}}

70

Most types of tests have no nots, but a NotTest that matched against two
identifiers generates a not doubleton.

TestsNots : Binding x Test x Test — P Not

Vb : Binding; t,vt: Test o
I ((t € {BlankTest, YesTest, NoTest} = TestsNots(b,t,vt) = D) A
l (t & ran EqualityTest = TestsNots(b,t, vt) = &) A
! (t € ran NotTest =
; (3s:Z|s= NotTest™(t) »
| (({((s € Variable) A (((id Constant) & b)(s) € Identifier)
A (EqualityTest™ (vt) € Identifier)) =
‘ TestsNots(b, t, vt) = {{((id Constant) @ b)(s). EqualityTest™(vt)}}) »
! ({((s € Variable) A (((id Constant) @ b)(s) € Identifier)
1 A (EqualityTest™(vt) € Identifier)) =
} TestsNots(b, t, vt) = B)))) A
| (t < ran SameType Test = TestsNots(b, ¢, vt) = D) A
(t € ran Disjunctive Test = TestsNots(b,t, vt) = &) A
(t € ran Conjunctive Test =
| TestsNots(b, t, vt) =
U((At: Test o TestsNots(b. t, vt))(ConjunctiveTest™ (t)})}))

The nots of a working memory element test 1s the set of nots in its id,
attribute and value tests.

| WMETestsNots : Binding x WMETest x WMETest — P Not

v b : Binding; wt,w: WMETest o
WMETestsNots(b, wt. w) =
TestsNots(b, wt.id. w.id) U TestsNots(b. wt.attribute, w.attribute)
L TestsNots(b, wt.value, w.value)

We only extract nots from positive conditions, as the nots inside of a negative
condition are known not to have matched against any values. The nots of a
positive condition are the nots of its working memory element tests.

i ConditionsNots : Binding x Condition x Condition — P Not

Vv b : Binding; c.cm : Condition e
({c € ran Positive Condition =
ConditionsNots(b, c, cm) =
WMETestsNots(b, PositiveCondition™ (c),
PositiveCondition™ (cm))) A
(¢ € ran PositiveCondition =
ConditionsNots(b, c, cm) = J))

71

5.5.2 Variabilize

Variabilize generalizes Chunking’s instantiated conditions by replacing their
identifiers with variables. After chunking has finished its search through the
trace memory, it picks an assignment, a partial injection from identifiers to
variables, that covers all of the variables of its condition. It recurses down
into the tests of its conditions, replacing all occurrences of identifiers with their
variables.

Assignment == Identifier ~ Variable

A symbol is variabilized by returning the syvmbol if it is a constant and
otherwise by returning its value under the assignment.

| VariabilizeSymbol : T x Assignment — T

Ve:X; a: Assignment e
((c € Identifier =
~(Sv: Variable | v € ran a ® VariabilizeSymbol(c,a) = v)) ~
(¢ ¢ Identifier = VariabilizeSymbol(c, a) = c))

A test is variabilized by variabilizing its component symbols, or returning
the test if it 1s indivisible.

VariabilizeTest : Test x Assignment — Test

vt Test; a: Assignment e
((t € {BlankTest, YesTest, NoTest} _ ran Disjunctive Test
= VariabilizeTest(t, a) = t) A
(t £ ran EqualityTest =
Variabilize Test(t, a) =
Equality Test(VariabslizeSymbol(Equality Test™ (t), a))) »
{t € ran NotTest =
Variabilize Test(t, a) =
NotTest(VariabilizeSymbol(NotTest™(t), a))) A
| (t € ran SameType Test =
Variabilize Test(L, a) =
! Same Type Test(Variabilize Symbol(Same Type Test™ (L), a))}) A
(t € ran Conjunctive Test =
Variabilize Test(t, a) =
Conjunctive Test(((A st : Test o Variabilize Test(st, a))
{ConjunctiveTest™(t)]))))

72

A working memory element test is variabilized by variabilizing its id. at-
tribute and value tests. and keeping its acceptable preference test.

Vartabilize WAMETest : WMETest x Assignment — WMETest

Vw: WMETest; a: Assignment o
Variabilize WMETest(w,a) =
! (w3d : { Varmabilize Test(w.id, a)} o
\ (u attribute : { Variabilize Test(w.attribute, a)} o
{u value : { Variabilize Test(w.value, a)} o
(1 contezt_acceptable _preference : {w.contezt_acceptable_preference} o
6 WMETest))))

A condition is variabilized by variabilizing its recursive set of conditions or
its component working memory element test.

VarabilizeCondition : Condition x Assignment — Condition
VarwabilizeSet OfConditions :
P Condition x Assignment — Z Condition

v ¢ . Condition; a : Assignment o
((¢ & ran PositiveCondition =
VariabilizeCondition(c. a) =
Positive Condition(Variabilize WME Test(Positive Condition™ (c). a})) *
(¢ € ran NegativeCondition =
VariabilizeCondstion(c, a) =
Negative Condition(Variabilize WME Test(Negative Condition™ (c). a))) -
(¢ < ran NegativeConjunctiveCondition =
Vartabilize Condition(c. a) =
Negative Conjunctive Condition(
VariabilizeSet OfConditions(Negative Conjunctive Condition™(c}. a))))

v C : P Condition; a : Assignment
((C = 2 = VarabilizeSetOfConditions(C,a) = 2) A
(CzId=
(Sc:Ce
VariabilizeSetOfConditions(C,a) =
{ VarabilizeCondition(c, a)} - VariabilizeSetOfConditions(C ' {c}. a))))

Chunking cannot produce a set of instantiated conditions to variabilize be-
cause it must maintain the correspondence between the conditions and the work-
ing memory element instances that they matched. Chunking actually produces
a partial function from conditions to working memory element instances. This
is variabilized to produce both a matching for the chunk’s match and another
form for the chunk’s instantiation.

Variabilize ConditionMatching : (Condition — (WME x N)) x Assignment —
((Condition — (WME x N)) x (Condition — Condition))

v mm : (Condition — (WME x N)); a: Assignment o
((mm = & = VariabilizeConditionMatching(mm.a) = (2. 2)) »
(mm 22 >
(Zc:dommm e
| (S ewncee : { VarigbilizeConditionMatching({c} € mm, a)}
VariabilizeConditionMatchingimm, a) =
({ VariabilizeCondition(c. a) — mm(c)} first(cwnee).
{ VarabilizeCondition(c, a) — ¢} - second(cwnec))))))

74

The results of an instantiation are variabilized to produce the new right hand
side for the chunk. VariabilizePreferenceToMake maps a preference to a make.
and VariabilizeRHS maps a set of preferences to its set of makes.

Variabilize Preference ToMake : Preference x Assignment — Make

| Vp: Preference; a: Assignment o
((p € ran UnaryP =
(Z up : UnaryPreference | up = UnaryP~(p)
Variabilize Preference ToMake (p. a) =
make UnaryMake(VariabilizeSymbol(up.id, a),
VarabilizeSymbol(up.attribute, a),
VariabilizeSymbol(up.value, a), up.preference))) A
(p € ran BinaryP =
(3 bp : BinaryPreference | bp = BinaryP~(p) o
| Variabilize Preference ToMake(p. a) =
makeBinaryMake(VariabilizeSymbol(bp.id. a),
VariabilizeSymbol(bp.attribute. a).
VariabilizeSymbol(bp.value. a), bp preference.
VariabilizeSymbol(bp.referent, a)))))

VariabilizeRHS : P Preference x Assignment — P Make

v ps : P Preference; a : Assignment e
((ps = € = VarmabilizeRHS(ps.a) = 2) A
(ps 20 =
' (Zp:pse
VariabilizeRHS (ps. a) =
{ Variabilize Preference ToMake(p. a)}
VarabilizeRHS(ps \ {p}. a))))

5.5.3 Not-ify

When a trace for an instantiation is created, the not extractor saves the set of
doubletons of identifiers that the match’s condition constrained to be different.
As chunking searches through the memory of traces, it unions in the set of not
doubletons for each trace that it adds. When chunking is completed. not-ify
re-installs these nots into the new conditions.

Not-ifv is called after variabilize, so we map the set of doubletons of iden-
tifiers to a set of doubletons of variables, called VNots. The function Not-
sToVNots maps set of identifer nots to variable nots using the chunk’s assign-
ment.

VNot == {v;, v2 : Variable i v; # vy ® {v;,v2}}

! NotsToVNots : P Not x Assignment — P VNot

. VN P, Not; a: Assignment o

| NotsToVNots(N, a) =
: {n:N; i,j: Identifier | i =3 A n={1,5}e{a(i),a(s)}}

Not-ify’s functions all take three arguments: an object to not-ify, the set of
variable nots to install and the set of variables bound in the walk through the
conditions. As not-ify walks down the condition matchings, into the conditions,
working memory element tests and tests, it adds the variables that the conditions
have bound to the set of variables. As it descends, it also installs not tests for
those variable nots that have had both of their variables bound. Each not-ify
function returns the possibly augmented set of bound variables, and the possibly

reduced set of variable nots left to be installed. | .
As the domains and ranges of the not-ify functions must conveniently handle

triples of items. we extend the standard Z first and second to sequences of three
elements ({Spi89) 93).

=(X,Y,2]
| firsts: X x Y x2Z X
© seconds : X x Y xZ — Y

third3 : X x Y x 7 — 2

vz X, y:Y; z2:7 efirstg{(z,y,2)) =z
Vz:X;y:Y; z:Z eseconds((z,y,2))=y
' Ve:X; y:Y; 2:Z e thirdy((z,y,2)) =2

76

NotifvTest retutns most tests unmodified, but if a test is an equality for an
unbound variable it binds the variable by adding it to the variable set, and re-
curses to possibly add in an as of vet unassigned variable not. NotifrSetOfTests
sequences through a set of tests in non-deterministic order to install the variable
nots.

NotifyTest :

Test x P VNot x P Variable —

Test x P VNot x P Variable
NotifySetOf Tests :

P Test x P VNot x P Varigble —
| P Test x P VNot x P Variable

vt: Test; N:P VNot; V : P Variable o
{({t € ran EqualityTest =
(EqualityTest™(t) ¢ Variable =
| NotifyTest(t. N, V) = (t.N. V)) A
| (EqualityTest™~(t) & Variable =
! (Zv: Varable | v = EqualityTest™(t) o
! (Gn:Ne
venA(n\{})NV£C)=>
(3n:N; vy: Variable i n = {v, 2} Ava € Ve
(3r: {NotifyTest(Conjunctive Test({t, NotTest(v2)}). N . {n}. 1)} o
NotifyTest(t, N, V') = NotifyTest(firstz(r), seconds(r), thirdz(r})))) »
—(En:NevenA(n\{vth "V Q)
NotifyTest(t, N, V) = (t, N, V C {v})))) A
(t € ran Conjunctive Test =
(ZtNV : {NotifySetOf Tests(Conjunctive Test~ (), N, 1)} o
NotifyTest(t. N. V) = (Conjunctive Test(firsta(tNV')). seconds (tN17). thardz(tN1')))) ~
(t & (ran EqualityTest © ran Conjunctive Test) =
NotifyTest(t, N, V) = (t, N, V')))

. VYT :P Test; N . P VNot: V : P Variable o

| ((T = @ = NotifySetOfTests(T, N, V) = (T, N, V')) A
| (Tzo=>
| (3t:Te
|
l
|

(3tNV : {NotifyTest(t, N, V)} o

(2 TNV : { NotifySetOfTests(T \ {t}, second3(tNV), thirdy(tNV))} o
NotsfySetOfTests(T N, V) =

({t} © firstz3(TNV), secondy(TNV'), thirds(TNV }))))))

Notifv WMETest sequences through the id, attribute and value to install the
variable nots.

' NotifyWMETest : WMETest x P VNot x P Variable —
\ WMETest x P VNot x P Variable

VYw: WMETest; n: P VNot; b: P Variable o
NotifyWME Test(w,n,b) =
(w idnb : {NotifyTest(w.id,n, b)} o
(1 attributenbd : { NotifyTest(w.attribute, seconds(idnb), thirds(idnb))} e
(u attribute : {firsts(atiributend)} o
{(u valuenbd : { Notify Test(w.value, seconds(attribuiend), thirds(attributent))} e
(make WME Test(firsts(idnb), firstz(attributend),
; firstz(valuend), w.contezt_acceptable _preference),
| seconds(valuend), thirds(valuenb))))))

NotifyCondition unpacks conditions positive conditions to install variable
nots, but does not install nots in negated conditions.

NotifyCondition :
Condition x P VNot x P Variable — Condition x P VNot x P Variable

i
[
gi‘v'c : Condition; n: P VNot; b: P Variable o
|
|
|
|

((c € ran PositiveCondition =
(3 penb : { Notify WME Test(Positive Condition™(c), n,b)} »
NotifyCondition{c, n, b) =
(PositiveCondition(firsts(penb)),
seconds(pcnb), thirdy(penb)))) A
(¢ ¢ ran PositiveCondition =
! NotifyCondition(c, n, b) = (¢, n, b)))

78

Finally, NotifvConditionMatchings recurses through the two style of condi-
tion matchings to install all of the variable nots.

NotifyConditicnMatchings :
((Condition - (WME x N)} x (Condition —~ Condition)) x P VNot x P Variable —
({Condition — (WME x N)) x (Condition — Condition)) x P VNot x P Variable

¥ cun : { Condition — (WME x N)); cc : (Condition - Condition);
, N :P VNot; V :P Varigble o
({(cun=CAcc=0=>
NotifyConditionMatchings((cwn, cc), N, V) = ((&,0), N, V) A
(cun £ Aecc#0 =
‘ (Zc¢:domcwnndomecc e
i (ZveNV : { NotifyCondition(c, N, V)}
(3 enneeNV : { NotifyCondition Matchings(
({c} @ cun,{c} <€ cc), secondz(vcNV'), thirdz(veNV))} o
NotifyConditionMatchings((cwn.cc). N, V) =
((first(firstz(cnnccNV)) @ {firstz(veNV) — cwn(c)},
second(firsta(cnnccNV')) & {first;(veNT) — c}),
secondz(cnnccNV), thirdg(cnnceNV)))))))

5.5.4 Traces

Chunking builds a trace for each instantiation starting with the set of instan-
tiated conditions of the instantiation’s matching. The trace uses the contents
~{ temporary memory to segregate the conditions into three classes: grounds,
potentials and locals. It also records the not doubletons that the match con-
strained to be different and the instantiation’s matches matching.

The grounds of a trace are the instantiated conditions that were directly
matched from a parent goal through a chain of conditions. The potentials are
those conditions that are in the transitive closure of a parent of the match goal.
but were not directly matched from the parent. All of the non-ground negative
conditions are also added into the potentials. as they can not be traced through
because they never had a corresponding element in working memory, The locals
are the remaining conditions, and should be exactly those positive conditions
that are available only from the transitive closure of the match goal.

Grounds : P TME x Instantiation — P Condition
Potentials : P TME x Instantiation — P Condition

Locals : ® TME x Instantiation — P(ran PositiveCondition)
Nots . Instantiation — P Not

. vTM : P TME; 1: Instantiation e
‘ Grounds(TM 1) =
TClopdition(

Ofld copdition \
GoalAncestors(MatchGoal(1.match. TM), TM).

ran t.matching), ran t.matching)

vTM : P TME: i: Instantiation e
Potentials(TM .1} =

((ran :.matching ran PositiveCondition).

TClgondition(
f1d ¢ ondition|
(TCITpE(TM))(GoalAncestors(MatchGoal(r.match. TM). TM)).
ran i.matching). ran :.matching) * Grounds(TM.1))

7 TM P TME; 1: Instantiation e
Locals(TM . i) = ran t.matching ' (Grounds(TM.1) _ Potentials(TM.1))

71 : Instantiation e
Nots(+) = |J{c : dom i.matching o ConditionsNots(i.binding. c. i.matching{c))}

80

The Trace data schema holds the grounds. potentials, locals, nots and a
matching. The matching is a correspondence between the instantiated versions
of the positive conditions and the working memory elemeni instances that they

matched.

— Trace

| grounds, potentials, locals : P Condition
nots : P Not

| matching : Condition -~ (WME x N)

dom matching = (grounds _ potentials _ locals) M ran PositiveCondition

The function makeTrace is provided to simplify the creation of traces by
chunking.

' makeTrace : P TME x Instantiation — Trace

Y TM : P TME; :: Instantiation e
make Trace(TM, i) =

(1 grounds : { Grounds(TM, 1)},
potentials : { Potentials{(TM . i)};
locals : {Locals{ TM , i)},
nots : {Nots(i)};
matching : {i.match.matching} ¢

6 Trace)

The components of a trace is the components of its conditions, nots and the
components of the working memory element instances that it matched.

TracesComponents : Trace — P T

[

Vi: Trace o
TracesComponents(t) =
! [J(ConditionsComponents (t.grounds U t.potentials U t.locals))u
‘ U t.notsu
! U first {ran matching)

5.5.5 Chunking’s State

ChunkingTrace
Condition

Chunkinglnitial ChunkingStartTracing ChunkingTrace
State ConditionState
Chunking S~ I
Initialize ChunkingFinish
. Chunkinglgnore
Chunking InstantiationInTop ChunkingTrace ChunkingStartTrace
NoResults Goal Ungrounded UngroundedPotentials

Potentials Done

TraceUngrounded
PotentialsState

ChunkingTrace ChunkingSki
UngroundedPotential Ungrounded%otegtjal

ChunkingFinished
State

Figure 5.1: Chunking’s State Machine

82

Chunking’s state machine has only four states, but has the most complicated
state schema of any of Soar’s state machines.

ChunkinglInitialState — chunking starts in this state.

ChunkingTraceConditionState — traces through the local conditions.

ChunkingTraceUnGroundedPotentialsState — traces through all of the
ungrounded potentials, one at a time.

ChunkingFinishedState — chunking finishes in this state.

ChunkingState ::= ChunkinglnitialState
Chunking TraceConditionState
| Chunking Trace UnGroundedPotentialsState
ChunkingrinishedState

When chunking processes an instantiation. it may or may not produce &
chunk. depending upon the results of the instantiation’s right hand side. If it
does produce a new chunk, then it returns the new instantiation for that chunk
so that preference phase can process it. The ChunkingResult type is used to
inform the preference phase that chunking is returning a new instantiation.

ChunkingResult ::= Newlnstantiation Nolnstantiation

Soar is actually viewed as continuously learning from its operation. How-
ever, in practice Soar’s learning mechanism is the most difficult part of Soar
to use. Chunking is difficult to use for a variety of reasons: it is rather com-
plicated so users find it diffi~ult to understand. it can create expensive rules
which prohibitively degrade performance ({Tam91}). it has some known over-
generalization problems ({LCAS90], 70, 73, 74), and it has yet to be well inte-
grated with our theoretical framework ~ the problem space computational mode]
(INYL™91).

For convenience we allow Soar users to turn learning partially off in two
ways. The chunking state schema has a switch learn of type Learn. When learn
is off or if chunking backtraces through a local goal’'s * QUIESCENCE * element.
a chunk is learned but it is not variabilized and not-ified. These internal chunks
act like restricted productions: they can match only one sequence of elements,
they confer support on their resulting preferences, and they are guaranteed to
be very cheap to match. When an internal chunk’s single instantiation retracts.
Soar deletes the production from production memory as it is never likely to
match again.

Learn ::= On ' Off

Chunking shares six memories with other modules:

83

SPM — the set of productions

e TM — temporary memory

e IS — instantiation memory, the set of matches that have been instantiated

WM — working memory
PM — preference memory

GM — goal memory and

by the preference phase.

Chunking

SPM : PSP

TM : P TME

WM : P WME

PM : P Preference

GM : P Identifier

IS : P Instantiation

WM# : WME - N

PM# : Preference =+ N

maz __preference, maz_wme : N

TrP : (Preference x N) x Identifier + Trace
TrW : (WME x N) x Identifier — (Preference x N)
learn : Learn

instantiation : Instantiation

goal : Identifier

results : P Preference

seeds : P Preference

grounds, potentials, ungrounded _potentials : P Condition
locals : P(ran PositiveCondition)

nots : P Not

matching : Condition — (WME x N)
chunking_state : ChunkingState
chunking_result . ChunkingResult

goal € GM

dom WM# = WM

dom PM# = PM

(first 5 second){TrP) C GM
(first s second)(TrW) C GM

Chunking introduces four new memories of indefinite extent.

84

e TrP — the trace memory for preferences.
e TrW — the trace memory for working memory elements.

¢ WM # — a numbering function that distinguishes the instances of each
working memory element in memory.

PM # — a numbering function that distinguishes the instances of each
preference in memory.

WM # and PM # are partial injections that provide a way for chunking
to distinguish between two different elements that were in memory at differ-
ent times. The numberings were defined in this section because only chunking
must actually distinguish between the instances of memory elements. As prefer-
ence phase generates new preferences, and decide and 1O generate new working
memory elements they extend the numbering to give each new element a new
number. We chose this numbering function representation instead of giving
each working memory element and preference a number component because it
allowed us to still use the standard set theoretic operations, instead of having
to define our own little set theory for just sets of WMEs and Preferences.

TrP records for each preference. in each goal, the trace that generated that
preference instance. Similarly, TrW records for each working memory elément
instance, in each goal, the acceptable or require preference instance that was
in memory when decide added the working memory element instance. The
invariants on the chunking schema require that the traces are only for current
goals. The specification would be more accurate if the trace memories were
explicitly contracted when goals are popped. but this simpler data invariant
describes the intent without making the impasser’s already large operations
larger.

Chunking holds a dozen other pieces of state for use during its state ma-
chine’s execution.

* instantiation — the instantiation that preference phase has passed to
chunking.

e goal — the match goal of the instantiation.
e results — the results of the instantiation.

e seeds — the seeds, starts out as the set of results but is deleted as each
result backtraced.

e grounds. potentials. locals — the grounds. potentials and locals set of
chunking's search through the trace memories.

e nots — the nots of chunking’s search.

85

e matching — the matching that maps chunking’s conditions {grounds, po-
tentials and locals) to the working memory instances they matched.

e chunking_state — the state counter.

o chunking_result — a flag that informs the preference phase ifit is receiving
a new instantiation back that it should calculate support from.

¢ ungrounded_potentials — the set of ungrounded potentials that chunking
must backtrace one step.

5.5.6 Changing, Initializing and Resetting Chunking

When chunking runs, it does not modify the contents of temporary memory. If
it changed temporary memory then the calculations for the traces of instantia-
tion from the same parallel preference phase would have ordering dependencies.
We define A Chunking to emphasize that chunking does not modify temporary
memory and that it adds to the contents of production memory.

— A Chunking
Chunking
| Chunking’

Y TM = T™
SPM C SPM'

86

InitChunking specifies legal initial states for chunking.

— InitChunking
{ Chunking

TP =02
YW =0
results = O
seeds = O

grounds = potentials = &

¢ locals = 2
nots = &
matching = &

chunking_state = ChunkingFinishedState
maz _preference = 0

i maz_wme = 0

Chunkinglnitialize initializes chunking by placing it in the initial state.

— Chunkinglnitialize
A Chunking

chunking_state = ChunkingFinishedState
I results = O
seeds = 7

grounds = potentials = O

locals = @
nots = @
matching = @

| chunking_state’ = ChunkingInitialState

When chunking is externallv reset, it must have all of its memories for the
current search through trace memory emptied.

ChunkingReset
A Chunking

chunking_state’ = ChunkingFinishedState
results = &

!

| seeds = O

grounds = potentials = @

 locals = @
| nots = ©
! matching = &

5.5.7 Defining Results

When an instantiation modifies the transitive closure of a goal, it is said to add
results to that goal. The results are the preferences that the instantiation would
make available when its right hand side’s preferences are added in isolation to
preference memory. These result preferences are used as the starting point. or
seeds. of chunking’s search through trace memory.

 Results : Identifier x Instantiation x P TME — P Preference

v g : Identifier: 1 : Instantiation; TM : P TME o
= TMplusRHS : P TME TMplusRHS = TM _ Preference TME {1.Ths! o
Results(g.1. TM) =
Preference TME™ {(Ofld pg p ((TCIppp(TMplusRHS))({g}). TMplusRHS)
\(Ofldppp(TCIpp(TM)({g}). TM))) " ran Preference TME]

5.5.8 Chunking an Instantiation

Chunking does one of three things with each instantiation: starts tracing it.
skips it because it is in the top goal, or skips it because it generates no results.

88

If the instantiation has results. ChunkingStartTracing makes a trace for
it. and initializes the search through the backtrace memories from the trace’s
components.

ChunkingStart Tracing
A Chunking

chunking_state = ChunkinginitialState
goal' = MatchGoal{instantiation.match, TM)
TrP' = TrP&®

{p : instantiation.rhs e
((p. PM#(p)), goal) — make Trace(TM . instantiation)}

. 3g:GM

| “make WME (goal’,” OBIECT ", g, No) € WM A

‘ Results(g, instantiation. TM) £ O o
(results’ = Results(g, instantiation, TM) A
seeds’ = results’)

-
L
|
|

grounds’ = Grounds(TM, instantiation)

| potentials’ = -Potentials(TM , instantiation)
| locals' = Locals(TM, instantiation)

nots' = Nots(instantiation)

matching' = instantiation.match.matching

chunking_state’ = ChunkingTrace ConditionState

If the match goal of the chunk is the top goal. then it can not give any resuits
to a parent goal. This makes it uninteresting to the chunker, so it does not need
to store a trace. Chunking finishes and sets the results flag to tell preference
phase that no new instantiation was generated.

— ChunkinglgnorelnstantiationInTopGoal
" AChunking

chunking_state = ChunkinglnitialState

~(Z9g: GM o
make WME{ MatchGoal(instantiation.match. TM)," OBJECT *, g. No)
€ W',W)

chunking_result’ = Nolnstantiation

chunking_state' = ChunkingFinishedState

89

If the trace has no results, then chunking builds the trace for its preferences
and returns to preference phase.

ChunkingNoResults
A Chunking

l chunking_state = ChunkinglnitialState

dg: GM | make WME (goal,” OBJECT *,g,No) € WM o
Results(g, instantiation, TM) = O

TrP' = TrP&®
{p : instantiation.rhs o
((p, PM#(p)), goal) — makeTrace(TM , instantiation)}

}
i chunking_result’ = Nolnstantiation
1

chunking_state’ = ChunkingFinishedState

When Decide fills out slots in working memory, it must augment the TrW.
It gives each element a trace that maps it, under the oldest goal that it is in the
transitive closure of, to the require or acceptable preference instance for it in
preference memory. The Owner function finds the oldest goal that an identifier
1s in.
Owner : Identifier x P Identifier x P TME — Identifier
| Vi:Identifier; GM : P Identifier; TM : P TME o
| Jg:GM 1€ TCM(g, TM) A

= (3 anc : GoalAncestors(g, TM) e 1 € TCM(anc, TM) o
Owner(:y, GM, TM) = ¢

TraceWME provides an operation for decide and io to use to augment the
working memory instance number and trace. As preference semantics processes
requires befor. acceptables, TraceWME favors requires over acceptable prefer-
ences.

