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Abstract. One approach in pursuit of general intelligent agents has been to 
concentrate on the underlying cognitive architecture, of which Soar is a prime 
example. In the past, Soar has relied on a minimal number of architectural modules 
together with purely symbolic representations of knowledge. This paper presents 
the cognitive architecture approach to general intelligence and the traditional, 
symbolic Soar architecture. This is followed by major additions to Soar: non-
symbolic representations, new learning mechanisms, and long-term memories.  
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Introduction 

Through the years, there has been substantial evolution and refinement of the Soar 
architecture (Laird and Rosenbloom, 1996), with eight major versions between 1982 
and 2007. During this evolution, the basic approach of pure symbolic processing, with 
all long-term knowledge being represented as production rules, was maintained and 
Soar proved to be a general and flexible architecture for research in cognitive modeling 
across a wide variety of behavioral and learning phenomena (Rosenbloom et al. 1993). 
Soar also proved to be useful for creating knowledge-rich agents that could generate 
diverse, intelligent behavior in complex, dynamic environments (Jones et al. 1999; 
Wray, et al. 2005). 

In spite of these successes, it became clear that Soar was missing some important 
capabilities that we take for granted in humans, many of which have also been ignored 
by the larger cognitive architecture community. In response, we have made substantial 
extensions to Soar, adding new learning mechanisms and long-term memories as well 
as new forms of non-symbolic processing. The motivation for these extensions is to 
increase the functionality of Soar for creating artificial general intelligent systems, but 
we also expect that these changes this will significantly expand the breadth of human 
behavior that can be modeled using Soar. Before presenting these extensions, we start 
with our underlying methodology for understanding and creating artificial generally 
intelligent systems: cognitive architecture. We then present the traditional version Soar, 
without the extensions, followed by the extended version of Soar. We conclude with an 
analysis of this new version of Soar and discussion of future directions. 
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1. Cognitive Architecture 

During the last twenty years, the field of AI has successfully pursued specialized 
algorithms for specific problems. What distinguishes generally intelligent entities is 
their ability to solve not just a single problem using a specific method, but the ability to 
pursue a wide variety of tasks, including novel tasks, using large bodies of diverse 
knowledge, acquired through experience, in complex, dynamic environments. This 
leads us to study the fixed infrastructure that supports the acquisition and use of 
knowledge: the cognitive architecture. A cognitive architecture consists of: 

• memories for storing knowledge 
• processing units that extract, select, combine, and store knowledge 
• languages for representing the knowledge that is stored and processed 

Cognitive architectures distinguish between knowledge that is acquired over time and 
the fixed cognitive architecture that is common across all tasks. One of the most 
difficult challenges in cognitive architecture design is to create sufficient structure to 
support initial coherent and purposeful behavior, while at the same time providing 
sufficient flexibility so that an agent can adapt (via learning) to the specifics of its tasks 
and environment. Cognitive architectures must embody strong hypotheses about the 
building blocks of cognition that are shared by all tasks, and how different types of 
knowledge are learned, encoded, and used, making a cognitive architecture a software 
implementation of a general theory of intelligence.  

The hypothesis behind cognitive architectures such as Soar and ACT-R (Anderson, 
2007) is that there are useful abstractions and regularities above the level of neurally-
based theories. This hypothesis plays out both in longer time scales of modeled 
behavior and in the symbolic representations of knowledge about the world. A related 
hypothesis is that the structures and discoveries of the symbolic architectures will be 
reflected in the neurally-based architectures. This is the approach taken in Neuro-Soar 
(Cho et al., 1991) and the ACT-R/Liebre hybrid (Taatgen et al., 2007) architectures. 
Probably the most interesting question is whether the extra detail of the neurally-based 
architectures (and the concurrent additional processing requirements) is necessary to 
achieve generally intelligent agents, or whether the more abstract architectures 
sufficiently capture the structures and regularities required for intelligence.  

2. Traditional Soar 

As shown in Figure 1, up until five years ago, Soar has consisted of a single long-term 
memory, which is encoded as production rules, and a single short-term memory, which 
is encoded as a symbolic graph structure so that objects can be represented with 
properties and relations. Symbolic short-term memory holds the agent’s assessment of 
the current situation derived from perception and via retrieval of knowledge from its 
long-term memory. Action in an environment occurs through creation of motor 
commands in a buffer in short-term memory. The decision procedure selects operators 
and detects impasses, both of which are described below. 

