
Extending the Soar Cognitive Architecture
John E. Laird1

Division of Computer Science and Engineering, University of Michigan

Abstract. One approach in pursuit of general intelligent agents has been to
concentrate on the underlying cognitive architecture, of which Soar is a prime
example. In the past, Soar has relied on a minimal number of architectural modules
together with purely symbolic representations of knowledge. This paper presents
the cognitive architecture approach to general intelligence and the traditional,
symbolic Soar architecture. This is followed by major additions to Soar: non-
symbolic representations, new learning mechanisms, and long-term memories.

Keywords. Soar, cognitive architecture, reinforcement learning, episodic memory,
semantic memory, clustering, mental imagery, emotion.

Introduction

Through the years, there has been substantial evolution and refinement of the Soar
architecture (Laird and Rosenbloom, 1996), with eight major versions between 1982
and 2007. During this evolution, the basic approach of pure symbolic processing, with
all long-term knowledge being represented as production rules, was maintained and
Soar proved to be a general and flexible architecture for research in cognitive modeling
across a wide variety of behavioral and learning phenomena (Rosenbloom et al. 1993).
Soar also proved to be useful for creating knowledge-rich agents that could generate
diverse, intelligent behavior in complex, dynamic environments (Jones et al. 1999;
Wray, et al. 2005).

In spite of these successes, it became clear that Soar was missing some important
capabilities that we take for granted in humans, many of which have also been ignored
by the larger cognitive architecture community. In response, we have made substantial
extensions to Soar, adding new learning mechanisms and long-term memories as well
as new forms of non-symbolic processing. The motivation for these extensions is to
increase the functionality of Soar for creating artificial general intelligent systems, but
we also expect that these changes this will significantly expand the breadth of human
behavior that can be modeled using Soar. Before presenting these extensions, we start
with our underlying methodology for understanding and creating artificial generally
intelligent systems: cognitive architecture. We then present the traditional version Soar,
without the extensions, followed by the extended version of Soar. We conclude with an
analysis of this new version of Soar and discussion of future directions.

1 Corresponding Author: John E. Laird, Division of Computer Science and Engineering, University of

Michigan, 2260 Hayward Ave. Ann Arbor, MI 48109-2121; E-mail: laird@umich.edu

1. Cognitive Architecture

During the last twenty years, the field of AI has successfully pursued specialized
algorithms for specific problems. What distinguishes generally intelligent entities is
their ability to solve not just a single problem using a specific method, but the ability to
pursue a wide variety of tasks, including novel tasks, using large bodies of diverse
knowledge, acquired through experience, in complex, dynamic environments. This
leads us to study the fixed infrastructure that supports the acquisition and use of
knowledge: the cognitive architecture. A cognitive architecture consists of:

• memories for storing knowledge
• processing units that extract, select, combine, and store knowledge
• languages for representing the knowledge that is stored and processed

Cognitive architectures distinguish between knowledge that is acquired over time and
the fixed cognitive architecture that is common across all tasks. One of the most
difficult challenges in cognitive architecture design is to create sufficient structure to
support initial coherent and purposeful behavior, while at the same time providing
sufficient flexibility so that an agent can adapt (via learning) to the specifics of its tasks
and environment. Cognitive architectures must embody strong hypotheses about the
building blocks of cognition that are shared by all tasks, and how different types of
knowledge are learned, encoded, and used, making a cognitive architecture a software
implementation of a general theory of intelligence.

The hypothesis behind cognitive architectures such as Soar and ACT-R (Anderson,
2007) is that there are useful abstractions and regularities above the level of neurally-
based theories. This hypothesis plays out both in longer time scales of modeled
behavior and in the symbolic representations of knowledge about the world. A related
hypothesis is that the structures and discoveries of the symbolic architectures will be
reflected in the neurally-based architectures. This is the approach taken in Neuro-Soar
(Cho et al., 1991) and the ACT-R/Liebre hybrid (Taatgen et al., 2007) architectures.
Probably the most interesting question is whether the extra detail of the neurally-based
architectures (and the concurrent additional processing requirements) is necessary to
achieve generally intelligent agents, or whether the more abstract architectures
sufficiently capture the structures and regularities required for intelligence.

2. Traditional Soar

As shown in Figure 1, up until five years ago, Soar has consisted of a single long-term
memory, which is encoded as production rules, and a single short-term memory, which
is encoded as a symbolic graph structure so that objects can be represented with
properties and relations. Symbolic short-term memory holds the agent’s assessment of
the current situation derived from perception and via retrieval of knowledge from its
long-term memory. Action in an environment occurs through creation of motor
commands in a buffer in short-term memory. The decision procedure selects operators
and detects impasses, both of which are described below.