90

Trace WME
A Chunking
w: WME

maz_wme' = maz_wme + 1
WM#' = WM# & {w — maz_wme'}
3p: PM |
p = makeUnaryPreference(first(w?).id, first(w?).attribute, first(w?).value, ' ") o
TrW' = Trw @ {((w, WM#'(w)), Owner(w.id)) — (p, PM#(p))}
~(3p:PM e
p = makeUnaryPreference(w.id, w.attribute, w.value, '!"))

A
Sp: PM |
p = makeUnaryPreference(w.id, w.attribute, w.value, "+ ") ®
TrW' = Tru @ {(w?, Owner(w.id)) — (p, PM#(p))}

Traceltems adds new traces for the items augmentation of impasses. The
items augmentations are traced back to the require or acceptable preference
that caused them to be considered for their slot.

b

Traceltems
A Chunking
W . P WME
1 : Identifier

maz_wme' = maz_wme - #W
Zf: W —» (maz_wme ~ 1. . maz_wme') e WM#' = WM# o f

= object, attribute : Identifier |
make WME (1, " OBJECT *, object) € WM A
make WME (i, ATTRIBUTE °, attribute) € WM o
W' = Truwd

{w: W; p: PM | p = makeUnaryPreference(object, attribute, w.value, + ") o
((w, WM#'(w)), Owner(w.id)) — (p, PM#(p))}&

{w: W; p: PM | p = makeUnaryPreference{object, attribute, w.value, !") o
((w, WM#'(w)), Owner(w.id)) — (p, PM#(p))}

5.5.9

Tracing Seeds, Locals and Grounded Potentials

The ChunkingTraceConditionState performs most of the seaich througn trace
memory. Its one composite operation, ChunkingTraceCondition, traces through
local conditions in one of seven ways.

91

o ChunkingTraceSeed — if a seed has a preference trace for the goal, then
follow it.

o ChunkingSkipSeed — if a seed does not have a preference trace for the
goal, then skip it.

o ChunkingTraceLocal — if a local’s working memory element has a trace,
then follow it.

e ChunkingSkipArchitectureGeneratedLocal — if a local matched an archi-
tecturally generated working memory element, skip it.

e ChunkingTraceQuiescenceLocal — if a local matched the goal’s quiescence
working memory element then add a quiescence condition to the grounds
set.

e ChunkingPotentializeLocal — if a local condition’s working memory ele-
ment does not have a working memory element trace for this goal, then
move it to the potential’s set.

o ChunkingTraceGroundedPotential — if there are no more locals, and a
potential’s condition is in the transitive closure of the grounds set, then
move it to the grounds.

The seed preferences are the starting point for chunking’s search through
trace memory. The seeds are processed first, and then the locals and finally
the potentials. If a seed has a preference memory trace, chunking follows it by
removing the seed from the seed set. and unioning the trace’s components into
it’s search memories.

— ChunkingTraceSeed
' AChunking

chunking_state = ChunkingTraceConditionState = chunking_state’

| Jg: seeds o
| 3t: Trace |t = TrP((s, PM#(s)), goal) o
! ((seeds’ = seeds \ {s}) A
| (grounds’ = grounds U t.grounds) A
| {potentials’ = potentials U t.polentials) A
" (locals’ = locals U t.locals) A
(nots’ = nots U t.nots) A
(

maiching’ = matching @ t.matching))

92

]

Chunking skips seeds that do not have a preference trace in the match goal.
They were generated in the parent goal and are in the transitive closure of the
results without being part of the resvits.

ChunkingSkipSeed
A Chunking

-

i
! chunkina_state = Chunking Trace ConditionState = chunking_state’

Js: seeds |

(3t: Trace | t = TrP((s, PM#(s)), goal)) o -
((seeds’ = seeds \ {s}) A

(grounds’ = grounds) A

(potentials’ = potentials) A

(

(

(

-

locals' = locals) A
nots’ = nots) A
matching’'-= matching))

Chunking’s basic step in the search is to backtrace through a local. The
local condition’s natched working memory element is chased through the work-
ing memory trace, and the resulting preference instance i1s chased through the
preference trace to arrive at a trace. This trace’s components are unioned into
the search memories, and the local is discarded.

— ChunkingTraceLocal
A Chunking

chunking _state = Chunking TraceConditionState = chunking_state’
seeds = &

S locals e
St: Trace |
t = TrP(TrW (matching(l), gc-'\, goa:) e
({grounds’ = grounds U t. gmunda)
: (potentials’ = potentials U t.potentials) A
f (locals’ = (locals U t.locals) \ {I}) A
' (nots’ = nots U t.nots) A
(matching’ = ({l; € matching) @ t.matching))

When decide constructs a goal or an impasse it represents it as elements
in working memory. ImpasseAttribute is the set of the attributes it uses to
represent goals and impasses.

| ImpasseAttribute : P Constant

Impasse Attribute =
{*PROBLEM-SPACE ", "STATE*," OPERATOR ", " OBJECT ",
"ATTRIBUTE ", "IMPASSE *, " CHOICES *, "ITEM *, * QUIESCENCE*
| ‘TYPE "}

All but the items working memory elements of these goals have no working
memory traces. Decide adds working memory traces that make the items depend
upon the preference instance for the require or acceptable preference that caused
decide to generate the impasse.

— ChunkingSkip Architecture GeneratedLocal
i A Chunking

chunking _state = ChunkingTraceConditionState = chunking_state’
| seeds =@

31: locals; w: WME
w = first(matching(l)) A
w.id € GM A
w.attribute € ImpasseAttribute \ {"ITEM "} A
w.contezt _acceptable _preference = No
((grounds’ = grounds) A
(potentials’ = potentials) A
(locals' = locals * {l}) A
(nots' = nots) A
(matching’ = {l} 4 matching))

94

The "QUIESCENCE ° goal working memory element is used to turn off
chunking for a goal that the user does not want to chunk. When the user
knows that the processing in a subgoal will generate a problem, she simply
makes one or more of the productions that fire in the subgoal match the goal’s
quiescence working memory element. When chunking backtraces through this
quiescence element, ChunkingTraceQuiescenceLocal traces it back to the quies-
cence element of the parent goal. When chunking has finished, the presence of
the quiescence augmentation in the grounds set tells chunking not to vanabilize
the rew chunk.

— Chunking TraceQuiescenceLocal
A Chunking

chunking_state = ChunkingTrace ConditionState = chunking_state’
seeds = &

2l locals; w: WME; g: GM |

; w = first(matching(l)) A

‘ w.id € GM A

w.attribute = * QUIESCENCE " A

i w.velue = "T" A

i w.contezt_acceplable_preference = No A

I make WME (goal,” OBJECT *, g, No) ¢ WM e
5 Jgc:

l {Positive Condition(

!

make WME Test(Equality Test(g),
Equality Test(* QUIESCENCE *),
EqualityTest(" T), NoTest))} o
Jqw : WME |
qu.id = g A qw.attribute = ' QUIESCENCE * A
qw.value = " T’ A qw.contezt_acceptable_preference = No e
' ((grounds’ = grounds U {gc}) A
! (potentials’ = potentials) A
(locals’ = locals \ {1}) A
i (nots’ = nots) A
: (matching' = ({I} @ matching) & {gc — (qu, WM#(quw))}))

When chunking traces back to a local that does not have an trace record
for the current goal, chunking makes the local a potential. A working memory
element that was accessible locally in a match but does not have trace for that
goal, has to have been brought down from a parent goal. For this local to be
accessible in the current goal, but not to have a trace record for the goal, it
must have been brought down as part of the transitive closure of an element
from a parent goal, which later had its parent goal link snapped. So chunking
adds it to the set of potentials as there will be a chain of conditions through
trace memory that will eventually ground out this local.

ChunkingPotentialize Local
A Chunking

chunking_state = Chunking TraceConditionState = chunking _state’
seeds = O

31 : locals !

1 = (2t: Trace ® t = TrP(TrW (matching(l), goal), goal)) o
! ((grounds’ = grounds) A

} (potentials’ = potentials U {I}) A

i (locals’ = locals * {I}) A
|

]

(nots' = nots) A
(matching’ = {l} € matching))

When there are no more seeds and locals to process, chunking adds the
potentials that are connected to the grounds into the grounds set.

— Chunking Trace GroundedPotential
A Chunking

| chunking_state = ChunkingTraceConditionState = chunking_state'
seeds = &
locals = @

3 gp : potentials |
gp € TClo,pndition!grounds, grounds U potentials) ™ potentials o
((grounds’ = grounds U {gp}) A
(potentials’ = potentials \ {gp}) A
(locals’' = @) A
(nots’ = nots) A
(matching’ = {gp} <€ matching))

96

ChunkingTraceCondition is a composite operation that groups the tracing
for locals and grounded potentials.

Chunking Trace Condition =
Chunking TraceSeed v ChunkingSkipSeed v
ChunkingTraceLocal v ChunkingSkip Architecture GeneratedLocal v
Chunking TraceQuiescenceLocal v ChunkingPotentializeLocal Vv
Chunking Trace GroundedPotential

5.5.10 Tracing UnGrounded Potentials

Chunking is not able to connect all of the potential conditions into the grounds
set. When the seeds and locals are empty. and no potentials that are connected
to the grounds set remains. CrunkingStartTraceUnGroundedPotentials moves
chunking into the trace ungrounded potentials state. This state backtraces one
step through all of the positive potentials. It saves all of the entering potentials
in the ungrounded_potentials set. so that it can augment the potentials set with
the potentials of newly backtraced traces.

- ChunkingStart Trace UnGroundedPotentials
. A Chunking

J chunking_state = ChunkingTrace ConditionState
I seeds = @
locals = &

— (= gp : potentials o
9p € TClpndition(grounds, grounds w potentials) ™ potentials)

potentials’' = &
ungrounded_potentials’ = potentials

chunking_state’ = Chunking Trace UnGroundedPotentialsState

97

Each positive potential with a trace is backtraced in the standard way.

— Chunking Trace UnGroundedPotential
| A Chunking

chunking_state = Chunking Trace UnGroundedPotentialsState = chunking_state’

3t: Trace | t = TrP(Tr W (matching(gp), goal), goal) e
((grounds’ = grounds U t.grounds) A
(ungrounded_potentials’ = ungrounded _potentials ' {gp})
(potentials’ = Ut.potentials) A
(locals' = locals U t.locals) A

| (nots’ = nots _ t.nots) A
| (matching’ = {gp} < matching))

! 3 gp : ungrounded_potlentials N (ran PositiveCondition) e
!

Chunking skips positive potentials that don’t have a trace.

— ChunkingSkip UnGroundedPotential
! A Chunking

‘
I

chunking_state = ChunkingTrace UnGroundedPotentialsState = chunking_state’

= (2t : Trace o t = TrP(TrW (matching(gp), goal), goal)) e
((grounds’ = grounds) A
(ungrounded_potentials’ = ungrounded_potentials \ {gp})
(potentials’ = potentials) A
{locals’ = locais) A
(nots’ = nots) ~
(matching’ = maiching))

i
1 3 gp : ungrounded_potentials N (ran Positive Condition) !
|
|
|

98

When all of the positive potentials have been traced, chunking returns to the
trace condition state to backtrace the newly generated locals. The potentials
collected while backtracing the positive ungrounded potentials are unioned with
the remaining negated ungroundable potentials.

— ChunkingTrace UnGroundedPotentialsDone
| A Chunking

‘ chunking_state = ChunkingTrace UnGroundedPotentialsState

ungrounded_potentials\
{p : ungrounded_potentials .
~ (3t : Trace o t = TrP(TrW (matching(p), goal), goal))}
(ran Positive Condition) = &

potentials’ = potentials U ungrounded_potentials
ungraunded-ﬁotentials' =2

chunking_state’ = Chunking TraceConditionState

99

5.5.11 ChunkSP

When the seeds, the locals and all of the positive potentials and the groundable
negative potentials have been traced, backtracing is done and chunking zen-
erates the new production. If learning is on and the grounds do aot match a
quiescence test, then chunking variabilizes the grounds and results to builds the
new production. Chunking also constructs the match that the matcher would
generate, and uses this in constructing an instantiation for the new chunk, which
it adds to the instantiation set. The new instantiation is handed back to the
preference phase. Preference phase calculates the new instantiation’s support,
and then sends it back into chunking to have its results chunked up the hierarchy
of goals.

— ChunkingFinishLearnOn
A Chunking

j chunking_state = ChunkingTraceConditionState
seeds = &

locals = O

potentials M ran PositiveCondition = O

learn = On

EqualityTest™ (qc.id) € GM A
EqualityTest™ (gc.attribute) A= " QUIESCENCE * A

|
|
|
\
\
' = (2 gc : PositiveCondition™ (grounds N ran PositiveCondition| e
i
|
| EqualityTest™ (gc.value) = T ")

|

TClcondition{grounds, grounds U potentials) N potentials = €

Ja: Assignment; name : Symbol e
= negativeconditions : { VariabilizeSetOfConditions(grounds \ ran PositiveCondition,a)} »
= cwece : { NotifyConditionMatchings(
Variabilize ConditionMatching(grounds < matching, a),
‘ NotsToVNots(nots, a), D)} e
. 3 match_matching : {first(firstz(cwce))} o
{ Jinstantiation_matching : {second(firstz{cwee))} o
| Jsp: SP | sp = makeSP(name, negativeconditions U dom match_matching,
| VariabilizeRHS(results, a)) o
! Sm: Match | m = makeMatch(sp. match_matching) o
31 : Instantiation | 1+ = makelnstantiation(m. instantiation_matching) ¢
i (SPM' = SPM U {sp} A
| Is'=ISu {i})

I chunking_result = Newlnstantiation

chunking_state’ = ChunkingFinishedState

100

If learning is off or quiescence is matched, chunking creates the new match
and instantiation without variabilizing it and returns the instantiation to pref-
erence phase.

— ChunkingFinishLearnOff
A Chunking

chunking_state = ChunkingTraceConditionState

learn = Off v

(5 gc : PositiveCondition™ {grounds N ran Positive Condition) e
EqualityTest™(gc.:d) € GM A

! EqualityTest™ (gc.attribute) A= * QUIESCENCE® A

! Equali'yTest™ (gc.value) = " T ")

3m : Match | m = makeMatch(sp, grounds <| matching) o
31 : Instantiation | i = makelnstantiation(m, instantiation_matching) o
(SPM’' = SPM U {sp} A
IS' = IS s {i})

| chunking_state' = ChunkingFinishedState

5.5.12 Step Chunking

ChunkingStep groups all of the operations of chunking together into one oper-
ation that drives the entire state machine.

ChunkingStep =
ChunkingStart Tracing vV ChunkinglgnorelnstantiationInTopGoal
ChunkingNoResults v Chunking TraceCondition v
ChunkingStart Trace UnGroundedPotentials v
ChunkingTrace UnGroundedPotential v ChunkingSkipUnGroundedPotential v
Chunking Trace UnGroundedPotentialsDone v
ChunkingFinishLearnOn v ChunkingFinishLearnOff

5.6 Slots

The modules of Soar all view preference and working memory, as being par-
titioned into sets of preferences for individual slots. Each slot is an identifier,
symbol pair.

Slot == Identifier x Symbol

101

The preferences for a slot are those that hold the identifier of the slot in
their id component, and the symbol of the slot in their attribute component.

Similarly, it views working memory as partitioned into sets of working mem-
ory elements for slots. The slot’s working memory elements are those that hold
the slot’s identifier in their id component, and the symbol in their attribute,
and are not context acceptable preferences.

SlotsWMEs : Slot x P WME — P WME

¥ slot : Slot; WM . P WME »
Slots WMEs(slot, WM) =
{w: WM | w.id = first(slot) A
w.attribute = second(slot) A
w.contezl_acceptable_preference = No}

5.7 Recognition Memory’s State

Recognition memory’s state schema contains a state counter for preference phase
and 12 memories, some of which are shared with other modules and some of
which are local to recognition memory.

102

The preference phase has seven states.

1. PPhaselnitialState — the preference phase starts execution from here.

2. PPhaseRetractInstantiationState — this state removes the instantiations
from the instantiation set which no longer have a match that is consistent
with working memory.

3. PPhaselnstantiateMatchState — this state instantiates matches that do
not yet have an instantiation.

4. PPhaseConferSupportState — after a new match has been instantiated,
this state calculates the right hand side preference’s support, adds the
support to the support memories and collects the O-supported reject pref-
erences.

5. PPhaseChunkingState — preference phase steps the execution of chunking
from this state.

6. PPhaseORejectState — any new reject preferences with O-support are
processed to remove matching preferences from preference memory and
the support memories.

7 PPhaseChangePMState — preference phase changes preference memory
to match support memory.

8. PPhaseFinishedState — when preference phase finishes, it rests in this
state.

PreferencePhaseState ::= PPhaselnitialState
! PPhaseRetractInstantiationState
| PPhaselnstantiateMatchState
| PPhaseConferSupportState
| PPhaseChunkingState
| PPhaseORejectState
| PPhaseChangePMState
| PPhaseFinishedState

Recognition Memory’s state shares six memories with other modnles of Soar.

e WM — the set of working memory elements. WM is shared with IO and
Decide.

o PM — the set of preferences. PM is shared with Decide.
e TM — essentially a union of working memory and preference memory.

TM is shared with Decide.

103

PPhaseStart

PPhase Rertractinstantianon PPhaseRetract PPhaseRetract
InitialState InstantiationState Instantiation
A PPhaseStart
InstantiateMatch

PPhaselnstantiate

MatchState
PPhaseChunking

Nolnstantiation

PPhase
ConferSupport

PPhase
StartOReject
InitializePPhase PPhaseChunking PPhaseConfer)
State SupportState
PPhaseChunk_in g
PPhaseStep ReturnedInstantiation
Chunking
PPhaseOReject
State
PPhase
: PPhaseStart
ORejectPreferences ChangePM
PPhaseFinished PPhase
State FinishPPhase ChangePMState
PPhaseRemove
Preference
PPhaseAddPreference

Figure 5.2: Preference Phase State Machine

104

e IdentifierTable — the set of identifiers in use in any part of Soar. The
IdentifierTable is global to all modules of Soar.

o GM — is the set of goal identifiers. GM is read from Decide.

e changed_slots — the set of slots changed by preference phase. This is read
and deleted by decide to tell which slots decide should consider.

—RM

WM P WME
PM : P Preference
TM : P TME

Identifier Table : P Identifier
. GM : P Identifier
| SPM : PSP
MS : P Match
IS : P Instantiation
ISM : Preference — Instantiation
OSM . Preference — Identifier
ORM : P Preference
instantiation : Instantiation
pphase _state : PreferencePhaseState
changed_slots : P Slot
Chunking

l MS = {m : Match | m.production ¢ SPM /\Ma.tches%%?h (m, " VM., WM#) A

! m.binding {m.production.roots) C GM C IM}
" ran OSM C GM

SPM £ &
TM = Preference TME{PM| . WMETME (WM)|
[Yp:ORMe

p € ran UnaryP A (UnaryP ™~ (p)).preference = " -~

Recognition memory holds six local memories.
e SPM — is the set of productions in Soar.

e MS — the set of current matches for the productions. Each match must be
for a produc:ion in production memory. must match the current contents
of working memory, and all of the production’s root variables must be
bound to the identifiers of goals or impasses.

e IS — the set of instantiations that preference phase has created from the
matches.

105

e ISM — the I-support memory. This memory is a relatioa from preferences
to the instantiations that are currently supporting them.

o OSM — the O-support memory. This memocry is a relation from prefer-
ences to the identifier of existing goals that had an instantiation I-support
them.

e ORM - a memory of the O-supported reject preferences that preference
phase has created while instantiating matches that have yet to be pro-
cessed.

When recognition memory is initialized. all of its memories are empty except
for the production memory. The production memory must not be empty so that
Soar has some long term memories to use in performing its task; otherwise Soar
would impasse indefinitely.

__InitRM
RM

pphase _state = PPhaseFinishedState

I£=0
ISM=0
. OSM =@
. ORM =0
wM=2
PM =0
5PM = @

5.8 Support

Support is Soar’s basic mechanism for determining the extent of preferences
in preference memory. Support comes in two flavors: instantiation support,
I-support. and operator support. O-support. Whenever an instantiation is cre-
ated, it gives instantiation support to each of the preferences in its right hand
side. When the instantiation is retracted, it withdraws its instantiation support
from each of its preferences. Whenever instantiations that are creating, modify-
ing or applying operatots create a preference whose identifier is in the transitive
closure of their match goal’s states or operators, they confer operator support
to these preference. The operator support has the extent of the match goal of
the instantiation, and so is not retracted when the instantiation retracts.

106

This section defines the operators matched by an instantiation, when an
instantiation is creating, modifying or applying an operator, and then combines

these into a definition of when an instantiation O-supports a preference.
An instantiation matches an operator if it matches a goal’s operator slot or

operator acceptable preference.

InstantiationsL HSOperators : Instantiation x P TME — P Identifier

Y1 : Instantiation; TM : P TME e
3¢ : Identifier | g = MatchGoal(i.match, TM) o
InstantiationsL HSOperators(i, TM) =
{o : Identifier | make WME (g, OPERATOR ", 0, No) < i.match.lhs v
make WME (g, OPERATOR ", 0, Yes) € i.match.lhs}

An instantiation creates an ope.ator if it makes an acceptable or require
preference for an operator slot of a goal.

InstantiationsRHS Operators : Instantiation x P TME — P Identifier

|
i

| v1i: Instantiation; TM : P TME e

’ InstantiationsRHSOperators(i, TM) =
1 {0 : Identifier |
|

|

|

|

1

make UnaryPreference(MatchGoal(i.match, TM),
"OPERATOR ", 0, ~") € i.rhs v

make UnaryPreference(MatchGoal(i.match, TM),
*OPERATOR ", 0,'!") € 1.rhs}

An instantiation only confers operator creation support if its match matched
a working memory element whose identifier is in the transitive closure of the
match goal’s state.

OperatorCreationLHS : P TME — P Instantiation

Y TM : P TME; i : Instantiation e
1 € OperatorCreationLHS(TM) <
(5 g : {MatchGoal(i.match, TM)} »
(25 : {GoalState(g, TM)} o

(Ofld e TCLrpyp(TM))({s}), TM)N
WMETME (i.match.lhs) # D)))

107

An instantiation’s right hand side only confers operator support on a prefer-
ence if the preference’s identifier is in the transitive closure of an instantiation’s
operator over temporary memory and the instantiation’s right hand side.

OperatorCreationRHS : P TME — (Instantiation — Preference)

VY TM : P TME, i: Instantiation; p : Preference
((#, p) € OperatorCreationRHS(TM)) <=
(Preferencesld(p) €
(TCITpE(TM U Preference TME (i.rhs)))
(InstantiationsRHS Operators(i, TM)))

An instantiation confers operator creation support on a preference if its
left hand side is an operator creation and the right hand side confers operator
creation support on the preference.

OperatorCreation : P TME — (Instantiation — Preference)

!
|
’\ Y TM : P TME, i: Instantiation; p : Preference o

‘ (¢, p) € OperatorCreation(TM)

T < 1 € OperatorCreationLHS(TM) A

| (2, p) € OperatorCreationRHS(TM)

An instantiation can confer operator modification support if its left hand

side matches an operator and its match matches a working memory element of
the state.

! OperatorModificationLHS : P TME — P Instantiation

Y TM . P TME; 1 : Instantiation e
; i € OperatorModificationLHS(TM) <
| (3¢ : {MatchGoal(i.match, TM)} o
" (S s : {GoalState(g, TM)} o
‘ ((OHHdrpE(TCITME(TM)({s}), TM)"
| WMETME (i.match.lhs)) # @) A
| (InstantiationsL HSOperators(i, TM) # Q)))

108

An instantiation’s right hand side confers operator modification support on
a preference if its identifier is in the transitive closure of a matched operator.

OperatorModificationRHS : P TME — (Instantiation — Preference)

t
f YV TM : P TME; i: Instaniiation; p: Preference o
(#, p) € OperatorModificationRHS(TM) <
I (3 g : {MatchGoal(i.match, TM)} o
! Preferencesld(p) €

: (TCIppmE(TM U Preference TME (i.rhs)))
: (InstantiationsL HSOperators(i, TM)))

An instantiation confers operator modification support on a preference if the
left hand side is an operator modification left hand side and the right hand side
confers operator modification support on the preference.

OperatorModification : P TME — (Instantiation — Preference)

YTM : P TME; i : Instantiation; p : Preference o
! {z, p) € OperatorModification(TM) <
! 1 € OperatorModificationLHS{TM) A
(2, p) € OperatorModificationRHS(TM)

An instantiation can confer operator application support if its left hand side
matches its match goal’s operator slot and a working memory element in the
transitive closure of the match goal’s state.

Operator ApplicationLHS : P TME — P Instantiation

v TM : P TME: 1: Instantiation e
1 £ OperatorApplicationLHS(TM) <

! (Z g : {MatchGoal(i.match, TM)} o
1 (Zs: {GoalState(g, TM)}
! (3 0 : {GoalOperator(g, TM)}
i make WME (g, OPERATOR’, 0, No) € i.match.lhs A
i (OﬂdTME((ATCITME(TM))({s}), TM)n
, WMETME (i.match.lhs) # O))))

109

An instantiation can confer operator application support on a preference if
the preference’s identifier is in the transitive closure of the state.

| OperatorApplicationRHS : P TME — (Instantiation — Preference)

Y TM : P TME,; i: Instantiation; p : Preference
(3, p) € OperatorApplicationRHS(TM) <
(39 : {MatchGoal(i.match, TM)} o
| (3¢ : {GoalState(g, TM)} o
\ Preferencesld(p) € TCITpg(TM U Preference TME {i.7hs))({s}))))

An instantiation confers operator application support on a preference if the
left hand side is an operator application left hand side and the right hand side
confers operator application support on the preference.

| OperatorApplication : P TME — (Instantiation — Preference)

v TM : P TME; i : Instantiation; p : Preference o
(i, p) € OperatorApplication(TM) &
i £ OperatorApplicationLHS(TM) A
(i, p) € OperatorApplicationRHS(TM)

An instantiation confers operator support on a preference if the instantiation
confers operator creation, modification or application support on the preference.

OSupport : P TME — (Instantiation «— Preference)

|
: VY TM : P TME, i: Instantiation; p : Preference o
{2, p) € OSupport(TM) &
(3, p) € {OperatorCreation(TM)
OperatorModification(TM U
OperatorApplication(TM))

5.9 Preference Phase Operations

The preference phase has eight states: an initial state, a final state, a state for
retracting instantiations, a state for instantiating matches, a state for conferring
support, a state for chunking an instantiation, a state for O-rejecting preferences
and a state for changing the contents of preference memory based upon the
contents of the support memories. This section specifies the operations of these
states in seven sections.

110

5.9.1 Initialize, Finish, Reset and Quiescence

The preference phase waits in its final state until it is initialized with the PPha-
selnitialize operation.