At the lowest level, Soar’s processing consists of matching and firing rules. Rules 
provide a flexible, context-dependent representation of knowledge, with their 
conditions matching the current situation and their actions retrieving information 
relevant to the current situation. Most rule-based systems choose a single rule to fire at 



a given time, and this serves as the locus of choice in the system – where one action is 
selected instead of another. However, there is only limited knowledge available to 
choose between rules, namely the conditions of the rules, the data matched by the rules, 
and possibly meta-data, such as a numeric score, associated with the rules. There is no 
ability to use additional context-dependent knowledge to influence the decision. Soar 
allows additional knowledge to influence a decision by introducing operators as the 
locus for choice and using rules to propose, evaluate, and apply operators. Rules act as 
an associative-memory that retrieves information relevant to the current situation, so 
there is no need to select between them and thus, in Soar, rules fire in parallel. 

The concept of operator is common in AI, but usually involves a monolithic data 
structure containing the operator’s preconditions and actions. However, in Soar, the 
definition of an operator is distributed across multiple rules. Thus, in Soar, there are 
rules that propose operators that create a data structure in working memory 
representing the operator and an acceptable preference so that the operator can be 
considered for selection. There are also rules that evaluate operators and create other 
types of preferences that prefer one operator to another or provide some indication of 
the utility of the operator for the current situation. Finally, there are rules that apply the 
operator by making changes to working memory that reflect the actions of the operator. 
These changes may be purely internal or may initiate external actions in the 
environment. This approach supports a flexible representation of knowledge about 
operators – there can be many reasons for proposing, selecting, and/or applying an 
operator – some that are very specific and others that are quite general. This 
representation also makes it possible to incrementally build up operator knowledge 
structures, so that the definition of an operator can change over time as new knowledge 
is learned for proposal, selection, and application (Pearson & Laird, 2005). 

To support the selection and application of operators and to interface to external 
environments, Soar has the processing cycle shown in Figure 2. 
1. Input. Changes to perception are processed and sent to short-term memory. 
2. Elaboration. Rules compute entailments of short-term memory. For example, a rule 

might test if the goal is to grasp an object, the object’s distance, and the agent’s 
reach, and then create a structure signifying whether the object is within reach.  
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Figure 2: Soar’s Processing Cycle 

3. Operator Proposal. Rules propose operators that are appropriate to the current 
situation based on features of the situation tested in the condition of the rules.  

4. Operator Evaluation. Rules create preferences for which of the proposed operators 
should be preferred, based on the current situation and goal. The preferences can 
be symbolic (A is better than B), or numeric (the estimated utility of A is .73). 

5. Operator Selection. A fixed decision procedure combines the generated 
preferences and selects the current operator. If the preferences are insufficient for 
making a decision, an impasse arises and Soar automatically creates a substate in 
which the goal is to resolve that impasse. In the substate, Soar recursively uses the 
same processing cycle to select and apply operators, leading to automatic, reactive 
meta-reasoning. The impasses and resulting substates provide a mechanism for 
Soar to deliberately perform any of the functions (elaboration, proposal, evaluation, 
application) that are performed automatically/reactively with rules.  

6. Operator Application. The actions of an operator are performed by rules that match 
the current situation and the current operator structure. Multiple rules can fire in 
parallel and in sequence providing a flexible and expressive means for encoding 
operator actions. If there is insufficient application knowledge, an impasse arises 
with a substate. This leads to dynamic task decomposition, where a complex 
operator is performed recursively by simpler operators. 

7. Output. Any output commands are passed on to the motor system. 
 

Soar’s procedural knowledge, decision-making, and subgoaling provide a strong 
foundation on to which to build. It has a shared short-term memory where knowledge 
from perception and long-term memory are combined to provide a unified 
representation of the current situation. It has a lean decision procedure that supports 
context-dependent reactive behavior, but also supports automatic impasse-driven 
subgoals and meta-reasoning. Chunking is Soar’s learning mechanism that converts the 
results of problem solving in subgoals into rules – compiling knowledge and behavior 
from deliberate to reactive. Although chunking is a simple mechanism, it is extremely 
general and can learn all the types knowledge encoded in rules (Steier et al., 1987).  