— PPhaselnitialize
ARM

; pphase _state = PPhaseFinishedState
L
| pphase_state’ = PPhaselnitialState

The PPhaseReset operation resets the preference phase state machine. The
set of waiting O-reject preferences is emptied so that the next execution of the
preference phase does not reject things that no longer have O-supported rejects.

— PPhaseReset
i ARM

pphase _state’ = PPhaseFinishedState
ORM' =¢C

The top level state machine checks the state predicate, Quiescence, before
it allows the preference phase to run. The system is quiescent if there is no
Instantiation waiting to be retracted, or match waiting to be instantiated.

Quiescence
—
| RM

i —(3::15 e 1.match ¢ MS)
- (3m: MS e~ (3i:IS e1.match = m))

5.9.2 Retracting Instantiations

Preference phase begins its execution by moving from the initial state into a
state that retracts instantiations.

PPhaseStartRetractInstantiation
" ARM

pphase_state = PPhaselnitialState

|
[
l pphase_state’ = PPhaseRetractInstantiationState

111

When there exists an instantiation in instantiation memory whose match
1s no longer in the match set, then PPhaseRetractInstantiation removes the
instantiation from the instantiation set. The instantiation support for each
preference of the right hand side is removed from I-support memory.

PPhaseRetractInstantiation
ARM

—

1
|
|

pphase_state = PPhaseRetractInstantiationState = pphase._state’
. Z1:1S {1 match g MS o

| (I§' = IS\ {i} A

? ISM' = ISM \ {p :i.ths e (p — 1)})

5.9.3 Instantiate Match

When there is no instantiation in the instantiation set whose match is no longer
satisfied, preference phase moves into the instantiate match state.

—. PPhaseStartInstantiate Match
. ARM

pphase_state = PPhaseRetractinstantiationState
- (34: IS s 1.match ¢ MS)
pphase_state’ = PPhaselnstantiateMatchState

112

PPhaselnstantiateMatch selects a match from the match set that does not
yet have an instantiation and instantiates it. An instantiation is created and
added to the instantiation memory, and recognition memory’s instantiation vari-
able is set to this new instantiation. Each newly generated preference is given
a new instance numbering in PM #

PPhaselnstantiate Match
i ARM
i

pphase _state = PPhaselnstantiate MatchState

| Zm:MS |~ (3i:ISeimatch=m)e
i (31 : Instantiation; b : Binding |
{ t.match = m A
l 1.lhs = m.production.lhs A
i.matching =
Instantiate ConditionMatching(m.matching,
m.production.lhs \ ran PositiveCondition, m.binding) A
b ConsistentExtension m.binding A
b Covers (| J(MakesComponents (m.production.rhs)) . Variable) A
i.binding = b A
i1.rhs = (MakesPreference(b))(m.production.rhs) e
tnstantiation’ = 1 A
IS'= 1S {i} A
2 new_preferences : P Preference | new_preferences = (i.rhs\ PM) o
maz _preference’ = maz_preference ~ #new_preferences o
3f : new_preferences »» ((maz_preference + 1) .. maz_preference’) o
PM# = PM# 6 f)

prhase _state’ = PPhaseConferSupportState

113

5.9.4 Conferring Support

The PPhaseConferSupport operation adds support to the I-support memory for
each right hand side preference, and if the preference is O-supported then it is
given O-support for the match goal. Each reject preference that has O-support
is added to the memory of O-reject preferences. After PPhaseConferSupport
operates, chunking is stepped for the new instantiation.

— PPhaseConferSupport
ARM

pphase_state = PPhaseConferSupportState

7
!
'1 ISM' = ISM U {p : instantiation.rhs e (p, instantiation)} A
i OSM' = OSMU
{p : instantiation.ths |
;' (instantigtion, p) € OSupport(TM) e
: (p. MatchGoal(instantiation. match, TM))} A
! ORM' = ORMU
{p : instantiation.rhs N ran UnaryP |
(UnaryP~(p)).preference = *~ ' A (instantiation,p) € OSupport(TM)}

Chunkinginitialize

pphase _state’ = PPhaseChunkingState

5.9.5 Stepping Chunking
PPhaseStepChunking steps the chunking state machine through chunking the

instantiation.

— PPhaseStepChunking
' ARM

pphase_state = PPhaseChunkingState = pphase_state’
ChunkingStep

|
}
|
|
|
i
|

Chunking may return a new instantiation or it may produce no new instanti-
ation if the input instantiation is for the top goal. The variable chunking_result
signals the existence of a new instantiation to preference phase.

114

If there is a new instantiation, 1t must have its support calculated, so pref-
erence phase returns to the confer support state. Once the support has been
conferred, the new instantiation will be sent back into chunking so that its effects

may be

chunked.

PPhaseChunkingReturnedinstantiation
ARM

i
!

pphase_state = PPhase ChunkingState
- pre Chunking
chunking_result = Newlnstantiation

pphase _state' = PPhaseConferSupportState
P

If no instantiation has been generated by chunking, the preference phase

returns

to the instantiate match state to pick a new match for instantiation.

PPhaseChunkingNolInstantiation
ARM

i
i
i
!
|

pphase_state = PPhase ChunkingState
- pre Chunking
chunking_result = Nolnstantiation

pphase_state’ = PPhaselnstantigte MatchState

5.9.6
When t

O-rejects

here are no more matches to instantiate, preference phase starts the

processing of O-rejects.

PPhaseStartOReject
ARM

i
|
|
1
|

pphase_state = PPhaselnstantiate MatchState
vm:MSe3i:ISeimatch=m

pphase _state’ = PPhaseORejectState

115

PPhaseOReject Preferences chooses an O-reject preference from the O-reject
memory and deletes it from memory. It also deletes from preference memory all
preferences that share the same identifier, attribute and value. The I-support
and O-support memories are also cleaned of all support for the rejected pref-
erences, including the O-reject itself. The < operation ([Spi89] 99) restricts a
relation or partial function to apply only to those elements of its domain that
are not in the provided set.

— PPhaseORejectPreferences
ARM

pphase_state = PPhaseORejectState = pphase _state’

Sr: ORM; ur : UnaryPreference ur = UnaryP~(r) e
(ORM' = ORM \ {r} A
(2P : P Preference |
P = UnaryP{{up : UnaryP~(((PM U dom ISM) " ran UnaryP)}
up.id = ur.id A up.atiribute = ur.attribute A up.value = ur.value}ii
BinaryP{{bp : BinaryP™~ {({(PM o dom ISM) " ran BinaryP)|
bp.id = ur.id A bp.attribute = ur.atiribute A bp.value = ur.value}).
{T'} []
PM' = PM\ P A
ISM' = P < ISM A
OSM' = P ¢ OSM))

5.9.7 Changing Preference Memory

When all of the O-rejects have been processed, preference phase starts changing
preference memory to correspond with the contents of the support memories.

— PPhaseStartChangePM
ARM

| pphase_state = PPhaseORejectState

l

‘[ORM =¢C

[pphase _state’ = PPhaseChangePMState

116

If there is a preference that has support in I-support memory or O-support
memory that is not in preference memory, then it is added to preference memory,
and its slot is added to the set of changed slots.

— PPhaseAddPreference
ARM

Sp:domISM Cdom OSM |p & PM e
(PM' = PM < {p} A

1 pphase_state = PPhaseChangePMStiate = pphase_state’

|

|

! changed_slots’ = changed_slots _ {(p.id, p.attribute)})

If there is a preference in preference memory that does not have I-support
or O-support, 1t is removed from preference memory, and its slot is added to
the changed slots.

— PPhaseRemovePreference
' ARM

i‘ pphase_state = PPhaseChangePMState = pphase_state’
|

3p: PM | p ¢ dom ISM . dom OSM e
(PM’ = PM " {p} A
changed_slots’ = changed_slots _ {(p.id, p.attribute)}))

L

When there are no more differences between the supported preferences and
the contents of preference memory, preference phase is complete.

__ PPhaseFinish
ARM

pphase_state = PPhaseChangePMState
~(3p: PM e p g dom ISM L dom OSM)
| —(3p:domISM e p ¢ PM)
| pphase _state’ = PPhaseFinishedState

117

PPhaseStep moves the preference phase state machine through one of 1ts
possible transitions.

PPhaseStep =
PPhaseStartRetractinstantiation v PPhaseRetractInstantiation +
PPhaseStartinstantiate Match v PPhaselnstantiate Matich v
PPhaseStartOReject v PPhaseORejectPreferences v
PPhaseStartChangePM v PPhaseAddPreference v
PPhaseRemovePreference v PPhaseFinish

118

Chapter 6

10

This chapter specifies Soar’s mechanism for communicating with the external
world, called SoarlO or IO for short. I0’s operation is graphically represented in
Figure 6.1. 10’s two state machines, InputCycle and OutputCycle, are stepped
by the top level state machine. The InputCycle reads InputStructures from
InputChannels and places their results on InputAttributes on the top state. and
in the transitive closure of the value of the input attribute. The OutputCry-
cle packages the transitive closures of output attributes of the top state into
OutputStructures and ships them out QutputChannels.

6.1 Channels, Attributes and 10 Mappings

The user of Soar provides IO with two fixed sets: InputChanne! and Out-
putChannel For the purposes of the specification we represent these channels
as a sets of constant names for the channels. The implementation may choose to
represent a channel as a function name, or a pointer to a function; in essence it
1s a computational operation that provides input perceptions or receives motor
operations.

The user also specifies two sets of InputAttributes and QutputAttributes.
The InputAttributes are the attributes that input channels use to augment
the top level state with their perceptions. The user provided InputMapping
maps each InputChannel to the InputAttribute that receives its perceptions.
Similarly, the OutputAttributes are the attributes of the top level state from
which IO collects their transitive closure and ships it to the QutputChannel
specified by the OutputMapping.

No channel can be both an input and an output channel, and no attribute
can be both an input and an output attribute.

119

InputChannelis

IC1

Soar

S1

Top State

{ InputStructure }

— (S1 AlnputAttribute! . .)

Transitive
Closure

OutputChannels

OC1

-

(S1 AQutputAttributel ...

Figure 6.1: Graphical Representation of 10

120

{ OutputStructure }

InputChannel : P Constant
InputAttribute : P Constant
OutputChannel : P Constant
QutputAttribute : P Constant

disjoint (InputChannel, OutputChannel)
disjoint (Inputdtiribute, OutputAitribute)

InputMapping : InputChannel — InputAtirii.ute
OutputMapping : OQutputAtiribute — OutputChannel

6.2 OQutput Structures

The OutputCycle collects output into packages called OutputStructures. On
each cycle all OutputAttributes have the working memory elements in their
transitive closure collected into an OutputStructure and shipped out their cor-
responding OutputChannel. The predicate of the output structure ensures that
the set of working memory elements is transitively closed from the object iden-
tifier.

OutputStructure
object : Identifier
wmes : P WME

!
1
|
|

Ofldwr ((TCIyypp g (wmes))({object}), wmes) = wmes

6.3 Input Structures

On each InputCycle. all of the InputChannels are polled to produce changes to
working memory. These changes are bundled into InputStructures. There are
three types of input structures: a NewlnputStructure, a ModifyInputStructure
and a DeleteInputStructure.

A NewlnputStructure tells Soar to augment the top state with a working
memory of value new_object and the attribute of the input channel, and to also
add all of the elements in wmes.

— NewlnputStructure
new_object : Identifier
wmes : P WME

i

Ofldwy g ((TCIyyp(wmes))({new_object}), wmes) = wmes

121

A ModifyInputStructure tells Soar to find the augmentation of the top state
that holds the input channel’s attribute and the modifyv_object value. Soar
must add all of the elements in the adds set, and delete all of the elements in
the deletes set.

ModifyInputStructure

modify_object : Identifier
adds, deletes : P WME

The DeleteInputStructure tells Soar to delete the augmentation of the input
channel’s attribute and the delete_object value and all of the elements in its
transitive closure. '

— DeleteInputStructure
| delete_object : Identifier

The free type InputStructure is used to construct a disjunctive type of the
basic 1nput types.

InputStructure ::= New({NewInputStructure))
| Modify { ModifyInputStructure))
' Delete{(DeleteInputStructure))

6.4 Cycles of IO

As Soar behaves, it reads in parallel from all of its input channels. Each in-
put channel is free to send more than one InputStructure to the system. A
CvcleOfInput is defined to capture the input for a single cycle. It maps each
InputChannel to the set of inputs read during that cycle.

CycleOfInput == InputChannel — P InputStructure
CycleOfOutput == OutputChannel — OutputStructure

Similarly, each parallel ply of Soar’s motor actions are captured in a partial

function from OutputChannels to the single possible OQutputStructure that Soar
produced.

6.5 IO State

IO requires two state machines: one for the InputCycle (Figure 6.2) and one for
the OutputCycle (Figure 6.3).

122

The InputCycle requires three states.
1. InputCyclelnitialState — the initial state of the machine

2. InputCycieReadState — the state in which a single InputStructure is read
from an InputChannel

3. InputCycleFinishedState — the final state of the machine

InputCycleState ::= InputCyclelnitialState
| InputCycleReadState
InputCycleFinishedState

InputCycle
InitialState

StartReadInputChannel

ReadInputChannel

InputCycle

InitializeInputCycle ReadState

FinishInputCycle

InputCycle
FinishedState

Figure 6.2: Input Cycle State Machine

123

The OutputCycle also requires only three states:
1. InputCyclelnitialState — the initial state of the machine.

2. InputCycleReadState — the state in which an QutputStructure is col-
lected from the top level state and sent out an OutputChannel.

3. InputCycleFinishedState — the final state of the machine.

OutputCycleState ::= OutputCyclelnitialState
i QutputCycleSendState
OutputCycleFinishedState

OutputCycle
InitialState

StartSendOutput
Channel

SendOutputChannel

Initialize

QutputCycle
OutputCycle

SendState

FinishOutputCycle

OutputCycle
FinishedState

Figure 6.3: Output Cycle State Machine

The IO state schema shares working memoty and goal memory with the
other major modules of Soar. The 10 system searches working memory to keep
updated the top state of the goal stack. If there is no top state, then TopState
1s set to a special symbol * NIL .

124

The schema holds state counters input_cycle_state and output_cycle_state
for the two 10 state machines.

The specification of IO takes a traditional approach to modeling input/output
behavior by using sequences of inputs to model the sequence of inputs that Soar
would encounter over time, and by recording its outputs over time in a sequence.

inputs is the sequence of CycleOfInput that models a possibly infinite stream
of cycles of input that Soar will perceive as it behaves. outputs is the initially
empty sequence of CycleOfOutput in which IO records Soar’s output over time.

Other approaches to modeling the input/output behavior of a computational
svstem are possible. For example, the operations that read input from the
sequence of inputs can be replaced by an under-specified operation that produces
any one input from the set of all possible inputs. Similarly, the output operation
can be under-specified to have no effect.

—~10
' WM P WME

GM : P Identifier

TopState : Identifier L {" NIL “}
inputs : seq CycleOfInpul

input _cycle_state : InputCycleState
outputs : seq CycleOfOutput

output _cycle_state : OutputCycleState

i

‘ 3g: GM | makeWME(g,"OBJECT*,"NIL) c WM »
({3 s : Identifier « make WME (g, STATE ,s) ¢ WM) =
| {3 s : Identifier | make WME (g, STATE " . s) € WM »
i TopState = S)
'~ (3s: Identifier o make WME (g, STATE",s) € WM) =
| TopState = “NIL ")

IO starts with both state machines in their finished state and an empty
sequence of outputs.

[_ InitIO
LIO

input_cycle_state = InputCycleFinishedState
output _cycle_state = OutputCycleFinishedState

. outputs = {)

6.6 The Input Cycle

The InputCycle is defined using five transitions.

125

1. InputCyclelnitialize — this transition initializes the state machine.

(%]

StartReadInputChannel — this transition starts the processing of input.

3. ReadInputChannel — this transition is a very complex composite tran-
sition. With each step, it reads one part of any of the three types of
InputStructures.

4. InputCycleFinish — this transition finishes the InputCycle when all of the
input has been read.

5. InputCycleReset — this transition resets the state machine.

6.6.1 Legal Input

The InputCycle is the only place in the specification of Soar that an error
condition is checked. An example of an errorful input is an input structure that
attempts to remove working memory elements that are not in the transitive
closure of its input attribute.

The specification can check that its input sequence is correct before exe-
cution, but as the implementation does not have the full sequence of inputs
available at start up time, it must check them one by one. For consistency we
have specified that each cycle of input 1s checked for correctness as they are
popped from the sequence of inputs. This subsection defines the legal input
predicate to test each input

An identifier is an InputLink of an attribute, if it there is an augmentation
of the top state in working memory that holds it as a value.

InputLink_ : P WME x Identifier x InpulAttribute — Identifier

|
. Y WM : P WME: s : Identifier; InputAttribute : InputAttribute;
id : Identifier; link . Preference o
InputLink((WM . s, InputAtiribute), id) &
(Zw: WM e w.ad = s A w.attribute = InputAitribute A

, w.value = id A w.contezti_acceptable_preference = No)

Legallnput checks the first CycleOfInput in the inputs sequence for several
properties:

e that no new and modify are for the same object

e that no new and delete are for the same object

that no delete and modify are for the same object

¢ that no two news are for the same object

that no two modifies are for the same object

126

that the adds of different modifies are disjoint, and that one modify is not
adding what another is deleting

that a NewInputStructure is for an InputLink that does not exist on the
top state

that a DeleteInputStructure is for an existing InputLink and

that a ModifylnputStructure is for an existing InputLink, and that its
adds and deletes modify the transitive closure of the input object.

— LegalInput
v Io

E V channel : InputChannel e
‘ Visl, 182 : inputs(1l)(channel) o
151 € ran New A is2 € ran New =
((New™(151)).new_object = (New™(152)).new_object = isl = 152} »
ts1 € ran Modify A 152 € ran Modify =
((Modify™ (1s1)).modify_object =
(Modify™ (132)). modify_object = 151 = is2 A
disjoint ({ Modify™(1s1)).adds, (Modify™ (is2)).adds) ~
disjoint ({ Modify™(1s1)).adds, (Modify™(is2)).deletes)) ~
131 € ran New A 152 € ran Modify =
((New™(2s1)).new_object # (Modify™ (is2)).modify_object) A
sl € ran New » 132 € ran Delete =
((New™(1s1)).new_object = (Delete™(is2)).delete_object) A
ts1 < ran Delete A 182 € ran Modify =
((Delete™(1s2)).delete_object # (Modify™ (is2)). modify_object)

¥ channel : InputChannel o ¥ 13 : inputs(1)(channel) o
s € ran New =
; (= InputLink((WM, TopState, InputMapping(channel)),
i (New™(is)).new_object)) A
1s € ran Delete =
: InputLink((WM , TopState, InputMapping(channel)),
; (Delete™(13)).delete_object) A
‘ is € ran Modify =
(InputLink((WM, TopState, InputMapping(channel)),
(Modify™ (1s)).modify_object) A
((Modify™(1s)).deletes
C Ofldyprp((TClypp (WM))({(Modify™ (1s)). modify_object}). WM) A
((Modify™(1s)).adds
C Ofldywyp((TCIywpE(WM - (Modify™(is)).adds))
({(Modify™(1s)).modify_object}), WM U (Modify™(is)).adds})})

127

Although the specification defines the conditions of acceptable input. it does
not specify how the implementation should handle unacceptable input.

6.6.2 Initializing and Starting the InputCycle

InputCyclelnitialize moves the InputCyvcle state machine into its initial state.

— InputCycleInitsalize
AIO

inpul _cycle_state = InputCycleFintshedState

input _cycle__state’ = InputCyclelnitialState

StartReadInput moves the machine into the InputCvcieReadState to begin
reading input. The whole CycleOfInput 1s checked for legality using the Legal-
Input predicate.

— StartReadInput
AlO

Legallnput
snput _cycle _state := InputCycleInitialState
input _cycle_state’ = InputCycleReadState

6.6.3 Reading NewInputStructures

When the first CvcleOflnput holds a NewInputStructure. ReadNewlInputStruc-
tureObject reads in its object. Chunking's TraceWME operation is called to
give the working memory element a new instance number.

— ReadNewinputStructure Object
AlO

inpul _cycle_state = InputCycleReadStale = input_cycle_state’

Z1c : InputChannel - ic € dom{inputs(1)) e
Z1a : InputAtiribute ' 1a = InputMapping(ic) e
= n :inputs(1){:c) ~ ran New: w: WME
make WME (TopState. ic. (New™(n)).new_object, No) ¢ WM A
w = make WME (TopState. ic, (New™ (n)).new_object, No)}
(WM' = WM C {w}
Trace WME)

128

After the top state has been augmented with the object, ReadNewlnput-
StructureWME reads in one of the new working memory elements, and destruc-
tively removes it from the NewlnputStructure.

ReadNewlInputStructure WME
Alo

{

input_cycle_state = InputCycleReadState = input_cycle_state

3ic : InputChannel | ic € dom(inputs(1)) e
Zia : InputAtiribute | 1a = InputMapping(ic) e
3n :inputs(1)(ic) " ran New o
2 N : NewinputStructure | N = New™(n) A
make WME (TopState, 1a, N .new_object. No) € WM e
Jw:Nwmes wg WMe
3 N': NewInputStructure '
N'.new_object = N .new_object A
i N'.wmes = N . wmes \ {w} e
(WM’ = WM C {w} A
Trace WME A
tnputs’(1) = inputs(1)&
: {1c — (snputs(1)(ic) \ {n}) o {New(N')}} A
! tail(inputs’) = tail(inputs))

-
|
|
‘[
|
|

When all of the working memory elements have been read in, ReadNewln-
putStructureDone pops the input from the first cycle of input.

— ReadNewInputStructure Done
AJO

l

input _cycle_state = InputCycleReadState = input_cycle_state’

Z1c : InputChannel ! ic € dom(inpuis(1)) e
! 3ia : InputAttribute | ta = InputMapping(ic) e
" Sn:tnputs(1)(ic) " ran New o
3N : NewlnputStructure | N = New™(n) A
make WME (TopState, 1a, N .new_object, No) € WM o
((N.wmes =D A
| inputs’(1) = inputs(1) & {ic — inputs(1)(ic) \ {n}}) A
tail{inputs’) = tail(inputs))

129

ReadNewlInputStructure is the composite operation for reading an entire
NewlnputStructure.

ReadNewlnputStructure = ReadNewlnputStructureObject v

ReadNewlnputStructure WME v
ReadNewlInputStructureDone

6.6.4 Reading ModifyInputStructures

When there is a ModifvIinputStructure in the first CycleOflnput, ReadModifv-
InputStructureAdd reads in one of the elements that it should add, and deletes
the element from the set of adds.

~ ReadModifyInputSiructureAdd
i AlO

input_cycle_state = IrputCycleReadState = input_cycle_.state’'

21c: InputCt » [}ic € dom(inpuis(1l))

c

16 : Input ' iribute | ia = InputMapping(ic) e

puts(1){ic) N ran New o

3 M : ModifyInputStructure | M = Modify™(m) A

make WME (TopState, 1a, M .modify_object. No) c WMe

Sw:Madds lweg WMe

3IM' ModifylnputStructure !
M' . modify_object = M .modify_object A
M'.adds = M'.adds \ {w} A
M’ deletes = M .deletes »
(WM' = WM L {w}A
Trace WME A
inputs’'(1) = inputs(1)®
{1c — (snputs(1)(ic) \ {m}) v { Modify(M'}}} A
tail(inputs’) = tail(snputs))

130

ReadModifvInputStructureDelete reads in a delete of a modify, and removes
the element from the modifv’s delete set.

— ReadModifyInputStructureDelete
N

input__cycle_state = InputCycleReadSiate = input_cycle_state’

Sic : InputChannel | ic € dom(inputs(1)) e
Jia : InputAttribute | ia = InputMapping(ic) e
Sm : inputs(1)(ic) Nran New
S M : ModifyInputStructure | M = Modify™(m) A
make WME (TopState, ia, M .modify_object, No) € WM «
Sw: M.deletes ' w € WM o
I M’ : ModifylnputStructure |
M’ modify_object = M .modify_object »
M'.deletes = M’ .deletes’ {w} A
M'.adds = M.adds e
(WM' = WM ", {w} A
wnputs’'(1) = wmputs(1)®
{1c — inputs(1)(2c) \ {m}} A
tail{inputs’) = tail(inputs))

When all of the changes have been processed, ReadModifvinputStructure
Done pops the modify from the first cycle of inputs.

— ReadModifyinputStructure Done
I AJO

input _cycle_state = InputCycle ReadState = input_cycle_state’

Sic : InputChannel | ic € dom(inputs(1)) e
S1a : InputAttribute 10 = InputMapping(ic) e
Sm : inputs{1)(ic) D ran New o
2 M : ModifylnputStructure
M = Modify™(m) A M.adds = M .deletes = D o
(inputs’(1) = inputs(1) & {ic — wnputs(1)(sc)\ {m}} A
tail(inputs’) = tail(inputs))

ReadModifvInputStructure is the composite operation that joins all of the
operations for reading a ModifvInputStructure.

ReadModifyinputStructure = ReadModifyInputStructureddd v
ReadModifyInputSiructureDelete v
ReadModifyinputStructure Done

131

6.6.5 Reading DeleteInputStructures

ReadDeleteInputStructure pops a DeletelnputStructure from the first Cvcle-
OfInput, and removes the associated InputLink. The working memory elements
in the transitive closure of the link are not explicitly deleted. The working mem-
ory elements that are no longer accessible from the context stack will eventually
be removed by decide.

— ReadDeleteInpulStructure
Y (¢

input _cycle_state = InputCycleReadState = input_cycle_state’

Sic : InputChannel | i1c € dom(inputs(1)) e
Jia : InputAttribute 1a = InputMapping(ic) e
1 3d . inputs(1, ‘~)Y " ran Delete o

(WM' = WM\
{make WME(TopState.1a, (Delete™(d)).delete_object, No)} A

inputs’'(1) = inputs(1)&
{1c — inputs(1)(zc) \ {d}} A

tail(anputs’) = tail(inputs))

6.6.6 Reading an Input Channel
CloseInputChannel will close any channel that has no remaining input struc-

tures.

— CloseInputChannel
AlO

snpul _cycle_state = InputCycleReadState = input_cycle_state’
TopState = " NIL*

Sic : InputChannel ! ic € dom/inputs(1)) e
(smputs(1){sc) = D A
snputs’{1) = {1c} € inputs(1) A
tal(inputs’) = tail(snputs))

132

ReadInputChannelAnyInputStructure will take one step of reading any input
structure of the first cycle of input.

ReadInputChannel = ReadNewlnputStructure v
ReadDeleteInputStructure v
ReadModifyInputStructure v
CloseInputChannel

6.6.7 Finishing, Stepping and Resetting the InputCycle

When there are no more input structures to read on any input channels, Input-
CycleFinish pops the inputs vector and moves the input cvcle to the finished
state.