3. Extended Soar  

In extending Soar, we had two goals: 1. Retain the strengths of the original Soar: a 
flexible model of control and meta-reasoning along with the inherent ability to support 
reactive and deliberative behavior and the automatic conversion from deliberate to 
reactive behavior via chunking. 2. Expand the types of knowledge Soar could represent, 
reason with, and learn, inspired by human capabilities, but with the primary goal of 
additional functionality. The extensions fall into two, partially overlapping categories: 
new non-symbolic representations of knowledge along with associated processing and 
memory modules, and new learning and memory modules that capture knowledge that 
is cumbersome to learn and encode in rules.  
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Figure 3 shows the structure of Soar, version 9. All of the new components have 
been built, integrated, and run with the traditional Soar components; however, as of yet 
there is not a single unified system that has all the components running at once. The 
major additions include: working memory activation, which provides meta-information 
about the recency and usefulness of working memory elements; reinforcement learning; 
which tunes the numeric preferences of operator selection rules; the appraisal detector, 
which generates emotions, feelings, and an internal reward signal for reinforcement 
learning; semantic memory, which contains symbolic structures representing facts; 
episodic memory; which contains temporally ordered “snapshots” of working memory; 
a set of processes and memories to support visual imagery, which includes depictive 
representations in which spatial information is inherent to the representation; and 
clustering, which dynamically creates new concepts and symbols.  

Soar’s processing cycle is still driven by procedural knowledge encoded as 
production rules. The new components influence decision making indirectly by 
retrieving or creating structures in symbolic working memory that cause rules to match 
and fire. In the remainder of this section, we will give descriptions of these new 
components and discuss briefly their value and why their functionality would be very 
difficult to achieve by the existing mechanisms.  

3.1. Working Memory Activation 

Inspired by ACT-R (Anderson 2007), we added activation to Soar’s working memory 
(Chong, 2003; Nuxoll et al., 2004). Activation provides meta-information in terms of 
the recency of a working memory element and its relevance, which is computed based 
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on when the element matched rules that fired. This information is not used to determine 
which rules to fire, as Soar fires all rules that match, but it is stored as part of episodic 
memories, biasing their retrieval so that the episode retrieved is the most relevant to the 
current situation. Empirical results verify that working memory activation significantly 
improves episodic memory retrieval (Nuxoll & Laird, 2007). In the future, we expect 
that working memory activation will be used in semantic memory retrieval and 
emotion. Working memory activation requires architectural changes because it must 
access and maintain information that is only available to the architecture (when 
working memory elements are created and matched).  

3.2. Reinforcement Learning  

Reinforcement learning (RL) involves adjusting the selection of actions in an attempt 
to maximize reward. In early versions of Soar, all preferences for selecting operators 
were symbolic, so there was no way to represent or adjust such knowledge; however, 
we recently added numeric preferences, which specify the expected value of an 
operator for the current state (Wray & Laird, 2003). During operator selection, all 
numeric preferences for an operator are combined, and an epsilon-greedy algorithm is 
used to select the next operator. This makes RL in Soar straightforward – it adjusts the 
actions of rules that create numeric preferences for selected operators (Nason & Laird, 
2005). Thus, after an operator applies, all of the rules that created numeric preferences 
for that operator are updated based on any new reward and the expected future reward, 
which is simply the summed numeric value of the numeric preferences for the next 
selected operator. RL in Soar applies across all goals, including impasse-generated 
subgoals. One intriguing aspect of RL in Soar is that the mapping from situation and 
operator to expected reward (the value-function) is represented as collections of rules. 
Only those rules that match the current situation participate in the selection of an 
operator, and there can be many rules contributing estimates of future reward for a 
single operator. This representation supports varying degrees of coverage and 
hierarchical representations, which can greatly speed up learning (Wang & Laird, 
2007). 

RL would be very difficult to implement in Soar using only chunking. RL applies 
to every operator selection, on every decision, even when there is no impasse, while 
chunking only learns rules through impasses. In addition, RL modifies existing rules by 
changing the values of numeric preferences, while chunking only adds new rules. In 
fact, RL and chunking are quite complementary because when there are no selection 
rules, an impasse arises and problem solving in a subgoal can generate initial 
preferences for the tied operators. Chunking then creates rules to generate these initial 
preferences in the future, and RL then tunes the values as experience accumulates.  

3.3. Emotion 

The functional and computational role of emotion is open to debate; however, in the 
last twenty years there has been substantial research on appraisal theories of emotion 
(Roseman & Smith, 2001). These theories propose that an agent continually evaluates a 
situation and that evaluation leads to emotion. The evaluation is hypothesized to take 
place along multiple dimensions, such as goal relevance (is this situation important to 
my goals?), goal conduciveness (is this situation good or bad for my goals?), causality 
(who caused the situation?), control (can I change the situation?), and so on. These 



dimensions are exactly what an intelligent agent needs to compute as it pursues its 
goals while interacting with an environment. Thus, we have created a computational 
implementation of a specific appraisal theory (Scherer, 2001) in Soar, represented by 
the appraisal detector in Figure 3. In Soar, appraisals lead to emotions, emotions 
influence mood, and mood and emotion determine feelings (Marinier & Laird, 2007). 
Individual appraisals produce either categorical or numeric values, which combine to 
form an intensity of the current feeling. This intensity becomes the intrinsic reward 
(Singh et al., 2004) for reinforcement learning, which significantly speeds learning 
(Marinier & Laird, 2008). A major goal of our future work is to explore how emotion, 
mood, and feeling can be used productively with other modules (such as retrieval from 
long-term memory and decision making), as well as in interacting with other agents. 

It is possible to implement similar theories of emotion in Soar without modifying 
the architecture (Gratch & Marsella, 2004); however, in these approaches, Soar is used 
more as a programming language than as a cognitive architecture – all of the important 
functionality of the system comes from procedural knowledge encoded in Soar as 
opposed to the structure of the architecture. This makes it impossible for emotions, 
mood, and feelings to directly influence other architectural modules, which we expect 
is critical to many aspects of emotion, mood, and feelings.  

3.4. Semantic Memory 

In addition to procedural knowledge, which is encoded as rules in Soar, there is 
declarative knowledge, which can be split into things that are known, such as facts, and 
things that are remembered, such as episodic experiences. Semantic learning and 
memory provides the ability to store and retrieve declarative facts about the world, such 
as tables have legs, dogs are animals, and Ann Arbor is in Michigan. This capability 
has been central to ACT-R’s ability to model a wide variety of human data and adding 
it to Soar should enhance our ability to create agents that reason and use general 
knowledge about the world. In Soar, semantic memory is built up from structures that 
occur in working memory. A structure from semantic memory is retrieved by creating a 
cue in a special buffer in working memory. The cue is then used to search for the best 
partial match in semantic memory, which is then retrieved into working memory.  

There has been a significant body of research on acquiring semantic knowledge 
through Soar’s chunking mechanism, under the label of data chunking (Rosenbloom, 
2007). Although it is possible, it is not easy. Data chunking requires pre-existing 
knowledge about the possible structures that can exist in working memory, and the 
agent has to interrupt its current task processing to deliberately force an impasse in 
which chunking can learn the appropriate rules. Moreover, because the knowledge is 
encoded in rules, retrieval requires an exact match of the cue, limiting the generality of 
what is learned. These factors made it difficult to use data chunking in new domains, 
begging the question as to how it would naturally arise in a generally intelligent agent. 

3.5. Episodic Memory 

In contrast to semantic memory, which contains knowledge independent of when and 
where it was learned, episodic memory contains memories of what was experienced 
over time (Tulving, 1983). In Soar, episodic memory includes specific instances of the 
structures that occur in working memory at the same time, providing the ability to 
remember the context of past experiences as well as the temporal relationships between 



experiences (Nuxoll & Laird, 2007). An episode is retrieved by the deliberate creation 
of a cue, which is a partial specification of working memory in a special buffer. Once a 
cue is created, the best partial match is found (biased by recency and working memory 
activation) and retrieved into a separate working memory buffer (to avoid confusion 
between a memory and the current situation). The next episode can also be retrieved, 
providing the ability to replay an experience as a sequence of retrieved episodes.  