— InputCycle Finish
Ao

input _cycle_state = InputCycle FinishedState
— pre ReadInputChannel
tnputs’ = tail(inputs)

input _cycle_state’ = InputCycleFinishedState

InputCycleStep steps the input cvcle using the three operations.

InputCycleStep = StartReadInput v ReadInputChannel v
InputCycle Finish

InputCycleReset is specified to allow the implementation to reset the oper-
ation of the input cycle state machine at any point of execution.

~— InputCycleReset
Alo

inpul _cycle_state’ = InputCycleInitialState

-

133

6.7 The Output Cycle
The OutputCycle state machine requires only five transitions.

1. OutputChannellnitialize — this operation initializes the OutputCycle ma-
chine.

2. StartSendQutputChannel — this operation moves the QutputCycle from
the initial state into the state that sends out output.

3. SendOutputChannel — this composite operation ships an OutputStruc-
ture out an QutputChannel.

4. OutputCycleFinish — when there are no more outputs to send, this op-
eration ends the execution of the state machine.

5. OutputCycleReset — this operation allows the implementation to reset
the output cycle state machine when unusual conditions occur.

OutputCyclelnitialize initializes the OutputCycle state machine by moving
it from its finished, to its initia] state.

OutputCyclelnitialize

[AlO

i

| output_cycle_state = OutputCycleFinishedState
‘ P

i output _cycle_state’ = OutputCyclelnitialState

StartSendOutputChannel starts the shipping of output by moving the ma-
chine into the OutputCycleSendState state and pushing an empty CycleOfOut-
puts onto the end of the outputs sequence.

— StartSendOutput Channel
| AIO

] output__cycle_state = OutputCyclelnitialState
output_cycle_state’ = OutputCycleSendState
! outputs’ = outputs ~ (D)

134

If an OutputLink of the top level state does not have a corresponding
OutputStructure in the iast CvcleOfOutput, then SendOutputChannelOutput-
StructureObject creates a new OutputStructure with the object of the link and
adds it to the output.

SendOutputChannelOutputStructure Object
Alo

l{ output_cycle_state = OutputCycleSendState = outpul_cycle_state’

i
|

31 : OutputAttribute o
Jw . WM | w.id = TopState A w.attribute = i A
w.contezl_accepiable _preference = No A
‘ OutputMapping(i) ¢ dom(last(outputs)) e
i 3 08 : OutputStructure |
! 0S5 .object = w.value A OS.wmes =D o
| (last(outputs’) = last(outputs)®
: { OutputMapping(i) — OS} A
front(outputs’) = front(outputs))

SendOutputChannelQutputStructure WME finds any working memory ele-
ments of the transitive closure of an OutputLink that have not been added to
their OutputStructure and adds them to the structure.

— SendOutput ChannelOutputStructure WME
| AIO

output_cycle_state = OutputCycleSendState = output_cycle_state’
i OutputAttribute o
Sw: WM | w.id = TopState A w.attribute = 1 A
| w.contezl_acceptable _preference = No o
30§, 0S' : OutputStructure |
0S.object = w.value A OS' object = w.value
3 wp OﬂdWME(TCIWME(W.M)({w.value}), VVM) ,‘
wy & OS.wmes A O5'.wmes = OS.wmes U {wz} o
(last{outputs') = last(outputs)®d
{ OutputMapping(i) ~ OS'} A
front(outputs') = front(outputs))

SendOutputChannel composes the operations to send out QutputStructures.

SendOutputChannel = SendOutputChannelOutputStructure Object v
SendOutputChannelOutputStructure WME

135

When there is no more output to send, OutputCycleFinish finishes the out-

put cycle.

— OutputCycleFinish
i AJO

output_cycle_state = OutputCycleSendState

- pre SendOQutputChannel

output_cycle_state’ = OutputCycleFinishedState

OutputCycleStep sequences all of the operations of the OutputCycle.

OutputCycleStep =
StartSendOutputChannel v SendOutputChannel v

OutputCycleFinish

OutputCycleReset allows the implementation to reset the OutputCycle state
machine from any state under exceptional conditions.

— OutputCycleReset
AJO
output_cycle_state’ = OutputCyclelnitialState

136

Chapter 7

Decide

The decision procedure reads preference memory to decide what should be in
working memory, including the context impasse stack and attribute impasses.
Decide’s specification is composed of a state schema and four state machines:
impasser, preference semantics, working memory phase and quiescence phase.
Soar’s top level state machine steps decide through the working memory phase
(WMPhase) or the quiescence phase (QPhase). The working memory phase and
the quiescence phase step preference semantics to determine the values of slots
and the impasser to add, modify and remove goals and impasses. i

Z’s bottom-up approach to specification requires that we first specify the
state schema of a sequential system, and then specify its transitions. Conse-
quently we present the state schemas for decide’s four state machines first, then
we present decide’s total state schema, and then we present.the state transitions
for each of the component state machines.

This chapter is organized into ten sections.

o Section 7.1 Impasses — defines impasses, Soar’s goal representation.
s Section 7.2 Impasser State — defines the state of the impasser.

e Section 7.3 Preference Semantics State — defines the state of preference
semantics.

o Section 7.4 Working Memory Phase State — defines the state of working
memoty phase.

e Section 7.5 Quiescence Phase State — defines the siate of quiescence
phase.

e Section 7.6 Decide’s Total State — defines the total state of decide.
e Section 7.7 Impasser — defines the state machine that implements im-

passing.

137

¢ Section 7.8 Preference Semantics — defines the state machine that imple-
ments preference semantics calculations.

o Section 7.9 Working Memory Phase — defines the state machine that
implements the working memory phase.

¢ Section 7.10 Quiescence Phase — defines the state machine that imple-
ments quiescence phase.

7.1 Impasses

This section describes the basic concepts of an impasse, and provides some

operations to help access and modify the working memory elements of impasses.
The context impasse stack is represented as elements in working memory,

and so are its attribute impasses. Each element of a context impasse in the
stack holds the context’s identifier in its id component, and its attribute is an
element of ImpasseAttribute, defined in Section 5.5.9.

ImpassesWMEs : Symbol x P Identifier x P WME — P WME

\ Vg_or_i: Symbol; GM : P Identifier; WM : P WME o
| ImpassesWMEs(g_or_i, GM, WM) =
| {w: WM |g_or_i€ GM A w.id = g_or_i A

w.atiribulte € Impasse Attribute A
w.contezt_acceptable_preference = No}

There are eight attributes that are used to create working memory elements
defining a context impasse.

1. "PROBLEM-SPACE "’ — the optional problem space of the subgoal.
2. "STATE " — the optional state of the subgoal.
3. "OPERATOR " — the optional operator of the subgoal.

4. "OBJECT " — the parent context impasse for a context impasse, or the
identifier of the impassed slot for an attribute impasse.

5. "ATTRIBUTE * — the attribute of the impassed slot.
6. "IMPASSE* — the type of impasse (see 7.2).

=1

"ITEM " — the candidates that were available for decision for * TIE ",
"CONFLICT * or * CONSTRAINT-FAILURE * impasse.

8. "CHOICES * — if there are no "ITEM °~ augmentations, an impasse has
a "CHOICES° augmentation of value *NONE°, otherwise its value is
"MULTIPLE".

138

Decide uses only the *OBJECT *, "ATTRIBUTE ", "IMPASSE ", "ITEM "
and " CHOICES ’ attributes for attribute impasses. The values from the
(*OBJECT *," ATTRIBUTE °) working memory element pair form the slot for
which decide had incomplete or inconsistent information. The *IMPASSE"’
element holds as a value the type of impasse. The *CHOICES ® describes 1’
there were * MULTIPLE® or "NONE " value choices available to the decision
procedure for the impassed slot. Each choice is represented in working memory

using an augmentation of attribute "ITEM °.
The recursive function GoalDescendents follows the chain of *OBJECT*

attributes backwards through working memory to construct the set of identifiers
of the descendant goals of a given goal.

| GoalDescendants : Identifier x P Identifier x P WME — P Identifier

; V ¢ : Identifier; GM : P Identifier; WM : P WME o

1 (3,¢: GM o make WME(c,” OBJECT ", g, No) € WM) =
E (3, ¢: GM | make WME (c,” OBJECT ", g, No) € WM o
|

|

GoalDescendants(g, GM, WM) =
{c} U GoalDescendants(c, GM, WM)) A
= (3,¢: GM o make WME(c,” OBJECT ", g. No) € WM) =
GoalDescendants(g, GM, WM) = &

7.2 Impasser State

The impasser creates, modifies and deletes both context and attribute impasses.
Its state machine requires only three states (Figure 7.1):

1. an initial state which is used to optionally remove old impasses

2. a state from which new impasses are created or old impasses have their
items changed and

3. a final state.

ImpasserState ::= ImpasserinitialState
I ImpasserCreate OrChangeState
| ImpasserFinishedState

139

Impassernitial
Sate

mpasserRemovelmpasse

Impasser
Nolmpasse
ToRemove

ImpasserCreate
OrChangeState

Initialize
Impasser

Impasser
NoNewlmpasse

ImpasserFinished OrChanges

State

Figure 7.1: Impasser State Machine

140

The impasser is started with a slot that may need an impasse created,
changed or removed, and the type of the impasse that is required.

i Impasse Type : P Constant

!
I

Impasse Type =
{* CONSTRAINT-FAILURE","CONFLICT ", "TIE ",
*NO-CHANGE’,"NONE‘}

There are four types of impasses and one symbol used to specify that the
slot does not require an impasse.

1. "CONSTRAINT-FAILURE " - created when decide has more than one
required candidate for a slot, or has a required candidate that is also
prohibited.

2. "CONFLICT® — created when decide has inconsistent better. worse, best
or worst preferences for a slot.

3. "TIE — created when decide has more than one acceptable, non-parallel,
non-indifferent candidate for a slot.

4. "NO-CHANGE ® — created when quiescence is reached and the decision
procedure has no change that it can make to the context stack.

5. "NONE " — signifies that preference semantics has determined that it has
no candidate, or a unique candidate for a slot.

The flag, context_changed, of type ContextChanged is used to record if
the context has been changed during quiescence phase or the impasser state
machine. This allows the quiescence phase to know when the context has been
changed so that it can stop looping over the slots of the context.

ConteztChanged ::= Changed ' Unchanged

The ImpasserStateSchema groups the slot to be impassed, the type of the
impasse, the items under consideration from preference semantics and the state
counter for the impasse state machine

— ImpasserStateSchema
% impasser_state : ImpasserState

| slot : Slot
. impasse : Impasse Type
' items : P Symbol
contezt _changed : ConteztChanged

141

7.3 Preference Semantics State

Preference semantics reads the contents of preference memory to decide new
values for working memory slots. The preference semantics state machine re-
quires eleven states (Figure 7.3): nine to perform the filter-like operations to
decide slots, an initial and a final state.

1.
2.

10.

11.

PSInitialState — preference semantics starts out in this state.

PSRequireState — this state checks for required candidates in preference
memory and also constraint failure impasses involving require preferences.

PSAcceptableState — this state collects the candidates that have accept-
able preferences in memory.

PSProhibitState — this state filters out the candidates that have been
prohibited.

PSRejectState — this state filters out the candidates that have rejects in
PM.

PSBetterWorseState — this state checks for better worse conflicts, and
otherwise filters out candidates based on better/worse preferences.

. PSBestState — this state filters out candidates using the best preferences.

PSWorstState — this state filters out candidates using the worst prefer-
ences.

PSIndifferentState — If all of the remaining candidates are mutually in-
different, this state returns them as indifferent. If they are not, and this
1s a context impasse slot, a tie impasse is returned. Non-context slots’s
items are tested to see if they are mutually paralle].

PSParallelState — If all of the remaining candidates are mutually parallel,
they’re returned as mutually parallel. Otherwise, a tie impasse is returned.

PSFinishedState — preference semantics enters this state when it has
reached a conclusion for its slot.

142

PSStart

PSInitialState - PSRequireState
PSMultipleRequires or PSNoRequires
PSRequireProhibited
or PSOneRequire

InitalizeP$S

Indifferent

PSFinishedState

PSMutually

PSAcceptableState
PSAcceptable

PSProhibit

PSNo

PSProhibitState

Acceptable
PSReject
PSRejectState Sec PSBetterWorseState
PSBetterWorse
Conlflict PSNoBetterWorse
Conflict
PSBestState PSBest
PSWorst
PSNotMutually
Indifferent
PSIndifferentState NonContextSlot PSParallelState
PSNotMutuall
PSNotMutually Parallel
IndifferentContextSlot

C

PSMutuallyParallel

Figure 7.2: Preference Semantics State Machine

143

PreferenceSemanticsStale ::= PSInitialState
| PSRequireState
| PSAcceptableState
| PSProhibitState
| PSRejectState
| PSBetter WorseState
| PSBestState
| PSWorstState
| PSIndifferentState
| PSParallelState
i PSFinishedState

Preference semantics requires an input slot, and produces an impasse, a pos-
sibly empty set of conflicting, indifferent or parallel items and a flag, number_of winners
of type NumberOfWinners. The number_of _winners flag is set whenever there
is a winning value, e.g., there is not an impasse. If a single winner is chosen or
there are a set of mutually indifferent winners. number_of_winners is One. If all
of the winners are mutually parallel, then number_of_winners is All. This allows
WMPhase to distinguish a set of mutually parallel candidates that should all
be installed in working memory from a set of mutually indifferent candidates
that should have only one value installed or maintained.

NumberOfWinners ::= All | One

The PreferenceSemanticsStateSchema schema groups preference semantics’s
inputs, outputs and state counter.

PreferenceSemanticsStateSchema
ps_state . PreferenceSemanticsState
i slot : Slot
| stems: P Symbol
smpasse : Impasse Type
number_of _winners : NumberOf Winners

7.4 Working Memory Phase State
The WMPhase state machine is implemented in six states (Figure 7.3).
1. WMPhaselnitialState — the state machine starts out in this state.

2. WMPhasePickSlotState —— this state picks any non-context slot with changed
preferences for decision.

144

WMPhaseStepDecideSlot

WMPhaselnitial
State

WMPhaseDecideSlot
State

WMPhase
StartPickSlot

WMPhase
Startimpasser

WMPhase
' WMPhase
StartDecideSlot StepImpasser
WMPhase
Initialize

WMPhasePickSlot

WMPhaselmpasser
State

State

WMPhaseChange
WMFinished

WMPhaseImpasser
Finished

WMPhaseFinished
State

WMPhase WMPhase
AddWME RemoveWME

Figure 7.3: Working Memory Phase State Machine

145

WMPhaseDecideSlotState — this state steps the preference semantics
state machine until it has arrived at a decision.

WMPhaselmpasseState — if the decision is an impasse, this state steps
the impasse machine until is has added, changed or removed the impasse.

WMPhaseChangeWMState — this state adds or removes the WMEs for
the slot. ‘

WMPhaseFinishedState — the state machine finishes in this state.

WMPhaseState ::= WMPhaselnitialState
i WMPhasePickSlotState
i WMPhaseDecideSlotState
+ WMPhaseImpasserState
WMPhaseChange WMState
WMPhaseFinishedState

The preference phase records the set of slots that have preferences added or
retracted in the ChangedSlots component of the WMPhaseStateSchema. The
WMPhase destructively iterates the component slot over the changed slots, runs
the decision procedure on the slot and receives back information in the items,
impasse and the number_of _winners components.

— WMPhaseStateSchema
| wmphase_state : WMPhaseState
changed_slots : P Slot

slot : Slot

. items : P Symbol

| 1mpasse : Impasse Type

| number_of _winners : NumberOfWinners

7.5 Quiescence Phase State

Quiescence Phase’s state machine requires six states (Figure 7.4).

1.
2.

QPhaselnitialState — the state machine starts from this state.

QPhasePickSlotState — chooses the context impasses and which one of
its slots to decide next.

QPhaseDecideSlotState — this state steps the preference semantics state
machine given this slot as an argument.

146

QPhase
InitialSiate

QPhase
StartPickSlot

QPhase
StartDecideSlot

QPhase
Initialize

NextSlot

QPhaseNoChangedPreferences

QPhaseStepDecideSlot

QPhaseDecide
SlotState

NoChangelmpasse
e |

QPhase
Impasser

QPhaseSlot Finished

Unchanged

QPhaseReAdd
QPhaseFinished e WME QPhaseChange WM
State L State
QPhaseSlotChanged

QPhaseAdd
WME

Figure 7.4: Quiescence Phase State Machine

147

QPhaselmpasser

QPhaseChanged
eferencesNoChange
Impasse

State

QPhase
Steplmpasser

QPhaseRemove
WME

4. QPhaselmpasserState — this state steps the impasser given the result of
preference semantics.

5. QPhaseChangeWMState — this state changes the values in working mem-
ory for the slot.

6. QPhaseFinishedState — the final state of the machine.

QPhaseState ::= QPhaselnitialState
| QPhasePickSlotState
| QPhaseDecideSlotState
| QPhaselmpasserState
| QPhaseChange WMState
| QPhaseFinishedState

The set ContextSlotAttribute holds the attributes for context slots.

l ConteztSlotAttribute : P ImpasseAttribute

ConteztSlotAtiribute =
{" PROBLEM-SPACE", 'STATE ", "OPERATOR '}

The QPhase state machine uses six pieces of state:

1. a state counter, qphase_state

2. the slot of the context under consideration

3. a flag that marks if the context has been changed

4. the set of slots that preference phase has changed preferences for
5. the set of items that the preference semantics returned and

6. the number of winners amongst those items.

QPhaseStateSchema
gphase_state : QPhaseState
slot : Slot

! contezt_changed : ConteztChanged
changed_slots : P Slot
] items : P Symbol

' number_of _winners : NumberOfWinners

148

7.6 Decide’s Total State

The decide state schema includes the state schemas for its state machines, de-
fines the impasse memory, the goal memory and two pointers into it, and shares
the temporary memory, ..s component memories and the identifier table with
the other major modules of Soar.

The goal memory, GM, and impasse memory, IM, are defined as sets of
identifiers. All information about the type of context impasse or attribute im-
passe is represented by working memory elements. The goal memory is also
constrained to be contained within the transitive closure of the bottom goal.
Impasse memory is constrained somewhat differently: all of the objects of the
attribute impasses must be connected to the bottom goal.

Temporary memory, TM, is defined and constrained by three recursive ax-
ioms.

1. Temporary memory is the union of the temporary memory elements cre-
ated from all of working memory and production memory, using the free
type constructors for temporary memory elements.

2. Temporary memory is defined to be transitively closed from the bottom
goal and the impasses. This means that all elements are on a path that
starts with the identifier of the bottom goal or an impasse identifier.

3. Working memory, which may be viewed as a part cf temporary memory,
contains a working memory element of context_acceptable_preference Yes
if and only if there is a corresponding acceptable preference for that con-
text slot. The mapping ContextImpassePreferences is used to construct
the set of working memory elements that correspond to the context ac-
ceptable preferences.

ConteztimpassePreferences : P Identifier x P Preference — P WME

Y GM : P Identifier; PM : P Preference o
ConteztImpassePreferences(GM, PM) =
{p: UnaryP~{PM N ran UnaryP) |
p.id € GM A (p.preference = "+ V p.preference = '!') A
p-attribute €
{* PROBLEM-SPACE ", "STATE ", OPERATOR '}
o make WME (p.id, p.attribute, p.value, Yes)}

149

— Decide
IM : P Identifier

GM : P Identifier

bottom _goal, top_goal : Identifier
Identifier Table : P Identifier

TM : P TME

WM. P WME

PM : P Preference
PreferenceSemanticsStateSchema
ImpasserStateSchema

| WMPhaseStateSchema

: @QPhaseStateSchema

| TM = Preference TME(PM) U WMETME(WM|
| TM = Ofldppp((TCIrprp(TM))({bottom_goal} U IM), TM)

i ConteztImpassePreferences(GM,PM) =
‘ {w: WM | w.contezt_acceptable preference = Yes}
IM={i:IM:
So: Symbol e
i WMETME (make WME (i, OBJECT ", 0, No)) €
i Ofld g ((TCIppp(TM))({ bottom_goal} © IM), TM)}

GM = ((TCITpp(TM))({bottom_goal})) ~ GM

Decide starts off with its four state machines in their finished state, and
empty impasse and goal memorties.

__ InitDecide
Decide

ps_state = PSFinishedState
impasser_state = ImpasserFinishedState
| wmphase_state = WMPhaseFinishedState
gphase_state = QPhaseFinishedSlate
IM =2
GM = {}

The top level state machine initializes decide with the DecideCreateFirstGoal
operation. It sets goal memory to a singleton, adds the object working memory
element for this goal and its type working memory element, and sets the top
and bottom goal pointers to the single goal.

__ DecideCreateFirstGoal
A Decide

3 ¢ : Identifier \ IdentifierTable ¢ (GM = {g} A
top_goal = g A
bottom_goal = g A
WM' = {make WME (g, OBJECT ", " NIL ", No),
make WME (g, TYPE ", GOAL ", No)})

ps_state = PSFinishedState

impasser_state = ImpasserFinishedState
wmphase _state = WMPhaseFinishedState
gphase_state = QPhaseFinishedState
IM=02

7.7 Impasser Transitions

The impasser has six state transitions between its three states (Figure 7.1).
1. Impasserlnitialize — used to initialize the state machine.

2. ImpasserNolmpasseToRemove — If there is no need to remove an impasse,
this transits the machine from the initial state to the CreateOrChange
state.

3. ImpasserRemovelmpasse — If there is an old impasse in memory that is
for the wrong type of impasse or the wrong slot, this transition removes
it.

4. ImpasserCreatelmpasse — If preference semantics has determined a need
for an impasse that is not yet in memory, this creates it.

5. ImpasserChangelmpasse — If preference semantics has found a changed
set of items for an existing " TIE ", *CONFLICT ° or * CONSTRAINT-FAILURE "
impasse, this transition changes the items set.

6. ImpassetNoNewImpasseOrChanges — If there is not a new impasse and
no changes to an item set, this finishes the state machine’s execution.

151

ImpasserInitialize readies the impasser to run by moving it from the final to
the initial state.

— ImpasserInitialize
ADecide

contezt_changed' = Unchanged

impasser_state' = ImpasserlnitialState

The impasser first checks for an old impasse existing in memory that must
be removed. An impasse must be removed if preference semantics has decided
that the slot needs a different type of impasse, a higher slot in the context has
an impasse, or the slot should have no impasse at all. ImpasserRemovelmpasse
is designed to remove both context and non-context impasses, so it searches
for an impasse identifier in IM or GM. If the obsolete impasse is a non-context
impasse, it deletes it from IM. If the obsolete impasse is a context impasse, it
deletes it and its descendants from GM, and updates the pointer to the bottom
of the context stack. '

 ImpasserRemovelmpasse
A Decide

impasser_state = ImpasserinitialState

Zi:IM U GM |
make WME (1, OBJECT *, first(slot), No) € WM e
= ((make WME (i, " ATTRIBUTE | second(slot), No) € WM) A
(make WME (1, IMPASSE *, impasse, No) € WM))
=
(1€ IM =
IM' = IM\ {i} A
WM' = WM \ ImpassesWMEs(i, IM, WM)) A
(1€ GM =
(contezt_changed' = Changed A
(GM' = GM \ ({3} v GoalDescendants (i, GM, WM))) A
(bottom_goal' = first(slot))) A
(WM' = WM \ ImpassesWMEs(i, GM, WM)
\(U{g : GoalDescendants(i, GM, WM) o
ImpassesWMEs(g, GM, WM)1))))

; impasser_state’ = ImpasserCreateOrChangeState

If the impasse in memory is the desired type of impasse or there is no im-
passe in memory then ImpassertNoImpasseToRemove moves the impasser into
the create or change state.

— ImpasserNolmpasse ToRemove
ADecide

impasser_state = ImpasserInitialState

Si:IMUGM e
(make WME (1, OBIECT *, first(slot), No) ¢ WM A
make WME (i, " ATTRIBUTE °, second(slot), No) € WM A
make WME (i, " IMPASSE °, impasse, No) € WM) v
~(3i:IMUGMe
(make WME (i, OBJECT ’, first(slot), No) € WM A
make WME (i, " ATTRIBUTE *. second(slot), No) € WM))

| tmpasser_stale’ = ImpasserCreate OrChangeState

153

If the desired impasse is not in memory, ImpasserCreateImpasse selects an
identifier that is not in the IdentifierTable, and consequently not in use by
the system, and adds the identifier to IM or GM and the basic three elements
required for the impasse. If the impasse is a *CONSTRAINT-FAILURE " or
a "NO-CHANGE ' then an element of attribute *CHOICES * value *NONE"’
is also added. If the impasse is a "CONFLICT " or a " TIE ° then an element
of attribute " CHOICES ° value " MULTIPLE ° is added instead. An element of
attribute " ITEM ’ is added for each candidate returned by preference semantics
in the items set. Chunking’s Traceltems operation is referenced to give the new
itemn elements numbers and setup their working memory traces to point to the
preferences that caused them to be considered for the siot.

ImpasserCreatelmpasse
Ir— ADecide

impasser_state = ImpasserCreateOrChangeState

~(3i:IMUGM e
make WME (1, OBJECT °, first(slot), No) € WM A
make WME (1, " ATTRIBUTE *, second(slot), No) € WM)

. Z1: Identifier | 1 ¢ Identifier Table o

i (first(slot) € GM A

| second(slot) € ConteztSlotAttribute U {" GOAL '}) =
|

{(GM’' = GM U {1} A
contezt_changed’ = Chenged A
bottom _goal' = 1) A
| = (first(slot) € GM A
second(slot) € ConteztSlotAtiribute U {" GOAL'}) =
; IM' = IM C {i} A
SW P WME: W = {v:items e make WME(:, " ITEM °, v, No)}
WM’ = WMy
; {make WME (i, OBJECT ’, first(slot), No),
T make WME (i, " ATTRIBUTE °, second(slot), No),
' make WME (i, " IMPASSE * impasse, No)}u
l {w: WME | w = make WME(:,” CHOICES ", " NONE *, No) A
|

| impasse € { CONSTRAINT-FAILURE ", NO-CHANGE "}}u
i {w: WME w = makeWME (i, CHOICES ", * MULTIPLE ", No) A

impasse € {*CONFLICT","TIE“}} u W A
Traceltems

impasser _state’ = ImpasserFinishedState

154

If the correct type of impasse for the slot exists in memory, but its set
of items is now different, Changelmpasse removes the elements for the items
that are no longer involved in the impasse, and adds in elements for the new
items. This does not change the main structure of the context stack. only its
1tems, so the context_changed flag is not set and sub-slots and sub-goals are
not flushed. Having updated working memory to match preference semantic’s
required impasse, the Changelmpasse steps to the finished impasser state.