Although similar mechanisms have been studied in case-based reasoning, episodic 
memory is distinguished by the fact that it is task-independent and thus available for 
every problem, providing a memory of experience not available from other 
mechanisms. Episodic learning is so simple that it is often dismissed in AI as not 
worthy of study. Although simple, one has only to imagine what life is like for 
amnesiacs to appreciate its importance for general intelligence (Nolan, 2000). We have 
demonstrated that when episodic memory is embedded in Soar, it enables many 
advanced cognitive capabilities such as internal simulation and prediction, learning 
action models, and retrospective reasoning and learning. 

Episodic memory would be even more difficult to implement using chunking than 
semantic memory because it requires capturing a snapshot of working memory and 
using working memory activation to bias partial matching for retrieval. 

3.6. Visual Imagery 

All of the previous extensions depend on Soar’s existing symbolic short-term memory 
to represent the agent’s understanding of the current situation and with good reason. 
The generality and power of symbolic representations and processing are unmatched 
and our ability to compose symbolic structures is a hallmark of human-level 
intelligence. However, for some constrained forms of processing, other representations 
can be much more efficient. One compelling example is visual imagery (Kosslyn et al., 
2006), which is useful for visual-feature and visual-spatial reasoning. We have added a 
set of modules to Soar that support visual imagery (Lathrop & Laird, 2007), including a 
short-term memory where images are constructed and manipulated; a long-term 
memory that contains images that can be retrieved into the short-term memory; 
processes that manipulate images in short-term memory, and processes that create 
symbolic structures from the visual images. Although not shown, these extensions 
support both a depictive representation in which space is inherent to the representation, 
as well as an intermediate, quantitative representation that combines symbolic and 
numeric representations. Visual imagery is controlled by the symbolic system, which 
issues commands to construct, manipulate, and examine visual images. 

With the addition of visual imagery, we have demonstrated that it is possible to 
solve spatial reasoning problems orders of magnitude faster than without it, and using 
significantly less procedural knowledge. Visual imagery also enables processing that is 
not possible with only symbolic reasoning, such as determining which letters in the 
alphabet are symmetric along the vertical axis (A, H, I, M, O, T, U, V, W, X, Y). 

3.7. Clustering 

One additional capability that has been missing from Soar is a mechanism that detects 
statistical regularities in the stream of experiences and automatically creates new 
symbolic structures that represent those regularities, providing a mechanism for 
automatically generating new symbols and thus concepts that can be used to classify 



perception. Few existing cognitive architectures have the capability to create new 
symbolic structures – they are a prisoner of the original encodings provided by a 
human programmer. To remedy this shortcoming, we have added a clustering module 
to Soar that is based on research by Richard Granger (Granger 2006). The underlying 
algorithms are derived from the processing of thalamocortical loops in the brain, where 
it appears there is clustering and successive sub-clustering of inputs using winner-take-
all circuits. Although we do not yet have a general implementation of clustering for all 
types of perception in Soar, we have used clustering to create new symbolic structures 
that enrich that state representation and speed reinforcement learning.  

3.8. Integration of New Modules in Soar 

As mentioned earlier, the processing cycle of Soar did not require any changes to 
accommodate the new modules beyond invoking them at appropriate times. Working 
memory activation is updated when rules fire, while reinforcement learning is invoked 
when a new operator is selected and clustering is invoked during input processing. The 
retrieval for semantic and episodic memories is performed during the input phase, so 
that the results are available during the next processing cycle. The visual imagery 
system is treated as if it was an external module, with commands to the system creating 
by rules and then executed during the output phase, with new interpretations of the 
images created during the input phase. Although the modules are invoked at specific 
points in the processing cycle, they could run asynchronously. For example, when a 
cue is created for episodic memory, the retrieval processes could run in parallel with 
rule matching and firing. We have maintained the more rigid approach because it 
simplifies development and debugging, and because there was no computational 
advantage to having asynchronous threads before the advent of multi-core processors. 