ImpasserChangelmpasse
ADecide

impasser_state = ImpasserCreateOrChangeState

3i:IMUGM |
make WME (i, OBJECT *, first(slot), No) € WM A
make WME (i, ATTRIBUTE *, second(slot), No) € WM A
make WME (i, IMPASSE ’, impasse, No) € WM A
items = {v : Symbol | make WME (i, " ITEM ", v, No) € WM} e
IW.P WME |
W ={w: WM :
v : Symbol \ items ¢ w = make WME (i, ' ITEM°, v, No)}
U{v : stems | make WME(i,"ITEM *, v, No) ¢ WM e
make WME (z, " ITEM ", v, No)} e
WM' = WM\ W A Traceltems

impasser_state’ = ImpasserFinishedState

If there 1s no need for a new impasse, or the impasse in memory is exactly
right, then ImpasserNoNewl npasseOrChanges completes the impasser’s run.

—_—

ImpasserNoNewimpasse OrChanges
A Decide

impasser_state = ImpasserCreateOrChangeState

impasse = "NONE " v

(31:IMUGM o
make WME(i,” OBJECT *, first(siot), No) € WM A
make WME (i," ATTRIBUTE °. second(slot), No) £
make WME (i, ' IMPASSE °, impasse, No) €¢ WM A
items = {v : Symbol ' make WME (:, " ITEM *, v, No) € WM})

impasser _stale’ = ImpasserFinishedState

After initialization ImpasserStep will drive the impasser state machine through
all of its states to completion.

ImpasserStep = ImpasserNoimpasse ToRemove v ImpasserRemovelmpasse
ImpasserCreatelmpasse \ ImpasserChangelmpasse v
ImpasserNoNewImpasseOrChanges

7.8 Preference Semantics Transitions

Preference Semantics is defined in seventeen transitions (Figure 7.3): one to
initialize, fifteen for processing the filter-like actions and one that is a concession
to the obvious implementation to allow a fast exit from the state machine in a

common case. .)]
The PSlnitialize initializes the state counter, empties the set of candidate

items. and sets the impasse to "NONE ",

__ PSInitialize
A Decide

ps_state’ = PSInitialState
items’ = &

impasse’ = " NONE~

StartPS moves the state machine into the state to test for require preferences.

— PSStart
ADecide

ps_state = PSInitialState
slot’ = slot

ps_state’ = PSRequireState

If there is exactly one require preference for the slot in memory and there is
no prohibit preference for it in preference memory, then its value is the winner.
The impasse is marked as * NONE ", the value is returned in the singleton items
set, and preference semantics is finished.

—_—

PSOneRequire
ADecide

ps_state = PSRequireState

(3, v: Symbol o
make UnaryPreference(first(slot), second(slot), v, ") € PM) A
-~ (3v: Symbol e
make UnaryPreference(first(slot), second(slot), v, ") € PM A
make UnaryPreference(first(slot), second(slot), v, ~") € PM)
3, v : Symbol |
make UnaryPreference(first(slot), second(slot), v, !’} € PM o
items' = {v}
itmpasse’ = " NONE*

number _of _winners’ = One

ps—_state’ = PSFinishedState

If there is more than one required candidate, then a constraint failure impasse
is recognized with all of the required items in the items set, and preference
semantics 1s complete.

PSMultiple Requires
A Decide

ps—_state = PSRequireState
SV : P Symbol
(V = {v: Symbol
make UnaryPreference(first(slot), second(slot), v, !") € PM} A
#V >1)e
items’ = V

impasse’ = " CONSTRAINT-FAILURE "
ps_state’ = PSFinishedState

157

If there exists a required value that is also prohibited, a constraint impasse
with the required/prohibited value is recognized and preference semantics ter-
minates.

PSRequire Prohibited
A Decide

ps_state = PSRequireState

T

i Zv: Symbol :

é make UnaryPreference(first{slot), second(slot), v, !’) € PM A
i make UnaryPreference(first(slot), second(slot),v,” ") € PM e
| items’ = {v}

impasse’ = ' CONSTRAINT-FAILURE"
| ps_state’ = PSFinishedState

If there are no require preferences, preference semantics continues on to
consider acceptable preferences.

— PSNoRequires
. ADecide

ps_state = PSRequireState

~ (3 v: Symbol e
make UnaryPreference(first(slot), second(slot), v, ") = PM)

| impasse’ = "NONE”~
items' = O

ps_state’ = PSAcceptableState

The require processing is stepped through by the Require transition. The
PSRequire compound transition is defined to allow users a single place to hook
all possible ways that preference semantics processes requires.

PSRequire = PSOneRequire vV PSMultipleRequires Vv
PSRequireProhibited v PSNoRequires

The PSAcceptable transition collects all candidates with acceptable prefer-
ences in preference memory, stores them in the items set and moves the machine
to the state that checks for prohibit preferences.

—— PSAcceptable
A Decide

ps—state = PSAcceptableState

Zv: Symbol
make UnaryPreference(first(slot), second(slot),v," ~") € PM

slot’ = slot

items’ = {v : Symbol |
make UnaryPreference(first(slot), second(slot), v, +') € PM}

impasse’ = *NONE "
ps_state’ = PSProhibitState

The PSNoAcceptable transition causes preference semantics to exit with an
empty items set when there are no acceptable preferences in memory for the
slot. This transition is a compromise to the obvious implementation. Preference
semantics would run exactly the same without it, but one of the common cases
is re-deciding a slot that has had all of its acceptable preferences withdrawn and
so every implementation would benefit from optimizing this case.

— PSNoAcceptable
ADecide

ps—_state = PSAcceptableState

= (3v: Symbol
make UnaryPreference(first(slot), second(slot). v, + ') = PM)

slot' = slot

items’ = &

impasse’ = *'NONE~
ps_state’ = PSFinishedState

159

The PSProhibit transition filters out of the current set of candidates those
which have prohibit preferences, and moves the machine to a state that searches
for reject preferences.

— PSProhibit
| ADecide

[h ps_state = PSProhibitState
|

' slot' = slot

items’ = {v : items !

i

;l make UnaryPreference(first(siot), second(slot), v,” " ") ¢ PM}
impasse’ = " NONE”*

| ps_state’ = PSRejectState

The PSReject transition filters out of the set of items those that have reject
preferences, and jumps to processing the better worse preferences.

_ PSReject
ADecide

ps_state = PSRejectState
slot’' = slot

items’ = {v : itemns

make UnaryPreference(first(slot), second(slot), v, —") ¢ PM}
impasse’ = *NONE~’
ps_state’ = PSBetter WorseState

160

The function Conflict is used to extract the candidates that have conflicting
better/ worse preferences.

Conflict : P Preference x Slot x P Symbol — P Symbol

Y PM : P Preference; slot: Slot; V : P Symbol
Conflict(PM, slot, V) =
{:VI3k:Vij#£ke

(makeBinaryPreference(first(slot), second(slot),;, > ", k) € PM A
makeBinaryPreference(first(slot), second(slot), k, >".j) € PM) v
(makeBinaryPreference(first(slot), second(slot),j, < . k) € PM ~
makeBinaryPreference(first(slot), second(slot), k, <',j) € PM) v
(makeBinaryPreference(first(slot), second(slot),;,” > ", k) € PM »
makeBinaryPreference(first(slot), second(slot), 7, <, k) € PM)}

If there are no conflicting better/worse preferences between the items, then
PSNoBetterWorseConflict applies. It filters out of the items set the ones that
have another item that is better, or are worse than another item. The state
machine moves on to filter by best/worst preferences.

—

PSNoBetter WorseConflict
ADecide

ps_stale = PSBetter WorseState
slot’ = slot
Conflict(PM, slot, items) = @

items’ = {v : items |

~(Sw:itemsev £ wA
makeBinaryPreference(first(slot), second(slot), v, < ', w) € PM ~
makeBinaryPreference(first(slot), second(slot), w, "> ", v) € PM)}
impasse’ = *NONE*

ps_state’ = PSBestState

161

If there are better/worse conflicts, this transition sets the items augmenta-
tion to the & of the items involved in the conflicts, declares the impasse to be
a conflict and finishes preference semantics.

__PSBetter WorseConflict
ADecide

ps_state = PSBetter WorseState
slot' = slot

Conflict(PM, slot, items) # &
impasse = ' CONFLICT*

items’ = Conflict(PM, slot, items)

ps_state’ = PSFinishedState

The processing of better/worse preferences occurs in either the PSNoBet-
terWorseConflict or the PSBetter WorseConflict transitions and is stepped by
BetterWorse.

PSBetterWorse = PSNoBetter WorseConflict Vv PSBetter Worse Conflict

The PSBest transition filters the candidates for those that have a best pref-
erence in memory. If there are no best preferences in memory for any of the
current candidates, the entire old set of candidates is passed on. After best
candidate filtering, preference semantics’ uses the worst preferences as a filter.

— PSBest
A Decide

ps_state = PSBestState
l slot’ = slot
3V : P Symbol |
V = {v: items |

make UnaryPreference(first(slot), second(slot), v, >") € PM} e
i (VO = tems' =V A

V = @ = items' = items)
i impasse’ = *NONE"’
| ps_state’ = PSWorsiState

162

The PSWorst filter removes the items that have worst preferences in memory.
If they all have worst preferences then none are filtered. After worst processing,
preference semantics studies the indifferent preferences.

— PSWorst
. ADecide

| ps_state = PSWorstState

!‘ slot’ = slot

| 3V . p Symbol |

I V = {v:items |

f make UnaryPreference(first(slot), second(slot), v, <’) ¢ PM} »
i (V #£2 = items’ = 1" A

! V = @ = items' = items)

impasse’ = "NONE "~
ps—state’ = PSIndifferentState

The predicate AlIMutuallvindifferent checks that all of the candidates in the
set are mutually indifferent. A candidate is mutually indifferent with the other
candidates if it is unarily indifferent, or if there is a binary indifferent preference
between the two candidates.

¢ AllMutuallyIndifferent_ : P(P Preference x Slot x P Symbol)

) Y PM : P Preference; slot : Slot; V : ™ Symbol e
‘ AllMutuallyIndifferent(PM , slot, V', &

’ (Y3, k:Vijzke

1 (makeUnaryPreference(first(slot), second(slot).j, =p ') &€ PM v

‘ ((makeBinaryPreference(first(slot), second(slot),j. " =p . k) € PM) v
| makeBinaryPreference(first(slot), second(slot). k, =p',j) € PM)))

163

If the candidates are all mutually indifferent, preference semantics returns
with all of the candidates in the items set, an impasse of * NONE * and sets the
number of winners to one. This allows WMPhase and QPhase to tell that it
has a set of indifferent candidates to choose one from.

— PSMutuallyIndifferent
ADecide

ps_state = PSIndifferentState

slot' = slot

impasse = " NONE”’
AllMutuallyIndifferent(PM | slot, items)

items’ = itemns
! ps_state’ = PSFinishedState
i

| number_of _winners’ = One

If the candidates are not mutually indifferent and the decision is not for a
context slot, there is still a chance that all of the items are parallel. In this case.
PSNotMutuallyIndifferent NonContextSlot passes the items on to the parallel
checking state.

PSNotMutuallyIndifferent NonConteztSlot
ADecide

ps_state = PSIndifferentState

slot’ = slot

impasse = " NONE’

— AllMutuallyIndifferent(PM , slot, items)

= {first(slot) € GM A
second(slot) € {" PROBLEM-SPACE *,"STATE ", ' OPERATOR '})

r
|
|
|
‘r
|
|
|

items’ = items

ps_state’ = PSParallelState

164

Soar6 does not support parallel candidates for context items, although an
earlier version of Soar did for operators. So non-mutually indifferent items for
context slots generate a tie, with all of the candidates as items, not just those
that are not mutually indifferent.

__ PSNotMutuallyIndifferent ConteztSlot
ADecide

ps_siate = PSIndifferentState

slot’ = slot
impasse = "NONE "’
- AllMutuallyIndifferent(PM , slot, items)

first(slot) € GM A
t second(slot) € {" PROBLEM-SPACE’,*STATE ", OPERATOR °}

items’ = items

ps_state’ = PSFinishedState
impasse’ = “TIE”"

i
i
|
\
i

The complete indifference processing is handled by one of the three transi-
tions above, and stepped and hooked using the Indifferent transition.

PSIndifferent = PSMutuallyIndifferent v
PSNotMutuallyIndifferent NonConteztSlot v
PSNotMutuallyIndifferent ConteztSlot

The parallel state uses the predicate AliMutuallvParallel to check if the set
of candidates are all mutually parallel. An item is mutually parallel to the set
of other items if it has a unary parallel preference, or if it has either of the two
possible relative parallels between each item.

AllMutuallyParallel_ : P(P Preference x Slot x P Symbol)

|
"' VYV PM : P Preference; slot : Slot; V : P Symbol e
i AllMutuallyParallel{ PM , slot, V)
(Vi k:VijZke
(make UnaryPreference(first(slot), second(slot),j, &) € PM v
makeBinaryPreference(first(slot), second(slot), 5, & ', k) € PM v
makeBinaryPreference(first(slot), second(slot) k, & ",j) € PM))

If all of the candidates are mutually parallel PSMutuallyParallel returns all
of the items, sets impasse to " NONE* and the number of winners to All.

— PSMutuallyParallel
ADecide

ps_state = PSParallelState
E slot’ = slot
; AllMutuallyParallel(PM , slot, items)
; ilems’ = items
impasse’ = ' NONE
| number_of _winners’ = All

ps—state’ = PSFinishedState

PSNotMutuallyParallel returns a tie impasse if all of the candidates are not
mutually parallel.

— PSNotMutuallyParallel
| ADecide

—

ps—state = PSParallelState

slot’ = slot

- AliMutuallyParallel(PM , slot, items)
ttems' = items

tmpasse’ = "TIE”~

ps_state’ = PSFinishedState

The PSParallel transition is defined to either be a Mutually Paralle] transition
ot a NotMutuallyParallel transition.

PSParallel = PSMutuallyParallel A PSNotMutuallyParallel
The operation to step preference semantics executes the start transition, or

one of the transitions associated with the processing for a specific preference.

PSStep = PSStart v
PSRequire v PSAcceptable v PSNoAcceptable v PSProhibit v PSReject v
PSBetterWorse v PSBest v PSWorst v PSIndifferent v PSParallel

166

7.9 Working Memory Phase Transitions

Working Memory Phase is defined in 12 transitions {Figure 7.3).

1.

wn

10.

11.

12.

WMPhaselnitialize — prepares the WMPhase state machine for execu-
tion.

. WMPhaseReset — resets the state of WMPhase when its execution is

terminated abnormally.

. WMPhaseStartPickSlot — starts the loop over the changed slots.

WMPhaseStartDecideSlot — selects one of the changed slots to decide.

. WMPhaseStepDecideSlot — runs the preference semantics on the chosen

slot.

WMPhaseStartImpasser — starts the execution of the impasser on the
slot.

WMPhaseStepImpasser — steps the impasser state machine.

. WMPhaselmpasserFinished — when the impasser is finished, this moves

the machine on to the WMPhaseChangeWMState which adds and removes
working memory elements for the slot.

WMPhaseRemoveWME — this removes any working memory elements
no longer supported by the slot’s decision.

WMPhaseAddWME — this adds in any working memory elements that
are required by the slot’s decision.

WMPhaseChangeWMFinished — when all of the required changes to
working memory have been accomplished, this returns control to selecting
another changed slot.

WMPhaseFinish — when all of the changed non-context slots have been
decided, this stops the execution of WMPhase.

WMPhaselnitialize initializes the WMPhase by resetting the state counter.

— WMPhaselnitialize
A Decide

|
E wmphase_state = WMPhaseFinishedState
; wmphase_state’ = WMPhaseInitialState

S

167

WMPhaseReset resets the system if WMPhase’s operation is abnormally
terminated from the external interface.

— WMPhaseReset
ADecide

wmphase_state’ = WMPhaselnitiglState

WMPhaseStartPickSlot moves WMPhase into the state that will select a
changed slot to decide.

— WMPhaseStartPickSlot
ADecide

wmphase_state = WMPhaselnitialState
wmphase_state’ = WMPhasePickSlotState

The recognition memory records all of the slots that had preference changes
during the last preference phase in the set changed_slots. In the pick slot state
WM Phase picks one of these slots to have its preferences decided, initializes the
preference semantics and moves to the state that decides the slot.

— WMPhaseStartDecideSlot
I ADecide

wmphase_state = WMPhasePickSlotState

J s : changed_slots \ (GM x ConteztSlotAtiribute) o
(changed_slots' = changed_slots \ {s} A
slot’ = s)

| PSInitialize

slot' = slot

wmphase_state’ = WMPhaseDecideSlotState

168

The WMPhaseStepDecideSlot transition steps preference semantics unti] a
decision has been reached.

— WMPhaseStepDecideSlot
| ADecide

| wmphase_state = WMPhaseDecideSlotState = wmphase_state’
PSStep

T slot’ = slot

When a decision has been reached preference semantic’s precondition is no
longer satisfied, so WMPhaseStartImpasser initializes the impasser and moves
WMPhase to the WMPhaseIlmpasserState state to run the impasser.

— WMPhaseStartImpasser
ADecide

wmphase_state = WMPhaseDecideSlotState
— pre PSStep
Impasserinitialize

1 slot' = slot

wmphase_state’ = WMPhaseImpasserState

The WMPhaseStepImpasser transition runs the impasser. The impasser
looks at the decision that preference semantics has created, and changes working
memory and impasse memory to match. If the decision requires an 1mpasse, the
impasser will create it. If the decision requires a change to the existing impasse,
the impasser will change it. If the decision requires no impasse, the impasser
will remove any existing impasse. If the decision requires no impasse and none
exists in memory, the impasser will make no changes.

— WMPhaseStepImpasser
i ADecide

! wmphase_state = WMPhaseImpasserState = wmphase_state’
i
| ImpasserStep

slot’ = slot .

169

The WMPhaseImpasserFinished transition recognizes when the impasser has
finished by checking its precondition. When it has completed, it moves the
WMPhase on to the state that changes the values in working memory to match
the slot’s decision.

WMPhaselmpasserFinished
ADecide

wmphase_state = WMPhaselmpasserState
— pre ImpasserStep

slot’ = slot

wmphase_state’ = WMPhaseChange WMState

170

If there is no impasse, and there is not some element in working memory
that the decision requires then the WMPhaseAddWME transition will add it. If
the decision is for a set of all parallel items. then WMPhaseAddWME will add
them all, one at a time. If the decision is for one of a set of indifferent candi-
dates and one candidate is not already installed, then WMPhaseAddWME will
pick one of the items non-deterministically and add it to memory. Chunking’s
TraceWME operation is referenced to extend the instance numbering and the
working memory trace.

— WMPhaseAddWME
i ADecide

wmphase_state = WMPhaseChange WMState = wmphase _state’
slot’ = slot
items' = items

impasse = “ NONE "’

| Jv:items !
1} (number_of _winners = All A
! “(Zw: WM e

w.id = first(slot) A w.attribute = second(slot) A
w.value = v A w.contezt_acceptable_preference = No)) v
| (number_of _winners = One A
: S(Sw: WM e
{ w.id = first(slot) A w.attribute = second(slot) A
| w.value € items A w.contezt_acceptable_preference = No)) o
‘ Sw: WME | w = make WME (first(slot), second(slot), v, No) A
WM' = WM u{w} A
Trace WME)

171

If there is an element in working memory that does not match the decision,
the WMPhaseRemoveWME transition removes it. If the decision resulted in
an impasse, then WMPhaseRemove WME removes all of the working memory
elements for the slot. If the decision resulted in no impasse, and there is a value
in memory that is not in the items set, then it is removed. If the decision is for a
set of mutually indifferent candidates and more than one of them is in memory,
then all but one are chosen non-deterministically to removed.

— WMPhaseRemove WME
I ADecide

wmphase_state = WMPhaseChange WMState = wmphase_state’
slot' = slot
items’ = items

Sw: WM |
w.id = first(slot) A w.attribute = second(slot) A
w.contezl_acceptable _preference = No A
{{(impasse £ "NONE ") v
(w.value € items) v
(number_of _winners = One A
(Bwp: WM e
‘ w # wy A wa.id = first(slot) A
\ wy.atiribute = second(slot) A
i w.contezt_acceptable_preference = No A
: wy.value € items))) o
WM = WM\ {w}

When no more elements need tc be added to or removed from working mem-
ory, then the WMPhaseChangeWMFinished transition moves WMPhase back
to the decide slot state.

WMPhase Change WMFinished
ADecide

wmphase_state = WMPhaseChange WM State
~ (pre WMPhaseAddWME v pre WMPhaseRemove WME)
i wmphase_state’ = WMPhasePickSlotState

172

When all of the changed slots have been decided, WMPhaseFinish finishes
WMPhase.

WMPhaseFinish
A Decide

wmphase_state = WMPhasePickSlotState
changed_slots \ (GM x ConteztSlotAttribute) = &
wmphase_state’ = WMPhaseFinishedState

The WMPhase is stepped by taking any one of its transitions, with the
exception of the initializing transition.

WAMPhaseStep = WMPhaseStartPickSlot v WMPhaseStartDecideSlot v
WMPhaseStepDecideSlot v WMPhaseStartImpasser v
WMPhaseStepImpasser v WMPhaseImpasserFinished v
WMPhaseAddWME v WMPhaseRemove WME v
WMPhaseChange WMPFinished v WMPhaseFinish

7.10 Quiescence Phase Transitions

QPhase is very parallel in structure to WMPhase, but differs because it must
walk the context stack instead of simply processing the changed slots. It adds
in four transitions to the basic structure of working memory phase, for a total
of 16 transitions (see Figure 7.4).

1.
2.

-~

QPhaselnitialize — initializes QPhase.

QPhaseReset — resets QPhase’s state when its operation is abnormally
terminated.

QPhaseStartPickSlot — starts QPhase iterating through the slots of the
context stack from oldest to newest.

QPhaseNextSlot — if the slot under consideration does not need to be
decided, this transition picks the next slot in the context stack to try.

QPhaseNoChangedPreferencesNoChangelmpasse — if the slot under con-
sideration has no changed preferences and is the last slot of the context
stack, this transition creates a no-change impasse.

. QPhaseStartDecideSlot — this starts QPhase running the preference se-

mantics.

QPhaseStepDecideSlot — this iransition steps preference semantics.

173

10.
11.

12.

13.

14.

15.

16.

. QPhaseStartImpasser — when preference semantics is finished, this tran-

sition moves QPhase on to the state that handles impassing.

. QPhaseChangedPreferencesNoChangelmpasse — if the slot is the last slot

of the context and has changed preferences but the preference semantics
does not produce an impasser or a winning candidate, then this transition
creates a no-change impasse.

QPhaseStepImpasser — steps the impasser on the current slot.

QPhaseImpasserFinished — moves the QPhase from stepping the impasser
into the state that changes working memory.

QPhaseAddWME — this transition adds the working memory elements
for slots that preference semantics specifies.

QPhaseRemoveWME — this transition removes the working memory el-
ements for the slot that preference semantics no longer specifies.

QPhaseReAddWME — this transition re-adds a working memory element
for a slot that has been explicitly reconsidered.

QPhaseSlotUnchanged — if QPhase has not changed the slot under con-
sideration then this loops back to the pick slot state to decide another
slot.

QPhaseSlotChanged — if QPhase has changed the siot, then this ends the
execution of QPhase.

QPhaselnitialize initializes the QPhase state machine by setting its state
counter to the initial state.

— QPhaselnitsalize
A Decide

gphase_state’ = QPhaseFinizhedState

|
I
L
[
|

gphase_state’ = QPhaselnitialState

QPhaseReset resets the QPhase’s state when the machine is terminated ab-
normally.

— QPhaseReset
A Decide

|

gphase_state’ = QFhaselnitialState

changed _slots = &

L

174

QPhase iterates over the slots of the context from oldest slot to newest slot.
QPhaseStartPickSlot starts the loop by setting the initial slot to the top goal
and the problem-space attribute, and entering the QPhasePickSlotState.

— QPhaseS tartPickSlot
. ADecide

gphase_state = QPhaselnitialState
slot = (top_goal,* PROBLEM-SPACE)
| gphase_state’ = QPhasePickSlotState

r
|
l

NextContextSlot orders the slots to allow QPhase to know which siot of
the goal to consider next. The relation’s minimum is * GOAL ° to simplify the
calculation of the slot of no-change impasses.

| NeztConteztSlot : ConteztSlotAtiribute — ConteztSlotAtiribute

NeztConteztSlot = {(* GOAL ", *P2OBLEM-SPACE "),
(* PROBLEM-SPACE ", " STATE °),
(*STATE ", " OPERATOR)}

QPhase must know when the slot it is deciding is the last one that it should
consider for this impasse. If the slot is the operator, it is the last to check as
it is the last in the impasse. If the context does not have a working memory
elemznt in memory for the slot, then it is the last one to check, e.g., you can’t
install an operator unless there is a state.

LastSlot ToCheckinContezt_ : P(Slot x P WME)

| vs. Slot;: WM :P WME e
LastSlotToCheckInContezi(s, WM) <
{second(s) = *OPERATOR " v
| ~(3w: WMo
3 w.id = first(s) A w.atiribute = second(s) A
} w.contezt_acceptable_preference = No))

175

QPhase uses the LastSlot ToCheckInContextStack predicate to determine the
last one of the context stack for it to process. A slot is the last one to check
in the stack if it is the last slot to check in the last impasse. It will signal a
no-change impasse for the last filled slot if preference semantics can no* reach
a conclusion about this slot.

| LastSlotToCheckInConteztStack . : P(Slot x P Identifier x P WME)
’ Vs : Slot; GM . P Identifier; WM : P WME o
|

LastSlotToCheckInContertStack(s. GM, WM) <
- (3g9: GM e make WME (g, OBJECT ", first(s), No) € WM)
LastSlotToCheckInContezt(s, WM)

QPhase must decide a context slot if there is no value for it in working
memory and there are preference changes, or if there is a value in working
memory and there is a reconsider.

DecidableSlot_: P(Slot x P WME x P Preference x P Slot)

YV slot : Slot; WM : P WME,; PM . P Preference. changed_slots : P Slot e
DecidableSlot{slot. WM, PM . rhanged_slots) <

(= (3v: Symbol e
make WME (first(slot), second(slot), v, No) € WM) A
slot € changed_slots) v

(Zv: Symbol e
make WME (first(slot}, second(slot), v, No) € WM A
make UnaryPreference(first(slot), second(slot), v, @ ") € PM)

176

While QPhase is iterating across the context stack, QPhaseNextSlot allows
QPhase to skip slots that do not need to be decided. If the slot that QPhase is
working with is not decidable and it is not the last slot to check, then it picks
the next slot to decide. If the slot is not the last in this context o check, it
moves to the next slot in the same context. If the slot is the last in this context
to decide, it starts on the problem space of the next context.

—_ QPhaseNeztSlot
i ADecide

gphase_state = QPhasePickSlotState = gphase_state’
| - DecidableSlot(slot, WM, PM, changed_slots)
{ - LastSlotToCheckinConteztStack{slot, GM, WM)

~ LastSlotToCheckInContezt(slot, WM) =
siot’ = (first(slot), NeztConteztSlot(second(slot)))

LastSlotToCheckInContezt(slot, WM) =
(Zsg: GM . make WME (sg, " OBJECT *, first(slot), No) € WM o
slot' = (sg, " PROBLEM-SPACE "))

If QPhase’s loop down the context stack takes it to the last slot in the
context, and this slot has no preference changes, this transition signals a no-
change impasse. The no change impasse is for the last Slled slot of the context,
or if the context has no filled slot it is a goal no-change.

QPhaseNoChangedPreferencesNoChangeImpasse
A Decide

—_—
1

gphase_state = QPhasePickSlotState
~ DecidableSlot(slot, WM . PM, changed_slots)
| LastSlotToCheckInConteztStack(slot, GM, WM)

= (Sw: WM e w.id = first(slot) A w.attribute = second(slot) A
| w.contezt_acceptable_preference = No) =
slot’ = (first(slot), NeztConteztSlot™ (second(slot)))

(Zw: WM e w.id = first(slot) A w.attribute = second(slot) A
! w.contezt_acceplable_preference = No) =
slot’ = (first(slot), second(slot))

Impasserinitialize
impasse’ = " NO-CHANGE"
items' = &

| qphase_state’ = QPhaseImpasserState

If there are changed preferences for a slot, QPhase moves to the QPhaseDe-
cideSlotState to step preference semantics. The slot to be be decided is removed
from the changed_slots set so that it is not decided again.

— QPhaseStartDectdeSlot
ADecide

gphase _state = QPhasePickSlotState
DecidableSlot(slot, WM, PM, changed_slots)
changed_slots’ = changed_slots \ {slot}
PSInitialize

~~ntez!_changed = Unchanged

gphase_state’ = QPhaseDecideSlotState

178

QPhaseStepDecideSlot steps preference semantics on the current slot.

QPhaseStepDecideSlot
A Decide

! gphase_state = QPhaseDecideSlotState = qphase_state’

! PSStep

When preference semantics has finished, this transition moves QPhase to the
QPhaselmpasserState to step the impasser. The impasser will add an impasse,
remove an old impasse, change the items of the existing impasse, or do nothing
depending upon the contents of working memory and the results of preference
semantics.

— QPhaseStartImpasser
A Decide

gphase_state = QPhaseDecideSlotState

~ pre PSStep

— LastSlotToCheckInConteztStack (slot, GM, WM) v
impasse # "NONE’ v
items = O

Impasserinitialize

gphase_state’ = QPhaseImpasserState

179

If the slot under consideration is the last slot in the context and preference
semantics has no winner, then QPhaseChangedPreferencesNoChangelmpasse
sets the impasse to no-change before starting the impasser.

— QPhaseChangedPreferencesNoChangelmpasse
ADecide

gphase_state = QPhaseDecideSlotState
— pre P5Stey

- items = 2

. impasse = “NONE"
LastSlotToCheckInConteztStack(slot, GM , WM)

—(Zw: WM e w.id = first(slot) A w.attribute = second(slot) A
w.contezt_acceptable_preference = No) =
slot’ = (first(slot), NeztConteztSlot™ (second(slot)))

(Zw: WM e w.ad = first(slot) » w.attribute = second(slot) ~
w.contezt_acceptable _preference = No) =
slot’ = (first(slot). second(slot))

Impasserinitialize

gphase _state’ = QPhaseImpasserState

QPhaseStepImpasser steps the impasser state machine.

— QPhaseStepImpasser
~ ADecide

gphase _state = QPhaseImpasserState = gphase _state’
ImpasserStep

When the impasser is fimished, QPhaseImpasserFinished moves QPhase on
to ChangeWMState to add and remove working memory elements for the slot.

— QPhaseImpasserFinished
ADecide

gphase_state = QPhaseImpasserState
— pre ImpasserStep

gphase _state’ = QPhaseChange WMState

180

Whenever QPhase changes a context slot, it must clear out all of the work-
ing memory elements for the lower slots of the same context. LaterSlotsOfCon-
textSlot returns the working memory elements for the later slots so that they
can be removed from working memory.

LaterSlotsOfConteztSlot : Slot x P WME — P WME

Ys:Slot; WM :P WME o
LaterSlotsOfConteztSlot(s, WM) =
{w: WM | w.id = first(s) A w.contezt_acceptable _preference = No A
{(second(s) = "PROBLEM-SPACE " A
w.attribute € {* STATE *,* OPERATOR '}) v _
(second(s) = “STATE * A w.attribute = *OPERATOR °))}

If the preference semantics produces a set of items and no impasse, and none
of the items 1s in working memory then QPhaseAddWME adds a working mem-
ory element for one of the items. The item used is picked non-deterministically.
It marks the context as changed so that QPhase knows that it has found a
change and that it should stop iterating across the slots. As it does this, it also
deletes all of the later slots for the same context.

— QPhaseAddWME
| ADecide

impasse = "NONE*

- (3w : WM e w.id = first(slot) A w.attribute= second(slot) A

?

) gphase_state = QPhaseChange WMState = qphase_state’

|

|

i w.contezt_acceptable_preference = No A w.value € items)

|
. contezt_changed = Unchanged = contezt_changed’ = Changed
21 :utems: w: WME | w = make WME (first(slot), second(slot). i, No) e
(GM' = GM \ GoalDescendants(first(slot), GM, WM) A
| WM' = WM \ LaterSlotsOfConteztSlot(slot, WM)
l u{w} A
Trace WME)

181

QPhaseRemove WME deletes any elements for the context slot that are not in
the items set decided by preference semantics. It marks the context changed and
deletes the elements for later slots. The one exception to this rule is that context
slots are not emptied for no-change impasses. It also updates the bottom_goal
pointer, in case it has deleted context impasses.

— QPhaseRemove WME
' ADecide

gphase_state = QPhaseChange WAState = gphase_state’
contezt_changed = Unchanged = contezt_changed' = Changed
Sw: WM |

w.id = first(slot) A w.attribute = second(slot) A

w.contezt_acceptable_preference = No A

w.value ¢ items o

WM = WM\ {r: WM ! r=uwA impasse # ' NO-CHANGE "}
\ LaterSlotsOfConteztSlot(slot, WM)

bottom _goal' = first(slot)

182

Sometimes, QPhase re-decides an installed siot because it has a reconsider
preference and preference semantics produces no impasse and an items set that
holds the installed value. QPhaseReAddWME re-installs this candidate by re-
moving the working memory element, the lower context slots, all subgoals and
their architecturally created elements, and then re-adds the working memory
element.

__ QPhaseReAddWME
ADecide

gphase_state = QPhaseChange WMState

contezl_changed’ = Changed
impasse = " NONE*

Sw: WM

w.id = first(slot) A w.attribute = second(slot) A

w.contezt_acceptable _preference = No A

w.value € items A

make UnaryPreference(first(slot), second(slot), w.value, " @') ¢ PM o

(GM' = GM " GoalDescendants(first(slot), GM, WM) A"
WM = WM\ {w}

\ LaterSlotsOf ConteztSlot(slot, WM)

\(U{g - GoalDescendants(first(slot), GM,WM) »
ImpassesWMEs(g, GM, WM)})
Hw} A
Trace WME)

1{ qphase_state’ = QPhaseFinishedState

If working memory is already consistent with the decision for the slot then
QPhaseSlotUnchanged will recognize that the context is unchanged and move
QPhase back into the pick slot state to continue the loop over the slots.

_ QPFLaseSlotUnchanged
A Decide

gphase_state = QPhaseChange WMState
— (pre QPhaseAddWME v pre QPhaseRemove WME)

contezt _changed = Unchanged

1 gphase_state’ = QPhasePickSlotState

183

If neither the Impasser or the ChangeWMState have changed memory and
all adds and removes have occurred, then QPhaseSlotChanged finishes the exe-
cution of QPhase.

— QPhaseSlotChanged

|
|

A Decide

gphase_state = QPhaseChange WMState

- (pre QPhaseAddWME v pre QPhaseRemove WME)
contezt_changed = Changed

gphase_state’ = QPhaseFinishedState

QPhaseStep drives the QPhase one step forward in the state machine by
executing one of the QPhase state transitions.

QPhaseStep = QPhaseStartPickSlot v QPhaseNeztSlot v
QPhaseNoChangedPreferencesNoChangelmpasse v
QPhaseStartDecideSlot v QPhaseStepDecideSlot v
QPhaseStartImpasser vV QPhaseStepImpasser Vv
QPhaseChangedPreferencesNoChangeImpasse v
QPhaselmpasserFinished v
QPhaseRemove WME v QPhaseAddWME v QPhaseReAddWME v
QPhaseSlotUnchanged vV QPhaseSlotChanged

184

Chapter 8

Top Level

The actions of Soar’s modules are sequenced by a top level state machine that
steps the various control points of each module. Recognition memory is stepped
through preference phase. Decide is stepped through WMPhase and QPhase.
IO is stepped through the input cycle and the output cvcle.

This chapter specifies.the states of the top level state machine, Soar’s state
schema and the transitions of the top level state machine.

8.1 The States of the Top Level

Soar’s top level state machine has ten states (Figure 8.1).

1.

2.

TLInitialState — the machine starts here when initialized.

TLDecisionCycleState — the top level enters this state before starting
each decision cvcle.

TLElaborationPhaseState — the top level enters this state before starting
each elaboration phase.

TLElaborationCycleState — the top level enters this state before starting
each elaboration cycle.

TLInputCvcieState — the top level uses this staie to step the input cycle
state machine.

TLPreferencePhaseState — the top level uses this state to step the pref-
erence phase state machine.

TLWorkingMemoryPhaseState — the top level uses this state to step the
working memoty phase state machine.

8. TLOutputCycleState — the top level uses this state to step the output
cycle state machine.

9. TLDecisionPhaseState — the top level uses this state to step the quies-
cence phase state machine.

10. TLFinishedState — the state that the top level enters when the system
is halted. There is no way to reach this state in the specification because
Soar is a situated agent that behaves continuously, i.e., Soar never turns
itself off. However, an implementation would have commands that ter-
minate Soar’s execution by moving the top level state machine into its
"TFFinishedState.

TopLevelState ::= TLInitialState
{ TLDecisionCycleState
i TLElaborationPhaseState
| TLElaborationCycleState
' TLInputCycleState
| TLPreferencePhaseState
i TLWorkingMemoryPhaseState
| TLOutputCycleState
| TLDecisionPhaseState
| TLFinishedState

The state schema for the top level, TL just holds a state counter of type
TopLevelState.

—TL

i top_level_state : TopLevelState

8.2 Soar’s State Schema

The Soar state schema contains the state schemas for recognition memory, 10,
and Decide. It also includes the state schema for the top level (TL). The Iden-
tifierTable is defined to be the union of all of the component identifiers of the
productions, temporary memory elements, components and traces.

186

TLStartSoar

TLDecisionCycle
State

InitializeTL
TLStart
DecisionCycle
TLOutputCycl
TLFinishedState gttgltle e
Y
TLEndElaboration TLElaborationPhase
Cycle State
TLWorkingMemory
PhaseState
TLEndDecision TLStepWorking [TLStart
Cycle MemoryPhase ElaborationPhase

TLStartWorkingMemory
Phase

TLPreference
PhaseState

TLElaborationCycle
State

TLStepPreference
Phase

TLStartPreferencePhase

TL.StartElaboration
Cycle

TLDecisionPhase
State

TLInputCycle
State

TLStartDecisionPhase
TLStepDecision TLStepInput

Phase Cycle

Figure 8.1: Top Level State Machine

187

Soar

" RM

L I0

} Decide

| TL

| Identifier Table : P Identifier

Identifier Table =
(U(SpsComponents (SPM)

TMEsComponents {TM|uU
TrecesComponents(ran TrP))N

; Identifier)

The InitSoar schema specifies the valid initial configurations for Soar. It
constrains Soar’s initial configuration to be an initial configuration for recogni-
tion memory, IO and decide, and the top level state machine must start in the
TLInitialState state.

— InitSoar
" Soar

I InitRM
Init]iO
l InitDecide

top_level_state = TLInitialState

8.3 The Top Level State Machine

TLInitialize initializes the top level state machine. Soar never initializes itself:
only the user interface will ever invoke this operation.

_ TLInsticlize
“ ASoar

 —

top_level_state = TLFinishedState

!
‘ top_level_state’ = TLInitialState

TLReset resets the top level state machine to its initial configuration from
any of its states. The top level state machine might have been stepping one or
more of the hierarchy of sub-state machines, so i1t resets their states also.

188

TLRese?
r ASoar

E top_level_state’ = TLInitialState
’ PPhaseReset

s InputCycleReset
‘ OutputCycleResel
] QPhaseReset

' WMPhaseReset

TLStartSoar moves Soar from its initial state into the TLDecisionCyvcleState.
The TLDecisionCycleState is where each iteration of a decision cycle is started.
When Soar is first started.-this transition initializes decide’s first goal with
DecideCreateFirstGoal.

— TLStartSoar
I ASoar

top_level_state = TLInitialState
DecideCreateFirstGoal

|
i
|
I top_level_state’ = TLDecisionCycleState

TLStartDecisionCycle moves from the TLDecisionCycleState into the TLE-
laborationPhaseState starting the first elaboration phase of the decision cvcle.

— TLStartDecisionCycle
A Soar

top_level _state = TLDecisionCycleState

i
i top_level_state’ = TLElaborationPhaseState

The elaboration phase consists of many elaboration cycles; so the TLStartE-
laboration Phase transition moves the top level from the TLElaboration PhaseS-
tate into the TLElaborationCycleState.

— TL StartElaborationPhase
A Soar

é top_level _state = TLElaborationPhaseState

! top_level_state’ = TLElaborationCycleState

189

Each elaboration cycle is an input cycle, then a preference phase, a working
memory phase and finally an output cycle. TLStartElaborationCyvcle moves
from the TLElaborationCycleState into the TLInputCvcleState to start the
elaboration cycle by starting the input cycle. It initializes the input cycle state
machine for execution, so SoarInputCycleState can step the input cycle state
machine.

— TLStartElaborationCycle
; ASoar

top_level_state = TLFElaborationCycleState
InputCycleInitialize

L top_level_state’ = TLInputCycleState

TLStepInputCycle moves the input cycle state machine one step.

— TLStepInputCycle
ASoar

i top_level_state = TLInputCycleState = top_level_state’
?L InputCycleStep

When the input cycle state machine has finished, if Soar is not at Quies-
cence, TLStartPreferencePhase moves to TlPreferencePhaseState to start the
preference phase.

TLStartPreference Phase
ASoar

top_level_state = TLInputCycleState

— pre InputCycleStep

e

- Quiescence

top_level_state' = TLPreferencePhaseState

If Soar is at Quiescence then TLStartDecisionPhase moves Soar to the T'LDe-
cisionPhaseState to start the decision, and initializes QPhase.

190

_ TLStartDecisionPhase
ASoar

!
I top_level_state = TLInputCycleState
; = pre InputCycleStep
J Quiescence

QPhaselnitialize

top_level_state’ = TLDecisionPhaseState

TLStepPreferencePhase steps the preference phase.

TLStepPreferencePhase
i ASoar
| top_level _state = TLPreferencePhaseState = top_level_state’
i' PPhaseStep

When the preference phase has finished its work, TLStart WorkingMemo-
ryPhase moves Soar from TLPreferencePhaseState into TLWorkingMemory Phas-
eState.

— TLStart WorkingMemoryPhase
| ASoar

. top_level_state = TLPreferencePhaseState
- pre PPhaseStep
WMPhaselnitialize

top_level_state’ = TLWorkingMemoryPhaseState

TLStep WorkingMemoryPhase steps the working memory phase.

— TLStep WorkingMemoryPhase
' ASoar

. top_level_state = TLWorkingMemoryPhaseState = top_level_state’
! WMPhaseStep

When the working memory phase has finished, TLStartOutputCycle initial-
izes the output cycle and moves Soar to TLOutputCycleState.

191

_ TLStartOutputCycle
ASoar

top.level_state = TLWorkingMemoryPhaseState
— pre WMPhaseStep

top_level_state’ = TLOutputCycleState
OutputCycleinitialize

TLStepOutputCycle steps the output cycle.

_ TLStepOutputCycle
ASoar

top_level_state = TLOutputCycleState = top_level _state’

OutputCycleStep

When the output cycle has finished its work, TLEndElaborationCycle moves
Soar back to the ElaborationPhaseState to start the next elaboration cycle of
the elaboration phase.

— TLEndElaborationCycle
ASoar

top_level_state = TLOutputCycleState
- pre OutputCycleStep

top_level_state’ = TLElaborationCycleState

TIStepQPhase steps QPhase in the DecisionPhaseState.

—_ TLStepQPhase
ASoar

top_level_state = TLDecisionPhaseState = top_level_siate’
QPhaseStep

When the quiescence phase has finished, TLEndDecisionCycle moves Soar
back to the DecisionCycleState to start the next decision cycle of the decision

phase.

192

TLEndDecisionCycle
.‘[_ ASoar

top_level_state = TLDecisionPhaseState

|
% - pre QPhaseStep
i top_level_state’ = TLDecisionCycleState

|

TLStep steps the entire execution of Soar by moving the top level state
machine through one of its transitions.

TLStep = TLStartSoar v TLStartDecisionCycle v
TLStartElaborationPhase v TLStartElaborationCycle v
TLStepInputCycle v TLStartPreferencePhase vV
TLStartDecisionPhase v TLStepPreferencePhase v
TLStart WorkingMemoryPhase v TLStep WorkingMemoryPhase v
TLStartOutputCycle v TLStepOutputCycle v
TLEndElaborationCycle v
TLStepQPhase v TLEndDecisionCycle

193

Appendix A

Numbers

We have specified a Soar that uses only constants and identifiers to construct
its temporary memory structures. [deally, the implementation would also use
exactly the same data structures. Unfortunately, Soar users fird it difficult to
effectively process numbers without some implementation support. The long
term solution is to provide problem spaces, complete with chunk libraries. that
gracefully support numeric reasoning, and some work in this direction has al-
ready been completed. In the interim, we augment our implementation’s base
data structures with numeric constants and extend the test structure to let
productions match against them with the basic arithmetic relations.
The implementation adds in:

Number : P Constant
>, <, >=,<=: SpucialSymbol
NumericRelationSymbols : P SpecialSym bol

NumericRelationSymbols = {>, <, >=,<=}
Test ::= RelationalTest{{ NumericRelationSymbols x (Variable U Number))
Yt : ran RelationalTest o TestsComponents(t) = second{RelationalTest™ 1))

Yt : ran RelationalTest o TestsPositiveComponents(t) = &
. Test ; :
We extended Matchessymbo] with some extra cases to handle numeric re-

lations and same type tests must be extended to differentiate numbers from
identifiers and other constants.

194

Matchessi;f;bol —: P(Binding x Test x Symbol)

¥ b : Binding; t: Test; v: Symbol o

Matcbes’sr;f:lbol (b,t,v) &

{(t € ran RelationalTest A
(3 nrsvn : {RelationalTest™(t)} o
(Fvn : {((id Z) & b)(second(nrsvn))} o
(3t: {first(nrsyn)} o
(t=>=>v>wm)A
(t=<=v<um)A
(t=>==>v>=um)A
(t=<==v<=un)))))V
(t € ran SameType Test A
(3v2: {((id Symbol) & b)(SameTypeTest™(t))} @
((v € Identifier A v2 € Identifier) Vv
(v € Constant \ Number A v2 € Constant \ Number) v
(v € Number A v2 € Number)))))

195

Appendix B

An Implementation
Discipline

Section B.1 details a technique to allow users to observe and modify the im-
plementation of Soar. Section B defines an implementation discipline to govern
implementations of the specification. The final section, Section B.3, calculates
the worst case cost of actually using the state machine representation for Soar’s
control.

B.1 Observing Soar’s Operation

As Soar is a research vehicle for cognitive modeling and artificial intelligence
work ([New90]), we would like to have an implementation that we can easily
monitor and modify. We require a specification and implementation discipline
that helps us to support these goals. In previous implementations, if a researcher
wanted to measure the frequency of a certain type of chunk creation, she would
have to read large tracts of the source code and install her statistics directly in
a copy of the code. As there was no other detailed enough description of the
system, only the code was an effective index into the system’s operation.
Coupling this specification with an implementation discipline would allow
Soar researchers to more easily solve this problem. In [PMN91] we describe a
technique called Hooking that allows the system to execute a function, called
an Observer, before and after the execution of any sequential operation. The
technique also allows the user to, at run-time, redefine any specified operation:
as long as the new implementation meets this specification of the operation in
this document. Researchers could then use this specification as a guide to place
observers on hooks that monitor or change the implementation’s operation.

196

B.2 An Implementation Discipline

This section defines an implementation discipline that maps parts of this spec-
ification into executable code. This discipline was designed to allow the easy
observation and modification of Soar. but the new implementation of Soar,
Soar§, is not constructed using this technique.

Ideally, we would like to semi-mechanically map specifications into an opti-
mized implementation. However. the automation of this mapping is a difficult
research problem in program synthesis, so we have settled for an informal man-
ual mapping.

The Soar specification contains four types of objects that must be mapped
into the implementation:

1. state schemas — defined using schemas
2. sequential operations — defined using schemas with A in their signature
3. data structures — defined using base types. free types and schemas

4. state machines — built of state schemas and sequential operations

This discipline maps each state schema into a structure of the same name
in the implementation. These structures contain fields for the schema’s compo-
nents and may contain other fields for implementation-specific information.

Mapping Sequential Operations Each sequential operation is mapped to
a function of the same name in the implementation. Some of the sequential
opetations take inputs using the Z “?” decoration convention ([Spi89' 133) and
many non-deterministically select their arguments from sets using existential
quantification. The observers are passed all arguments and top level existentially
quantified variables to simplify their observation of the operation.

Associated with each state changing function are two sets of observer func-
tions. called hook sets, and an optional implementation function. The observer
functions in the first, or pre-hook set, are called before the operation function
executes. The observer functions in the second, or post hook set, are called
after the operation function executes. The observer functions may inspect any
part of Soar’s state, but may not change Soar’s state. The observers allow users
to instrument Soar’s state changes. If an implementation function has been
specified 1t is called instead of the default sequential operation function. This
would allow researchers to easily change small pieces of the implementation.

Soar’s specification currently has about 150 state changing operations and
most users will never care to observe or modify any of them. At the time the
Soar implementation is compiled, the user would be able to turn on only the
hooks she requires. Any hooks not switched on would produce no code in the
resulting implementation and so have no run-time cost. If an operation has been

197

compiled to allow hooking, the hook set and implementation could be filled at
run-time, allowing choice as to when as well as where to hook.

Mapping Data Structures The mapping to generate the data structures
is much less mechanical. Implementations of data structures must be carefully
selected for efficiency. Basic types would generally be represented using enu-
merations, structures or built-in types such as numbers. Schemas that define
data types would mostly be represented using structures. Free types that define
only constants would be represented as enumerated types. Free types that use
injections to define types would generally be represented by structures using
tags and union types. Mappings and sets would be represented in a variety of
ways including pointers, lists, functions and hash tables.

Mapping State Machines The specification’s state machines are constructed
of state schemas and sequential operations. As above, each state schema would
be represented by a structure and each transition by a function. However, many
states of the machines have more than one transition leaving the state. The state
machine’s implementation must choose which of these transitions to apply. Ev-
ery state that has more than one transition is mapped to a function of the same
name that chooses which transition to apply.

Some transitions in the state machines check the pre-condition of the step
operation of a sub-state machine. For example, FinishOP checks — pre StepS3.
The implementation could check these pre-conditions by checking the state
counter of the sub-state machine. If the machine is in any state other than
the final state, its pre-condition is satisfied.

Some transitions check the pre-condition of other operations: StartS3 checks
— pre 52. The implementation is free to calculate this pre-condition in any way
that does not allow a user of the system to observe performance different than
that described by the specification. A fast way to check this is to have the state
function (in this case, S2State’s function) record that the pre-conditions of §2
no longer holds on $2’s last execution. For example, if S2 is iterating over a
set of inputs, when the set is empty it will mark that its pre-condition is no
longer satisfied in a flag. When the S2State function is called to select the next
transition, it will consult the pre-condition flag and select StartS3.

B.3 An Estimate of the Cost of Using State
Machines

The use of state machines for control in an implementation would have a greater
efficiency cost than using standard sequential code for control. This section uses

an analytic and empirnical analysis to demonstrate that the expense of state
machine control is at worst a small percentage of Soar’s total cost. First, we

198

describe an implementation of the state machines in detail. Second, we identify
the most expensive step of state machine control. Third, we prototype just this
step and benchmark it. Fourth, we estimate the number of such steps in a large
Soar run and compare our measured cost with execution times from Soar5 and
optimistic speed-up factors for Scar6.

The implementation of each state machines has five parts:

1. a stepping function

2. a state name counter

3. an array that the stepping function uses to index into the state functions
4. a function for each state that selects which transition to apply

5. a function for each transition

For each transition of a state machine, first the stepping function is called.
It indexes using the state name into the array of state functions and calls the
function for the current state. This function calculates which of the possible
transitions to execute, and applies one. Thus for each step of a state machine.
Soar performs three function calls and one array access. A sequential control
model would represent the stepping, the array access and the state function in
sequential code.

At the deepest. the specification nests state machine control only three levels.
The most expensive step is likely to be the state machine to calculate preference
semantics, as it must execute once for every change to any temporary memory
slot. The longest execution path through this state machine has 10 transitions
between 11 states plus one initialization step. This is actually an overestimate
of the number of control steps required. As long as the implementation produces
the same results and has equivalent observability properties, the implementation
would be free to optimize the average case by exiting this sequence of steps
early. For every step of preference semantics, Soar would also step the two state
machines that drive it: the working memory phase and the top level.

We constructed a prototype C implementation of this control flow. It con-
tains all of the control flow that the top level state machine and the working
memory phase state machine would require to step preference semantics in a
cvele of 11 transitions. On a Decstation 5000! , the prototype ran 11 million
transitions in 37 seconds. This 1s very likely an overestimate of an actual imple-
mentation’s cost because the heavy calling of pointers to functions of this code
pessimizes the use of the processor’s instruction cache. When the control flow is
augmented with calculation, the instruction pipeline should be able to execute
some of the calculation instructions in parallel with the control flow.

The largest Soar 5.2 system that has been constructed to date runs approx-
imately 235,000 RHS actions in 7,000 seconds on the same machine. Assuming

"Decstation 5000 is a trade mark of the Digital Equipment Corporation.

199

a roughly equal rate of calls to preference semantics, Soar 5.2 requires approxi-
mately 33.6 calls to preference semantics a second, or 403.2 total control steps
per second. Suppose also that we are underestimating the number of total con-
trol steps by a factor of two. This means that for every time the system takes
one step inside preference semantics, it takes two steps in running the other
modules of the system. Then it would requires 806.4 total control steps per sec-
ond of computation. Suppose very optimistically that Soar6 is 10 times faster
than Soar 5.2. Soar6 would then require 8064 total state machine control steps
per second. At 37 seconds per 11 million steps in Soar6, the system would spend
about 2.7% of its time running the state machines.