Although knowledge encoded in rules still controls behavior through the selection 
and application of operators, the new modules influence behavior through the working 
memory structures they create. For example, if a list of instructions is stored in 
semantic memory, with the appropriate rules, they can be retrieved, and lead to the 
selection of operators that interpret and execute them. Reactivity is maintained by rules 
that propose and prefer operators to process unexpected external events.  

4. Discussion 

4.1. Non-symbolic processing in Soar 

One of the major changes in extending Soar has been the introduction of non-symbolic 
processing. In Soar, clustering is subsymbolic, where non-symbolic perceptual 
structures are combined together to create symbols. All the other non-symbolic 
processing is co-symbolic – it either controls symbolic processing (similar to ACT-R’s 
use of non-symbolic processing), or in the case of visual imagery, provides an 
alternative to symbolic processing by providing a representational media for reasoning 
about the world. In contrast, Clarion has extensive subsymbolic processing (Sun 2006) 
where it supports neural networks processing for some of its reasoning in addition to 
symbolic processing. Below is a chart of the different functional uses of non-symbolic 
processing in Soar. 
  



Non-symbolic Processing  Function 
Numeric Preferences Control operator selection 
Reinforcement Learning Learn operator selection control knowledge 
Working memory activation Aid long-term memory retrieval 
Visual Imagery Represent images and spatial data for reasoning 
Appraisals: Emotions & Feelings Summarize intrinsic value of situation – aid RL 
Clustering Create symbols that capture statistical regularities 

4.2. Analysis of Memories and Learning in a Cognitive Architecture 

The second major change is the addition of new memories and learning systems. Below 
we summarize the major dimensions of variations in the memory and learning systems: 
 

Memory/Learning 
System 

Source of 
Knowledge 

Representation of 
knowledge 

Retrieval of knowledge 

Chunking Traces of rule firings 
in subgoals 

Rules Exact match of rule 
conditions, retrieve actions 

Clustering Perception Classification networks Winner take all 
Semantic Memory Working memory 

existence 
Mirror of working 
memory object structures 

Partial match, retrieve object 

Episodic Memory Working memory 
co-occurrence 

Episodes: Snapshots of 
working memory 

Partial match, retrieve episode 

Reinforcement 
Learning 

Reward and numeric 
preferences 

Numeric preferences Exact match of rule 
conditions, retrieve preference 

Image Memory Image short-term 
memory 

Image Deliberate recall based on 
symbolic referent  

4.3. Future work 

The addition of these new modules only scratches the surface of the potential research, 
with explorations of the interactions and synergies of these components being the next 
order of business. Some of the interactions are obvious, such as using RL to learn the 
best cues for retrieving knowledge from episodic memory, or using episodic memory 
for retrospective learning to train RL on important experiences. Other interactions 
require deeper integrations, such as how emotion and visual imagery are captured and 
used in episodic memory, how knowledge might move between episodic and semantic 
memories, how emotions and feelings influence decision making, or how emotion and 
working memory activation might influence storage and retrieval of knowledge in 
episodic and semantic memory. Finally, we need to study the impact of these 
extensions on Soar’s status as a unified theory of cognition (Newell 1990).  

4.4. Final thoughts 

So far, the explorations in psychology and AI through the space of cognitive 
architectures have been extremely fruitful. Research on ACT-R has led to 
comprehensive computational theories of a wide variety of human phenomena, 
including brain activity (Anderson, 2007), while research on EPIC has made great 
strides in modeling the detailed interactions of cognition with perception and action 
(Kieras & Meyer, 1997). However, these architectures and others have ignored many of 
the cognitive capabilities we are now studying in Soar (episodic memory, emotion, 



visual imagery), and it has taken us close to twenty years to study them. Why is this? 
The simple answer is that our architectures are prisoners of the tasks we study. To date, 
most of the research on cognitive architecture has arisen from studying short-term tasks 
– similar to those that arise in a psychology laboratory setting where there is minimal 
emotional engagement and little need for personal history. The challenge for the future 
is to develop general artificial systems that can pursue a wide variety of tasks 
(including novel ones) over long time scales, with extensive experiential learning in 
dynamic, complex environments. As is evidenced from this paper, my belief is that 
research in cognitive architecture provides the building blocks to meet this challenge.  
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