This implementation discipline directly maps the state machines into the
implementation for two reasons: they allow the system to breakpoint execution
at a fine grain, and they simplify the mapping from the specification to the
code. The ability to potentially breakpoint at any state in the system allows
users to precisely select debugging breakpoints, stop the system, examine its
current state and continue. The breakpointing will also allow the user to step
the system in small increments providing a very detailed observation of the
system that would facilitate learning and debugging. The small cost of at worst
a few percent of total runtime seems a small cost to pay for the benefits of
breakpointing.

200

Appendix C

Finer Grained Hooks

The granularity of the sequential operations in the specification of Soar is too
coarse to allow some types of observation of the system, using the state machine
implementation discipline. For example, if a researcher wanted to replace the
umplementation of working memory with a new data structure, she would have
to replace the implementation of every operation that changed the contents of
working memory. This requires re-implementing at least 13 operations.

We would like the specification to be structured to localize access to data
structures to a few operations: like a program construct<d using the data object
module paradigm. If we were to construct sequential operations such as Ad-
dWME, which added an argument working memory element to working memcry,
we could still not easily apply them because Z’s sequential system mcdel is too
weak to concisely describe the common operation of iterating AddWME across
a set of elements.

Instead of not specifying the fine grained operations, and hence not allowing
their hooking, we work around this problem by requiring the implementation to
use a special collection of fine grained accessors. All of the modifications to TM,
WM, PM, SPM, and IM or GM wi'i call the operations specified in this chapter.
Where these sets are modified by set unions or differences, an implementation
is required to repeatedly apply the individual addition and deletion operations.

C.1 TM Hooks

Temporary memory is hooked at ‘he working memory level, the preference mem-
ory level and the temporary memory level.

201

C.1.1 WME Operations |

AddWME adds its argument element to working memory. The element can
already be in working memory, in which case it is not re-added.

AddWME
ARM
w? : WME
|
|

WM' = WM U {w?} | .

RemoveWME removes its argument element from working memory. The
element must already exist in memory, or an implementation specific error con-
dition is signalled.

r__Remove WME
‘E ARM

;. w?: WME

|

!

w? e WM
E WM' = WM\ {w?}

C.1.2 Preference Operations

The operation AddPreference adds its preference to preference memory. The
preference may already exists in memory, in which case preference memory is
not changed.

AddPreference

p? : Preference

PM' = PM U{p"}

B
|
|
L

The RemovePreference opera’ion removes its preference from preference
memory. The preference must be in memory or an implementation specific
error condition is signalled.

RemovePreference

ARM
p? . Preference

\ p? € PM
PM' = PM\ {p"}

l

202

C.1.3 TME Operations

AddTME adds its element to temporary memory. If the element is already in
memory, temporary memory is not changed.

AddTME
ARM
t?: TME

| TM = TM L {17}

RemoveTME removes its element from temporary memory. The element
must be in temporary memory or an implementation specific error condition is
signalled.

__RemoveTME
ARM
t?: TME

t?7 ¢ T™
TM' = TM\ {t?}

The implementations of AddWME, RemoveWME, AddPreference, RemovePref-
erence. AddTME and RemoveTME respect the invariant that temporary mem-
ory is constructed from working and preference memory. For example, when-
ever an operation calls AddWME the equivalent AddTME must also be called.
Whenever an operation calls RemoveTME the equivalent Remove WME or Re-
movePreference must also be called.

C.2 SPM Hooks

The Soar production memory, SP, has productions added and removed by name.
The AddSP operation will only add in a production if there is not already one
in memory of that name.

— AddSP
' ARM
p? . SP

|
i = (3p: SPM e p.name = p?.name)
| SPM' = SPM U {p?}

The RemoveSP operation will temove a production given its name.

203

RemoveSP
T ARM
: pname : Symbol

3p: SPM | p.name = pname o
SPM' = SPM \ {p}

C.3 GM and IM Hooks

The goal and impasse memory changes can be hooked only for context impasses,
for non-context impasses or for any impasse using the six operations specified
in this section.

C.3.1 Context Impasses

There is no need for an operation that hooks the addition of context impasses,
because the specification contains only two operations that install them: De-
cideCreateFirstGoal and ImpasserCreatelmpasse.

Although there is only one specified operation that removes an impasse,
ImpasserRemovelmpase, a user interface to Soar requires an operation to pop
goals from the goal stack. RemoveContextImpasse is specified for this purpose.
It removes a context impasse from goal memory, all of its descendent goals and
all of their Impasse WMEs. The implementation should behave as if a sequence
of RemoveContextImpasse operations occur, one for each of the goals that would
be removed to match this specification. from newest to oldest.

— RemoveConteztimpasse

A Decide
i_or_g? : Identifier
i_or_g? € GM

GM' = (GM \ {i_or_g?}) \ GoalDescendants(i_or_g?, GM, WM)

' WM’ = (WM \ ImpassesWMEs(i_or_g?, GM, WM))
\(U{g : GoalDescendants(i_or_g?, GM, WM) e

i ImpassesWMEs(g, GM, WM)})

C.3.2 Non-Context Impasses

Non-context impasses are only generated in ImpasserCreateImpasse, and only
explicitly removed by ImpasserRemovelmpasse. However, some time after an
impasse becomes disconnected from the context stack, it will be removed from
impasse memory and it will have its working memory elements removed from

204

memory. For convenient hooking of this removal, RemoveNonContextImpasse
is defined to remove the impasse from impasse memory and remove its working
memory elements.

RemoveNonConteztImpasse
ADecide
i_or_g? : Identifier

i_or_g?c IM
IM' = IM\ {i_or_g?}
WM' = WM \ ImpassesWMEs{i_or_g?, IM, WM)

I
|

205

Appendix D

The Reorderer

The reorderer is a heuristic greedy search algorithm. It searches the space of
possible orderings of a production’s condition elements for one that will produce
a low average match cost. The reorderer does not improve the match cost of
cheap chunks very much, but it is important to reduce the efficiency loss of
expensive chunks.

This specification is the result of an effort to carefully understand and
document the branching factor heuristic of the greedy search. The previous
implementation/Sca86} lumped the conditions into five equivalence classes with-
out carefully understanding the nature of the heuristic or the fine grained test
structure of the conditions. Consequently, the calculation of the heuristic was
mixed into the control structure of the search. It could not be tailored to fully
take advantage of architecture and user supplied information. Worse still it
threw up its hands on complicated conjunctive or simple disjunctive tests and
assigned them to an expensive equivalence class.

The reorderer has three parts: a classifier, a branching factor heuristic and
the greedy search itself. The classifier groups working memory element tests
into classes based upon the constants and variables tested in their components
and the set of bound variables and the set of variables constrained to bind to
impasse identifiers. The classification is used to estimate the average match cost
of the condition, called the branching factor [Tam91]. The reorderer performs a
greedy search for an ordering of conditions that minimizes the branching factor
of the entire ordering; with ties broken by two steps of look-ahead.

D.1 Classifying WMETests

Working memory element tests are classified bottom up: the constants of the
tests are classified, then the test is classified, and finally the working memory
element test 1s classified.

206

The constants and tests of the conditions are classified into seven classes:
e C— a test that tests for equality with a constant
e B— a test that tests for equality with a bound variable

e U— a test that tests for equality with an unbound variable or one that
tests only for inequality with a constant or bound variable

e GIU— a test that tests for equality with an unbound goal or impasse
variable

e GIB— a test that tests for equality with a bound goal or impasse variable
o YES— a test for an acceptable preference and

e NO-— a test for not being an acceptable preference.

The set TestClass is constructed from £ to hold the set of the possible classes.

C,B.U,GIU.GIB,YES,NO : ¥
TestClass : P T

TestClass = {C, B, U, GIU,GIB. YES,NO}

ClassifySigma takes a constant or variable from a test, the set of bound
variables and the set of variables bound to impasses and maps them into one of
the seven classifications.

ClassifySigma : © x P Varable x P Variable — TestClass

vvc: X, bound. impasses : P Variable o
{(ve € Constant = ClassifySigma(vc, bound, impasses) = C) A
(ve € Veriable =
(ve € impasses =
(ve € bound =
ClassifySigma(vc, bound, impasses) = GIB) A
! (ve ¢ bound =
1 ClassifySigma(vc, bound, impasses) = GIU)) A
: (ve € impasses =
' (vc € bound =
ClassifySigmaivc, bound. impasses) = B) A
(ve & bound =
ClassifySigma(vc, bound. impasses) = U))))

The ClassifvTest function takes a test, the set of bound variables and the set
of variables bound to impasses and classifies the test. Blank tests are classified
as if they were unbound variables because. like an unbound variable, they can

207

match anything. Yes tests and No tests are classified into YES and NO classes.
Equality tests are classified by the variable or constant that they match. Same-
type tests and not tests can match against an arbitrary number of values, so they
are also classified as unbound variables. Disjunctions can only match against
one of a few constants, so they are classified as constants.

Conjunctions are more complicated to classify. If the conjunction contains a
disjunction it can only match the constants in the disjunction, so it is classified
as a constant. If it contains an equality it is assigned the classification of the
equality. If it contains a not test or a same-type test, it is treated as an unbound
variable. These rules are not mutually exclusive; they are intended to be applied
sequentially to produce the most match restrictive classification.

ClassifyTest . Test x P Variable x P Variable — TestClass

: Test; bound, impasses : P Variable o
t = BlankTest = ClassifyTest(t, bound, 1mpaaaes) U) A
= YesTest = ClassifyTest(t, bound, 1mpasaes))
= NoTest = ClassifyTest(t, bound, impasses) = NO)
€ ran EqualityTest =
ClassifyTest(t, bound, impasses) =
ClassifySigma(Equality Test™ (t), bound, impasses)) ~

(t € ran NotTest = ClassifyTest(t, bound, impasses) = U) A
(t € ran SameTypeTest = ClassifyTest(t, bound, impasses) = U) A
(t € ran DisjunctiveTest = ClassifyTest(t, bound, impasses) = C) A
(t € ran ConjunctiveTest =
| ((3 ¢ : ConjunctiveTest™(t) e ¢ € ran Disjunctive Test) =
Classify Test(t. bound, tmpasses) = C) A
((Z ¢ : ConjunctiveTest™(t) o ¢ € ran EqualityTest) =

{3 ¢ : ConjunctiveTest™(t) N ran EqualityTest o

Classify Test(t, bound, impasses) =
ClassifySigma(Equality Test™ (c), bound, impasses))) A

{(3 ¢ : ConjunctiveTest™(t) e ¢ € ran NotTest)

= ClassifyTest(t, bound, impasses) = U) A
{(3 ¢ : ConjunctiveTest™(t) e ¢ € ran Same Type Test) =

ClassifyTest(t, bound, impasses) = U)))

l
|

((
(t
(t
(t

208

The WMETestClass schema holds classifications for an entire WMEtest. The
WME test class uses T as the value of the attribute and value components so
that the classes can be used to map attribute and value specific classifications to
branching factors. The system and the user can then enter default information
about the branching factors of conditions in a uniform manner.

— WMETestClass
- 1d : TestClass

| attribute : ¥

i value : ¥

i contezt_acceptable_preference : {YES, NO}

The description of the derivation of the branching factor table requires the
instantiation of 90 WME test classes. For brevity, the WC constructor is defined
to instantiate the WME test classes.

WC : TestClass x TestClass x TestClass x TestClass — WME TestClass

i Vid : TestClass; attribute : TestClass; value : TestClass;

contezt _acceptable_preference : {YES,NO} o

‘ WC (1d. attribute, value, contezt_acceptable_preference) =

(w3d : {id}; attribute : {attribute}; value : {value};
contezt_acceptable_preference : {contezt_acceptable_preference} o

6 WMETestClass)

Classify WMETest classifies a WME test given the set of bound variables
and the set of variables bound to impasses. For the attribute and values the
goal and impasse variables are not passed to Classify Test so that classify test
will classifv goal variables in these slots as normal variables.

ClassifyWMETest : WMETest x P Variable x P Variable — WMETestClass

. Vwt: WMETest: bound, impasses : P Variable o
‘ Classify WME Test(wt, bound, impasses) =
! WC (ClassifyTest(wt.sd, bound, impasses),
‘{ Classify Test(wt.attribute, bound, &),
| ClassifyTest(wt. value, bound, &),
Classify Test(wt.contezt_acceptable_preference, &, @))

D.2 Deriving the Branching Factor Heuristic
The branching factor is a measure of the average cost to match a single condition,

given the set of bound variables and the set of variables bound to impasses. The
principled derivation of this heuristic is complicated. There are 90 (5 * 3 * 3~

209

2) equivalence classes of WME test; as the identifier slot of a WME test can be
classified five ways, the attribute and value each three ways and the preference

two ways.
The analysis of these ninety cases into branching factors is derived from five

measures of the average branching of the graph of working memory.
1. G — the average number of goal and impasses in the system.
2. O — the average number of objects in the system.
3. A — the average number of attributes per object in the system.
4. V — the average number of values for any attribute in the system.

5. AP — the average number of context acceptable preferences per values.

G,0, AV AP 2
| G>0~A0>0AN0>0AV >0ANAP >0

The branching factor for each WME test is calculated by multiplving to-
gether the average measure for each slot that the condition leaves unconstrained.
The following table derives the average case match estimate for all 90 cases.
This table is provided only to allow discussion of the correctness of this measure.
The implementation will use a closed form of this function that is specified next.

1. WC(C,C,C.YES) = 1
2. WC(C,C,C.NO) = 1
(C,C,B,YES) = 1
(C,C,B,NO) = 1
(C,C,U,YES) = V * AP
(C,C,UNO) =V
C,B,C,YES) = 1
C,B,C,NO) = 1
C,B,B,YES) = 1
10.

11.

wC
wC
wcC
wC
wC
7. WC
wC
wcC
wC
WC(C,B,U,YES) = V * AP
wC

12.

(
(
(
(C,B,B,NO) = 1
(
(

C.B.UNO) =V

210

13.

14.

16.
17.
18.
19.
20.
21.

23.
24. W
25. W
26. W

27

28. W
29. W
30. W

31

32.
33.
34.
35.
36.

38.
39.

WC(C.U,C,YES) =
WC(C,U.C.NO) =

. WC(C,U,B,YES) =

WC(C,U,B,NO) =
WC(C.U,U.YES) = A * V * AP
WC(C.U,UNO)= A"V
WC(B,C,C,YES) = 1
WC(B,C.C,NO) =
WC(B,C.B,YES) = 1

. WC(B,C,B,NO) = 1

WC(B,C.U.YES) = V * AP
C(B,C,UNO) =V
C(B,B,C,YES) =
C(B.B,C.NO)

C(

o

off
WC(B.B.B.YES) =
C(B.B,B,NO) =
C(B.B.U,YES) = V * AP
C(B.B,UNO) = V
WC(B,U,C,YES) =
WC(B,U,C,NO) =
WC(B.U,B.YES) =
WC(B.U,B.NO) = A
WC(B.U,L,YES) = A * V * AP
WC(B.U,UNO)=A*V

. WC(U.C,C.YES) =

WC(U,C.C.NO) =
WC(U,C.B.YES) =

211

w
. W
"
w

w
w
w
w
. W
w
w
w
w

. WC(U,C,B,NO) = O
. WC(U,C,U,YES) = O * V * AP
. WC(U,C,T,NO) =0 *V

U,B,C,YES) = O

c
C(U,B,C,NO) = O
c
C

U,B,B,NO) = O

. WC(U,B,.UYES) =0 *V * AP

(
(
(U.B,B,YES) = O
(
(
(

. WC(U,B,UNO) =0 *V
. WC(U,U,C,YES) =0 * A

. WC(U,U,C,NO)=0 = A

. WC(U,U,B,YES) = O * A

. WC(U,U,B,NO) =0 * A

. WC(U,U,UYES) = O * A *V * AP
. WC(T,U,UNO) =0 *A*V

GIU.C.C,YES) = G

wWC(
. WC(GIU,C.C,NO) = G
WC(

GIU,C,B.YES) = G

C(GIU,C,B.NO) = G
C(GIU,C,U,YES) =G * V * AP
C(GIU,C,UNO) =G * V
C(GIU,B,C.YES) = G
C(GIU,B,C,NO) = G
C(GIU,B,B.YES) = G
C(GIU,B,B.NO) = G
C(GIU,B.UYES) = G *V * AP
C(GIU,B.UNO) = G

212

80.
81.
82.
83.
84.

86.
87.
88.
89.
90.

. WC(GIU,UC,YES) =G * A

. WC(GIU,U,C,NO) =G * A

. WC(GIU,U,B,YES) =G * A

. WC(GIU,U,B,NO) =G * A

. WC(GIU,U,UYES) =G * A =V ~ AP
. WC(GIU,ULUNO) =G " A~V

. WC(GIB,C,C,YES) = 1

. WC(GIB.C,C.NO) = 1

. WC(GIB,C,B,YES) = 1

WC(GIB.C,B.NO) =1

7. WC(GIB.C,U,YES) = V * AP

WC(GIB.C,U,NO) = V

. WC(GIB,B,C,YES) = 1

WC(GIB.B,C,NO) = 1
WC(GIB.B,B,YES) = 1
WC(GIB.B.B.NO) = 1
WC(GIB,B,U,YES) = V * AP
WC(GIB,B,U,NO) = V

. WC(GIB,U,C,YES) = A

WC(GIB,U,C,NO) = A
WC(GIB,U,B,YES) = A
WC(GIB,U,B,NO) = A
WC(GIB,U,U,YES) = A * V * AP
WC(GIB,U,UNO) = A * V

213

This formulation is overly-general because each production’s conditions must
all be connected to an impasse. So all of the cases of the form WC(U,...} will
never be used. The current system assumes that any conditions of the form:
WC(B,C,U,NO) are uni-attributes, e.g., have a branching factor of 1, unless

told otherwise with a multi-attributes declaration.
he branching factor table of 90 cases is too large for easy use. A closed

form for this table, named ABF, can be derived from the observation that the
average branching factor of a WME test class is the average branching factor of
its identifier (ABFI) muitiplied by the average branching fartor of its attribute
(ABFA) and the average branching factor of its value acceptable preference
combination (ABFVAP).

ABF ,ABFI, ABFA, ABFVAP : WMETestClass — 2

YV wic : WMETestClass o
ABF(wtc) = ABFI(wtc) = ABFA{wtc) « ABFVAP(wtc)

Y wic : WMETestClass o
((wtec.2d € {C,B.GIB} = ABFI(wic) = 1) A
(wtc.id = GIU = ABFI(wtc) = G) A
(wtc.id = U = ABFI(wtc) = O))

¥ wtc : WMETestClass o
((wtc.attribute = U = ABFA(wtc) = A) A
(wtc.attribute = U = ABFA(wtc) = 1))

v Vwlc: WMETestClass o
} ((wtc.value # U = ABFVAP(wtc) = 1) A
1

(wtc.vo’se = U A wtc.contezt_acceptable _preference = YES
= ABFVAP(wtc) = V » AP) A

(wtc.value = U A wic.contezt_acceptable_preference = NO
= ABFVAP(wtc) = V))

Soar users may care to provide information about branching factors of spe-
cific condition classes, and the system should have default knowledge about
conditions that match context stack attributes. The user only cares to provide
an average branching factor for the multi-attribute cases:

WC(B,C,U,NO) and WC(B,C, U, YES).

Using this classification scheme, the system can take advantage of some

knowledge of the average case structure of the context stack:

e WC(GIU,"OBJECT","NIL’,NO) =1 and
WC(GIB, "OBJECT ", NIL ", NO) = 1 — there is only one goal with no
supergoal.

o WC(GIU,"OBJECT ,U.NO) =1 and
WC(GIB."OBJECT °, U, NO) = 1 — there is only one supergoal for each

214

goal.

¢ WC(GIU, PROBLEM-SPACE’,U,NO) = G,
WC(GIU, "STATE".U.NO) = G and
WC(GIU, "OPERATOR " . U,NO) = G — on average every goal has a
problem space. state and operator.

e WC(GIB. " PROBLEM-SPACE . U, NO) =1,
WC(GIB."STATE".C.NO) := 1 and
WC(GIB. " OPERATOR ", U,NO) = G — each specific goal has on aver-
age one problem-space, state or operator.

¢ WC(GIB, ' ITEM ", U,NO) > 1 — o average the items augmentation of
a goal holds more than one thing.

The user branching factor function. UBF, is provided to capture the user’s
knowledge of condition branching factors. A user interface. hke Soard’s mulu-
attributes ([LCAS90] 178), should be provided to allow the user to extend UBF

UBF : WMETestClass — 2

The system stores its knowledge of branching factors in the default branching
factor function, DBF. DBF assumes that the WC(B,C,U,NO) case is a uni-
attribute.

DBF : WMETestClass — 2

DBF = {(WC(GIU.* OBJECT".* NIL".NO). 1).
(WC(GIB,* OBJECT *," NIL". NO). 1),
(WC(GIT, OBIECT ", U, NO). 1),

(WC(GIB, " OBJECT*.U,NO). 1),

(GIU, * PROBLEM-SPACE ', U.NO), G),

(GIU,*STATE".U,NO). G).

(GIU,* OPERATOR*. U.NO). G),

{

(

(

2(GIB, ' PROBLEM-SPACE *. U NO).1).
GIB, *STATE",U,NO), 1),

GIB. OPERATOR’.T.NO). 1),
(GIB."ITEM . T.NO).2).

C
c
c
'C(B.C,U.NO), 1)}

-
-

BF takes two WME tests for arguments. The first is the WME test generated
by the classifier. The second is the classifier with one of the possible constants
of the attribute and/or value tests installed instead. BF checks if the system
or the user has any constant specific branching information. If so it is used,
otherwise the system uses the average branching factor.

BF : WMETestClass x WMETestClass — 2

|
i
i V prototype, instantiated : WMETestClass

! (instantiated € dom(DBF & UBF) =

| BF (prototype, instantiated) = (DBF @& UBF)(instantiated)) A
! (instantiated ¢ dom(DBF & UBF) =

| BF (prototype, instantiated) = ABF (prototype))

The reorderer must check the constant specific branching factor information
for any positive constants that appear in attribute or value tests.

ContainsPositiveConstants_ : P Test

I Vit: Test o
! ContainsPositiveConstants(t) <
(t € ran Disjunctive Test v
t € ran EqualityTest A EqualityTest™(t) € Constant vV
t € ran Conjunctive Test A '
(3 ¢ : ConjunctiveTest™(t) e ¢ € ran Disjunctive Test v
(c & ran EqualityTest A EqualityTest™(c) = Constant)))

216

The Soarb reorderer would not correctly classify many conditions that in-
volved disjunctions or conjunctions in the attributes. SBF carefully picks the
maximum branching factor for the set of constants of the attribute or value tests
of the WME test.

{ SBF : WMETestClass x WMETest — 2

| Vwtc: WMETestClass; wt: WMETest o
((ContainsPositiveConstants(wt.atiribute) A
‘ ContainsPositive Constants(wt.value) =
SBF (wtc, wt) =
| maz{a : TestsPositiveCompon.nits(wt.attribute) © Consiant;
: v : TestsPositiveComponents(wt.value) ™ Constant e
BF (wtc, WC(wtc.id, a, v, wic.contezt_acceptable_preference))}) A
{ ContainsPositiveConstants(wt. attribute) A
| — ContainsPositiveConstants(wt.value) =
SBF (wtc, wt) =
maz{a : TestsPositiveComponents{wt.attribute) " Constant o
BF (witc, WC(wtc.id. a, wic.value, wic.contezl_acceptable_preference))}) ~
(— ContainsPositiveConstants(wt.attribute) A
— ContainsPositive Constants(wt.value) =
| SBF (wte, wt) = ABF(wtc) = BF (wtc, wic)))

SBF will allow the reorderer to correctly order conditions, like this one from
the default productions, containing the common idiom of binding to a disjunc-
tion.

(<s> ~{ << required-success success partial-success
. >> <svalue> } <eb>)

In this case, the reorderer can tell that this disjunction is a uni-attribute.
not a multi-attribute.

The concept of a WME test’s branching factor can be elevated to conditions.
The branching factor of a positive condition is the branching factor of its WME
test. Negative conditions can not be added until all of the variables that they
share with the positive conditions have been bound. When a negative condition
is added, its branching factor is one because it only filters the set of matches. For
convenience, if the negative condition does not have all of 1ts variables bound it
is assigned an arbitrarily huge branching factor.

ConditionsBranching. actor :
Condition x P Variable x P Variable x P Variable — 2

V ¢ : Condition; bound, positive, impasses : P Variable o
! ((c € ran PositiveCondition =
r (2wt : WMETest | wt = PositiveCondition™(c) o
{ ConditionsBranchingFactor(c, bound, positive, impasses) =
SBF(Classify WME Test(wt, bound, tmpasses), wt))) A
(¢ € ran Negative Condition U ran Negative Conjunctive Condition =
(((ConditionsPositive Components(c) ™ Variable) N positive C bound) =
ConditionsBranchingFactor(c, bound, positive, impasses) = 1) A
(= ({ ConditionsPositiveComponents(c) Variable) ™ positive T bound) =
ConditionsBranchingFactor(c, bound, positive, impasses) = Infinity)))

D.3 The Reorderer’s State

The reorderer’s state machine uses three states:
1. ReordererlnitialState — the machine starts in this state.
2. ReordererAddConditionState — the machine adds conditions in this state.

3. ReordererFinishedState — the machine finishes in this state.

ReordererState ::= ReordererInitialState
| ReordererAddConditionState
| ReordererFinishedState

218

ReordererInitial
State

StartReorderer

Initialize
Reorderer

Reorderer
AddCondition
State

FinishReorderer

ReordererBestTied
Condition

Reorderer
Finished State

Figure D.1: Reorderer State Machine

219

ReordererAddPositiveCondition

ReordererAddNegative

Condition

The Reorderer schema holds a state counter and seven pieces of state:

1. ordering — the sequence of conditions selected so far

2. conditions — the set of conditions of the production’s LHS that have not
been added to the ordering

3. impasses — the set of variables that the condition binds to goal and im-
passe identifiers

4. bound — the set of variables bound in a condition already in the ordering
5 positive — the set of variables bound in all of the positive conditions and

6. branching_factor — the estimated average cost of matching the entire
ordering.

— Reorderer
reorderer_state : ReordererSiate
ordering : seq Condition
conditions : P Condition
impasses, bound, positive : P Variable

i branching_factor : N;

When the reozderer is initialized it must start with a set of conditions to order
and an empty ordering. The branching factor of an empty ordering is defined
to be one. The set of bound variables is empty because no conditions have been
added to the ordering. Only goal or impasse conditions can be selected to start.
so there must be some goal or impasse variables. The positive variabies are the
variables bound positively in the positive conditions.

__InitReorderer
Reorucver

| conditions ¥ &

i ordering = ()

' bound = @
branching_factor = 1

impasses *

positive =
(U(ConditionsPositiveComponents{conditions N ran PositiveCondition)))
N Variable

220

When the reorderer’s state is changed the root conditions and positive vari-
ables remain unchanged. With each step. the set of bound conditions grows
and the branching factor is non-decreasing. The last predicate ensures that the
reorderer either adds a condition to the end of ordering or leaves it unchanged.

— AReorderer
| Reorderer

t

' Reorderer’

impasses’ = tmpasses

positive’ = positive

bound C bound’
| branching_factor’ > branching_factor

i ordering’ = ordering Vv tail(ordering) = ordering’

D.4 The Reorderer’s Operations

InitializeReorderer moves the state machine from the finished state into the
initial state and ensures that the reorderer’s configuration is a valid initial con-
figuration.

—_ Initialize Reorderer
A Reorderer

reorderer _state = ReordererFinishedStale
InitReorderer

reorderer_state’ = ReordererInitialState

The machine’s first action is to move to the add condition state.

__StartReorderer
i A Reorderer

reorderer_state = ReordererinitialState

reorderer_state’ = ReordererAddConditionState

221

The BestConditions function selects the subset of conditions that have a
minimum branching factor.

i BestConditions :
; P Condition x P Variable x P Variable x P Variable — P Condition

. ¥V C : P Condition; bound, positive, impasses : P Variable o
BestConditions(C. bound, positive, impasses) =
{¢:C
- (E Ca ! Coe
ConditionsBranchingFactor(c,, bound, positive, impasses) <
ConditionsBranchingFactor(c, bound, positive, impasses))}

When there is a unique best condition or the branching factor of all of
the conditions is one, the reorderer will add a condition from the set of best
conditions. The reorderer picks any one of the best conditions and adds it to
the end of the ordering. It updates the estimate of the cost of the ordering by
multiplying it bv the condition’s branching factor, The positive variables of the
added condition are added into the set of bound variables.

— ReordererAddBestCondition
A Reorderer

reorderer _state — Reorderer AddConditionState = reorderer_siate’

#(BestConditions(conditions, bound, positive, impasses)) =1 v
(¥ ¢ : BestConditions(conditions, bound, positive. impasses) o
ConditionsBranchingFactor(c. bound, positive, impasses) = 1)

= ¢ : BestConditions(conditions, bound, positive, impasses) ¢
{conditions’ = conditions ' {c} A
ordering’ = ordering ~ (c¢) A
branching_factor’ = branching_factor=
ConditionsBranchingFactor(c, bound, positive. impasses) A
bound' = bound U (ConditionsPositive Coriiponents(c) ~ Variable))

222

LookAhead is given: a condition, the set of all conditions yet to be chosen,
the bound variables, the positive variables and the goal or impasse variables. It
calculates the branching factor for first adding the condition and then adding
the best of the remaining conditions.

i LookAhead :

! Condition x P Condition x P Variable x P Varable x P Vartable — 2

v ¢, : Condition; C : P Condition; bound. positive, impasses : P Variable ¢; = C o
= newbounds : P Variable
! newbounds = bound _ (ConditionsPositiveComponents(c,) ™ Variable) o
3¢y : BestConditions(C * {c}, bound, positive. impasses) o
LookAhead(cy, C. bound, positive, impasses) =
ConditionsBranchingFactor(c,. bound, positive, impasses)=
ConditionsBranchingFactor(c;, newbounds, positive, impasses)

Best TiedConditions is used to break ties between conditions. It returns the
set of conditions that have the minimum branching factor after one step of
lookahead.

(BestTiedConditions :
i P Condition x P Varmable x P Variable x P Variable — P Condition

| v C:P Condition: bound. positive, ympasses : P Variable o
| BestTiedConditions(C. bound, positive, impasses) =
{c1 : BestConditions(C, bound, positive. smpasses)
—~ (Z ¢ : BestConditions(C, bound, positive, impasses) o
LookAhead{cy, C \ {c1}. bound. positive. impasses) <
! LookAhead(ci, C {c1}. bound, positive, impasses))}

223

Whenever there is a tie for the best condition and all of the tied conditions
have a branching factor of greater than one, ReordererAddBestTiedCondition
selects one of the best tied conditions and adds it to the ordering.

Reorderer AddBest Tied Condition
r A Reorderer

[
' reorderer_state = ReordererAddConditionState = reorderer_state’

— (#(BestConditions(conditions. bound, positive, impasses)) = 1 v
(= ¢ . BestConditions(conditions. bound, positive, impasses) o
ConditionsBranchingFactor(c, bound, positive, impasses) = 1))

iS¢ : BestTiedConditions(conditions, bound, positive, tmpasses) o
(conditions’ = conditions \ {c} A
ordering’ = ordering ~ (c) A
branching_factor’' =
branching_factorx
ConditionsBranchingFactor(c, bound, positive, impasses) A
bound' = bound _ (ConditionsPositiveComponents{c) ~ Variable))

When all of the conditions have been added to the ordering, FinishReorderer
moves the reorderer into the finished state.

— FinishReorderer
A Reorderer

reorderer _state = ReordererAddConditionState
conditions = &

reorderer_state’ = ReordererFinishedState

StepReorderer steps the reorderer.

StepReorderer = StartReorderer v
Reorderer AddBestCondition v ReordererAddBest TiedCondition v
FinishReorderer

Reset Reorderer allows the system to reset the reorderer to the finished state
from any state.

— ResetReorderer
A Reorderer

reorderer_state’ = ReordererFinishedState

224

For simplicity, the reordering of conjunctive negations has not been specified.
Whenever a conjunctive negation is added to the ordering the system should
reorder the conditions of the negation using the same algorithm. It should start
with: an empty ordering, the bound variables of the entire ordering, the roots of
the entire ordering and the positively tested variables of the positive conditions
of the conjunctive negation.

225

Bibliography

[Aky90]

(BW90)

[Cra91]

[DG89!

'DS90°

iGar9l

iGut90!

‘GW8S]

‘Hay85

A. Akyurek. Means-Ends Planning, Operator Subgoaling, and Oper-
ator Valuation: An Example Soar Program. Technical Report RUG-
FA-90-3, University of Groningen, August 1990.

Michael Barr and Charles Wells. Category Theory for Computing
Science. Prentice Hall International, 66 Woodlane End, Hemmel
Hampstead, Hertfordshire HP24RG UK, 1990.

lain D Craig. Formal Specification of Advanced Al Architectures.
Ellis Horwood Limited, Market Cross House, Cooper Street, Chich-
ester, West Sussex, PO19 1EB, England, 1991.

N Delisle and D Garlan. Formally specifying electronic instruments.
In Proceedings of Fifth International Workshop on Software Specifi-
cation and Design, pages 242-248, 19-20 May 1989.

M. DeJongh and Jr. Smith, J. W. Blood Typing: Functional Model-
ing Put to the Tests. Laboratory for Artificial Intelligence Research,
Ohio State University, November, 1990, Unpublished., 1990.

David Garlan. Formalizing design spaces: implicit invocation mech-
anisms. Technical Report CMU-CS-91-114, Carnegie Mellon Univer-
sity, School of Computer Science, 1991.

John V. Guttag. Report on the Larch Shared Language. Techni-
cal Report 58, Digital Equipment Corporation, Systems Research
Center. 1990.

Joseph A Goguen and Timothy Winkler. Introducing OBJ3. Tech-
nical Report SRJ-CSL-88-9, SRI International, Computer Science
Laboratory, 1988.

Ian Hayes, editor. Specification Case Studies. Prentice Hall In-
ternational, 66 Woodlane End, Hemmel Hampstead, Hertfordshire
HP24RG UK, 1985.

226

[HPS89]

[Jon90]

JRSO1

1590]

(KRS8

[Lai86]

[LCAS90!

[LLN91]

[LNR8T7!

[LRN84j

LRN8S)

W. Hsu, M. Prietula, and D.M. Steier. Merl-Soar: Scheduling within
a general architecture for intelligence. In Proceedings of the Third
International Conference on Ezpert Systems and the Leading Edge in
Production and Operations Management, pages 467-481, May 1989.

C.B. Jones. Systematic Software Development using VDM (2nd ed:-
tion). Prentice Hall International, 66 Woodlane End, Hemmel Hamp-
stead, Hertfordshire HP24RG UK, 1990.

B.E. John, R.W. Remington. and D.M. Steier. An Analysis of Space
Shuttle Countdown Activities: Preliminaries to a Computational
Model of the NASA Test Director. Technical Report CMU-CS-91-
138, School of Computer Science, Carnegie Mellon University, May
1991.

C. B. Jones and R. (editors) Shaw. Case Studies in VDM. Prentice
Hall International, 66 Woodlane End, Hemmel Hampstead, Hert-
fordshire HP24RG UK, 1990.

Brian W. Kernighan and Dennis M. Richie. The C Programming
Language. Prentice Hall, Englewood Cliffs, New Jersey 07632, 1988.

J.E. Laird. Soar User’s Manual: Version 4.0. Technical report, Intel-
ligent Systems Laboratory, Palo Alto Research Center. Xerox Cor-
poration, January 1986. Out of Print, see the Version 5.2 manual.

J.E. Laird, C.B. Congdon, E. Altmann, and K. Swedlow. Soar User’s
Manual: Version 5.2. Technical report, Electrical Engineering and
Computer Science, University of Michigan, October 1990. Also avail-
able from The Soar Group. School of Computer Science, Carnegie
Mellon University, CMU-CS-90-179.

J. Fain Lehman, R.L. Lewis, and A. Newell. Integrating Knowledge
Sources in Language Comprehension. School of Computer Science,
Carnegie Mellon University, January 1991, Unpublished, 1991.

J.E. Laird, A. Newell, and P.S Rosenbloom. Soar: An architecture
for general intelligence. Artificial Intelligence, 33(1):1-64, 1987.

J.E. Laird, P.S. Rosenbloom, and A. Newell. Towards chunking as a
general learning mechanism. In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 188-192, August 1984.

J. E. Laird, P.S. Rosenbloom. and A. Newell. Chunking in Soar:
The anatomy of a general learning mechanism. Machine Learning,
1(1):11-46, 1986.

227

(LYHT91]

[New90]

INYL*91!

[PMN91]

[PTS91'

[RL86]

'Sca86!

SK91,

[Spi8s]

Spi8g]

{Tam91,

"'Wor92]

J.E. Laird, E.S. Yager, M. Hucka, and C.M. Tuck. Robo-Soar: An
integration of external interaction, planning, and learning using Soar.
In Van de Velde, editor, Machine Learning for Autonomous Agents.
MIT Press: Bradford Books, Cambridge, Massachusetts, 1991.

A. Newell. Unified Theories of Cogn:tion. Harvard University Press,
Cambridge, Massachusetts, 1990.

A. Newell, G.R. Yost, Laird, P.S. J.E.. Rosenbloom, and E. Alt-
mann. Formulating the problem space computational model. In
R.F. Rashid, editor, Carnegie Mellon Computer Science. A 25-Year
Commeralive, pages 255-293. ACM-Press: Addison-Wesley, Read-
ing, PA, 1991

G. Pelton, B. G. Milnes, and A. Newell. NSoar External Interface
Informal Snecification, 1991. NSoar Group, School of Computer Sci-
ence, Carneg:. Mellon University, May, 1991, Unpublished.

Ben Potter, David Till, and Jane Sinclair. An Introduction to formal
specification and Z. Prentice Hall International, 66 Woodlane End,
Hemmel Hampstead. Hertfordshire HP24RG UK, 1991

P. S. Rosenbloom and J. E. Laird. Mapping explanation-based gen-
eralization onto soar. In Proceedings of the National Conference on
Artificial Intelligence, pages 561-567, August 1986.

D.J. Scales. Efficient matching algorithms for the SOAR/OPS5 pro-
duction system. Technical Report KSL-86-47, Knowledge Systems
Laboratory, Stanford University, June 1986.

A Simon, T.and Newell and D. Klahr. Q-Soar: A computational ac-
count of children’s learning about number conservation. In Working
Models of Human Perception. Morgan Kaufman, Los Altos, Califor-
nia, 1991.

J M. Spivey. Understanding Z: a specification language and its
formal semantics. Cambridge University Press, Cambridge, Cam-
bridgeshire, UK, 1988.

J.M. Spivey. The Z Notation. Prentice Hall, Hert{ordshire, UK, 1989.

M. Tambe. Eliminating Combinatorics from Production Match. PhD
thesis, School of Computer Science, Carnegie Mellon University, May
1991.

J. B. Wordsworth. Software Development with Z International Com-
puter Science series. Addison Wesley, 1992, ISBN 0-210-62757-4.

228

List of Definitions

1 Introduction

2 Specifying Soar’s Control: State Machines

QO 3 D U W~

StoteSchema L. o
SMInitwalState)
SMS1State
SMS2State
SMS3State

StateCounter
SMnitialState,
SMS1S8tate
SMS2State
SMS3State

StateSchema
InatStateSchema
InitliateSchema
SMOperation
SMOperat.on L
SMOperation
SMiInstialize
SMStartS1

SMS1

SMS2

SMStartS3
SMStepS3

SMS3

229

28 SMPFinaish, 28

29 SMStep 28
30 SMReset 28
Base Symbol Structures 30
3 30
32 Variable e 30
33 IHdentafier 30
34 Constant 30
35 VariableOrConstant 30
36 Symbol 30
3T Q7 L e e 31
38 e 31
39 e 31
S 31
3 31
42 > 31
43 T e e 31
44 Cmp 31
45 & L e 31
46 T=RT . 31
3 31
48 T<=DT L 31
49 (7 . 31
500) 31
5 31
52 == > e 31
53 PreferenceSymbol 31
54 RelationSymbol L 31
55 UnaryPreferenceSymbol 31
56 BinaryPreferenceSymbol 31
57 CNIL™ . . o 31
58 “GOAL" e 31
59 “PROBLEM-SPACE" 31
60 “STATE" 31
61 “OPERATOR” 31
62 “IMPASSE" 31
63 “OBJECT ™ e 31
64 CITEM® e 31
65 “ATTRIBUTE® 31
66 “CHOICES® 31
67 °“CONSTRAINT-FAILURE" 31
68 “CONFLICT" " e 31

230

69
70
71
72
73
74

TTIE® © oo
“NO-CHANGE"
TNONE"™ . . .o
"MULTIPLE®
"QUIESCENCE "
STYPE® . . .

Temporary Memory and Production Memory

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

UnaryPreference
UnaryPreferencesComponents
BinaryPreference
BinaryPreferencesComponents
Preference o
UnaryP e
BinaryP L
PreferencesComponents
make UnaryPreference B
makeBinaryPreference
Preferencesld
Connectedprefarence < « + © © c s e e

TCIPreference

Preference
YesOrNo

WME
WMEsComponents
make WME
ConnectedWME

Preference TME
WMETME
TMEsComponents
ConnectedTpfE - - -+ -« + - - o oo

TCIPME - - -« oot

Oﬂd TME
UnaryMake

UnaryMakesComponents
BinaryMake

BinaryMakesComponents
Make

231

110 UnaryM e 41
111 BinaryM e 41
112 MakesComponents 41
113 makeUnaryMake 42
114 makeBinaryMake L. 42
115 Connectedpgape - - - -« « « © o e e 42
116 TCIMake 43
117 Ofdpfae -+« + <« oo oo 43
118 Test 43
119 BlankTest e 43
120 YesTest e 43
121 NoTest. 43
122 EqualityTesto 43
123 NotTest e 43
124 SameTypeTesto 43
125 DisjunctweTest 43
126 ConjunctiveTest e e e 43
127 TestsComponents 45
128 TestsPositiveComponents 45
129 SwimpleTest L 46
130 WMETest e 46
131 makeWMETest 46
132 WMETestsComponents 46
133 WMETestsPosstiveComponents 47
134 ConnectedWpfETest - - - -+« « -« = e 47
135 Conditton 47
136 PositweCondstion 47
137 NegativeCondition 47
138 NegativeConjunctiveCondition 47
139 SimpleCondition 48
140 ConditionsComponents 48
141 ConditionsPositiveComponents 48
142 TClegndition -+ * -« + @ v n e 50
143 Condition =~ + * + ¢ c s 50
144 TestedVariablesBound 51
145 SP . . e e e 52
146 makeSP L 53
147 SpsComponents 53
Recognition Memory 54
148 Binding 55
149 Consistent L 55
150 ConsistentExtension 55
232

151 Covers v e e 55

152 Matchesg;fﬁbol 56
153 MatchesVomETest 57
154 Match e 58
155 makeMatch oo 58
156 Matches%?ﬁdmo" 59
157 Matches%f’wh 60
158 Instantiate VariableOrConstant 60
159 InstantiateSimpleTest 61
160 InstantiateSetOfSimpleTests 61
161 InstantiateTest 62
162 Instantiate WMETest 62
163 InstantiateCondition 63
164 InstantiateSetOfConditions 63
165 InstantiateConditionsWME 64
166 InsiantiateConditionMatching 65
167 MakesPreference o 66
168 Imstantiation e 67
169 makelnstantiationo 67
170 GoalState 68
171 GoalOperator 68
172 GoalAncestors 68
173 MatchGoals o 69
174 MatchGoal 69
175 Not e 70
176 TestsNots e 71
177 WMETestsNots 71
178 ConditionsNotls 71
179 Assignment Lo 72
180 VariabilizeSymbolo 72
181 VarabilizeTest 72
182 Varabilize WMETest e 73
183 VariabilizeConditson 73
184 VarabilizeCondstionMatching 74
185 VariwabilizePreferenceToMake 75
186 VariabilizeRHS 75
187 VNot e e e e e e 76
188 NotsToVNots e 76
189 firsls . o o e e 76
190 seconds 76
191 therds 76
192 NotifyTest o e 77
193 NotifyWMETest 78

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

NotifyCondition 78

NotifyConditionMatchings, 79
Grounds 80
Potentials 80
Locals 80
Nots e 80
Trace 81
makeTrace 81
TracesComponents 81
ChunkingState 83
ChunkinginitialState 83
Chunking TraceConditionState 83
ChunkingTraceUnGroundedPotentialsState 83
ChunkingFinishedState 83
Chunking 84
AChunking 86
InitChunking 87
Chunkinglnitialize 87
ChunkingReset 88
Results L . 88
ChunkingStartTracing 89
ChunkinglgnorelnstantiationInTopGoal 89
ChunkingNoResults e 90
Owner 90
Trace WMEo 91
Tracellemso 91
ChunkingTraceSeed 92
ChunkingSkipSeed 93
ChunkingTraceLocal 93
ImpasseAttribute -
ChunkingSkip ArchitectureGeneratedLocal 94
ChunkingTraceQuiescenceLocal 95
ChunkingPotentializelocal 96
ChunkingTraceGroundedPotenticl 96
ChunkingStartTrace UnGroundedPotentials 97
ChunkingTraceUnGroundedPotentaal 98
ChunkingSkip UnGroundedPotential 98
ChunkingTrace UnGroundedPotentsalsDone 99
ChunkingFinishLearnOn 100
ChunkingFinsshLearnOff, 101
ChunkingStep 101
Slot . . . 101
SlotsWMEs 102
RM 105

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

10

268
269
270
271
272
273
274
275
276
277
278

InitRM . . . e 106

InstantiationsLHSOperators 107
InstantiationsRHSOperators 107
OperatorCreationLHS 107
OperatorCreationRHS 108
OperatorCreation 108
OperatorModificationLHS 108
OperatorModificationRHS 109
OperatorModification 109
OperatorApplicationLHS 109
OperatorApplicationRHS 110
OperatorApplication 110
OSupport e 110
PPhaselnitialize, 111
PPhaseReset 111
Quiescenceo 111
PPhaseStartRetractInstantiation 111
PPhaseRetractInstantsation 112
PPhaseStartinstantiateMatch, 112
PPhaselnstantiateMatch 113
PPhaseConferSupport 114
PhaseStepChunking 114
PPhaseChunkingReturnedInstantiation 115
PPhaseChunkingNolnstantiation 115
PPhaseStartOReject 115
PPhaseORejectPreferences 116
PPhaseStartChangePM, 116
PPhaseAddPreference 117
PPhaseRemovePreference 117
PPhaseFwnash 117
119

InputChannel 119
InputAttributeo 119
OutputChannel 119
OutputAttribute 119
InputMapping 121
OutputMapping= 121
OutputStructure 121
NewlnputStructure 121
ModifylnputStructure 122
DeleteInputStructure 122
InputStructure L. L. 122

235

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

Modify
Delete o
CycleOflnput
CycleOfOutput
InputCycleState
InputCycleInstsalState
InputCycleReadState
InputCycleFinishedState
OutputCycleState
QutputCyclelnstialState
QutputCycleSendState
OutputCycleFinishedState C
I0 . . .
InstIO e
Inputbink L. .. .
Legallnput
InputCyclelmatialize
StartReadInput
ReadNewlnputStructureObject
ReadNewlnputStructure WME
ReadNewlInputStructureDone
ReadNewlnputStructure
ReadModifyInputStructureAdd =
ReadModifyinputStructureDelete
ReadModifyInputStructureDone
ReadModifyInputStructure
ReadDeleteInputStruciure
CloselnputChannel L
ReadInputChennel,
InputCycleFsnash C
InputCycleStep
InputCycleReset
OutputCyclelnstialize
StartSendOutputChannel
SendOutputChannelOutputStructureObject
SendOutputChannelOQutputStructure WME
SendOutputChannel
OutputCycleFinash
OutputCycleStep
OutputCycleReset

236

7 Decide

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

ImpassesWMEs
GoalDescendants
ImpasserStateo Lo
ImpasserInitialState L.
ImpasserCreateOrChangeState
ImpasserFinishedState
ImpasseType
ConteztChanged C
Changed
Unchanged
ImpasserStateSchema
PreferenceSemanticsState
PSInstsalState
PSRequireState
PSAcceptableState
PSProhibitState
PSRejectState
PSBetterWorseState
PSBestState
PSWorstState
PSindifferentState
PSParallelState
PSFinishedState
NumberOfWinners
- 7
One
PreferenceSemanticsStateSchema
WMPhaseState
WMPhaselnitialState L.
WMPhasePickSlotState
WMPhaseDecideSlotState
WMPhaselmpasserState
WMPhaseChangeWMState
WMPhaseFinishedState
WMPhaseStateSchema
QPhaseState
QPhaselnitralState
QPhasePickSlotState
QPhaseDecideSlotState
QPhaselmpasserState
QPhaseChange WMState
QPhaseFinishedState

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
4U2
403
404
405

ConteztSlotAttribute 148

QPhaseStateSchema L. 148
ConteztImpassePreferences 149
Decade 150
ImitDecade L 150
DecideCreateFirstGoal 151
Impasserinitialize 152
ImpasserRemovelmpasse 152
ImpasserNolmpasse ToRemove 153
ImpasserCreatelmpasse 154
ImpasserChangelmpasse 155
ImpasserNoNewImpasseOrChanges 155
StepImpasser L 156
PSInitialize 156
PSStart 156
PSOneRequire, 157
PSMultipleRequires 157
PSRequareProhibited 158
PSNoRequires 158
PSRequire 158
PSAcceptable 159
PSNoAcceptable 159
PSProhabst 160
PSReject 160
Conflict+..161
PSNoBetterWorseConflict 161
PSBetterWorseConflict 162
PSBetterWorse 162
PSBest 162
PSWorst 163
AllMutuallyIndifferent 163
PSMutuallyiIndifferent L. 164
PSNotMutuallyindifferentNonConteztSlot 164
PSNotMutuallyIndifferentConteztSlot 165
PSIndifferent 165
AllMutuallyParallel 165
PSMutuallyParallel 166
PSNotMutuallyParallel 166
PSParallel 166
PSStep 166
WMPhaseinitaaisze 167
WMPhaseReset 168
WMPhaseStartPickSlot 168
WMPhaseStartDecideSlot 168

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

Top

437
438
439
440
441
442
443
444
445
446

WMPhaseStepDecideSlot 169

WMPhaseStartImpasser, 169
WMPhaseStepImpasser 169
WMPhaselmpasserFinished 170
WMPhaseAddWME 171
WMPhaseRemove WME, 172
WMPhaseChange WMFinished 172
WMPhaseFintsh 173
WMPhaseStep 173
QPhaselnitialize 174
QPhaseReset 174
QPhaseStartPickSlot 175
NeztConteztSlot 175
LastSlotToCheckInContezt 175
LastSlotToCheckInConteztStack 176
DecidableSlot 176
QPhaseNeztSlot 177
QPhaseNoChangedPreferencesNoChangelmpasse 178
QPhaseStartDecideSlot 178
QPhaseStepDecideSlot 179
QPhaseStartImpasser 179
QPhaseChangedPreferencesNoChangeImpasse 180
QPhaseStepImpasser 180
QPhaselmpasserFinished 180
LaterSlotsOfConteztSlot 181
QPhase AddWME 181
QPhaseRemoveWME 182
QPhaseReAddWME, 183
QPhaseSlotUnchanged, . 183
QPhaseSlotChanged 184
QPhaseStep Lo 184
Level 185
TopLevelStateo 186
TLImatalState 186
TLDecisionCycleState 186
TLElaborationPhaseState 186
TLElaborationCycleState, 186
TLInputCycleState 186
TLPreferencePhaseState 186
TLWorkingMemoryPhaseState 186
TLOutputCycleState, 186
TLDecistonPhaseState 186

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

TLReset e
TLStartSoar
TLStartDecistionCycle
TLStartElaborationPhase
TLStartElaborationCycle
TLStepInputCycle
TLStartPreferencePhase
TLStartDecisionPhase
TLStepPreferencePhase
TLStart WorkingMemoryPhase
TLStep WorkingMemoryPhase
TLStartOutputCycle
TLStepOutputCycle
TLEndElaborationCycle
TLStepQPhase
TLEndDecwssonCycle
TLStep e

Numbers

469
470
471
472
473
474
475
476

NumericRelatsonsymbols

RelationalTest

Test
MatChesSymboI

An Implementation Discipline

Finer Grained Hooks

477
478
479
480
481

AddWME
RemoveWME o
AddPreference
RemovePreference

AddTME e

240

194

194
194
194
194
194
194
194
194

196

482
483
484
485
486

The

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
508
510
511
512
513
514
515
516
517
518
519
520
521
522

RemoveTME 203

AddSP 203
RemoveSP 204
RemoveConteztImpasse, 204
RemoveNonConteztImpasse 205
Reorderer 206
C o 207
B e 207
U e 207
GIU . . e 207
GIB . . . e 207
YES . . . e 207
NO . e e 207
TestClass 207
ClassifySigma 207
ClassifyTest e 208
WMETestClass 209
WC e 209
ClassifyWMETest 209
G . s e 210
O 210
7 210
Ve, 210
AP e 210
ABF . . e 214
ABFI . . . 214
ABFA 214
ABFVAP . . . e 214
UBF e 215
DBF 215
BF . e 216
ContainsPositiveConstants 216
SBF . . e e 217
ConditionsBranchingFactor 218
Reorderer 220
InstReorderer 220
AReorderer 221
InataalizeReorderer 221
StartReorderer 221
BestConditions, 222
ReordererAddBestCondition 222
LookAhead 223

523
524
525
326

BestTiedConditions 223

ReordererAddBestTiedCondition 224
FinishReorderer 224
ResetReorderer 224

242