At the lowest level, Soar’s processing consists of matching and firing rules. Rules
provide a flexible, context-dependent representation of knowledge, with their
conditions matching the current situation and their actions retrieving information
relevant to the current situation. Most rule-based systems choose a single rule to fire at

a given time, and this serves as the locus of choice in the system – where one action is
selected instead of another. However, there is only limited knowledge available to
choose between rules, namely the conditions of the rules, the data matched by the rules,
and possibly meta-data, such as a numeric score, associated with the rules. There is no
ability to use additional context-dependent knowledge to influence the decision. Soar
allows additional knowledge to influence a decision by introducing operators as the
locus for choice and using rules to propose, evaluate, and apply operators. Rules act as
an associative-memory that retrieves information relevant to the current situation, so
there is no need to select between them and thus, in Soar, rules fire in parallel.

The concept of operator is common in AI, but usually involves a monolithic data
structure containing the operator’s preconditions and actions. However, in Soar, the
definition of an operator is distributed across multiple rules. Thus, in Soar, there are
rules that propose operators that create a data structure in working memory
representing the operator and an acceptable preference so that the operator can be
considered for selection. There are also rules that evaluate operators and create other
types of preferences that prefer one operator to another or provide some indication of
the utility of the operator for the current situation. Finally, there are rules that apply the
operator by making changes to working memory that reflect the actions of the operator.
These changes may be purely internal or may initiate external actions in the
environment. This approach supports a flexible representation of knowledge about
operators – there can be many reasons for proposing, selecting, and/or applying an
operator – some that are very specific and others that are quite general. This
representation also makes it possible to incrementally build up operator knowledge
structures, so that the definition of an operator can change over time as new knowledge
is learned for proposal, selection, and application (Pearson & Laird, 2005).

To support the selection and application of operators and to interface to external
environments, Soar has the processing cycle shown in Figure 2.
1. Input. Changes to perception are processed and sent to short-term memory.
2. Elaboration. Rules compute entailments of short-term memory. For example, a rule

might test if the goal is to grasp an object, the object’s distance, and the agent’s
reach, and then create a structure signifying whether the object is within reach.

Body

Symbolic Long-Term Memory
Procedural

Symbolic Short-Term Memory

D
ecision

Procedure

Chunking

Perception Action

Figure 1: Structure of Soar 9

Figure 2: Soar’s Processing Cycle

3. Operator Proposal. Rules propose operators that are appropriate to the current
situation based on features of the situation tested in the condition of the rules.

4. Operator Evaluation. Rules create preferences for which of the proposed operators
should be preferred, based on the current situation and goal. The preferences can
be symbolic (A is better than B), or numeric (the estimated utility of A is .73).

5. Operator Selection. A fixed decision procedure combines the generated
preferences and selects the current operator. If the preferences are insufficient for
making a decision, an impasse arises and Soar automatically creates a substate in
which the goal is to resolve that impasse. In the substate, Soar recursively uses the
same processing cycle to select and apply operators, leading to automatic, reactive
meta-reasoning. The impasses and resulting substates provide a mechanism for
Soar to deliberately perform any of the functions (elaboration, proposal, evaluation,
application) that are performed automatically/reactively with rules.

6. Operator Application. The actions of an operator are performed by rules that match
the current situation and the current operator structure. Multiple rules can fire in
parallel and in sequence providing a flexible and expressive means for encoding
operator actions. If there is insufficient application knowledge, an impasse arises
with a substate. This leads to dynamic task decomposition, where a complex
operator is performed recursively by simpler operators.

7. Output. Any output commands are passed on to the motor system.

Soar’s procedural knowledge, decision-making, and subgoaling provide a strong
foundation on to which to build. It has a shared short-term memory where knowledge
from perception and long-term memory are combined to provide a unified
representation of the current situation. It has a lean decision procedure that supports
context-dependent reactive behavior, but also supports automatic impasse-driven
subgoals and meta-reasoning. Chunking is Soar’s learning mechanism that converts the
results of problem solving in subgoals into rules – compiling knowledge and behavior
from deliberate to reactive. Although chunking is a simple mechanism, it is extremely
general and can learn all the types knowledge encoded in rules (Steier et al., 1987).

3. Extended Soar

In extending Soar, we had two goals: 1. Retain the strengths of the original Soar: a
flexible model of control and meta-reasoning along with the inherent ability to support
reactive and deliberative behavior and the automatic conversion from deliberate to
reactive behavior via chunking. 2. Expand the types of knowledge Soar could represent,
reason with, and learn, inspired by human capabilities, but with the primary goal of
additional functionality. The extensions fall into two, partially overlapping categories:
new non-symbolic representations of knowledge along with associated processing and
memory modules, and new learning and memory modules that capture knowledge that
is cumbersome to learn and encode in rules.

Input Operator
Selection

OutputElaboration
Operator Proposal

Operator Evaluation

Operator
Application

Figure 3 shows the structure of Soar, version 9. All of the new components have
been built, integrated, and run with the traditional Soar components; however, as of yet
there is not a single unified system that has all the components running at once. The
major additions include: working memory activation, which provides meta-information
about the recency and usefulness of working memory elements; reinforcement learning;
which tunes the numeric preferences of operator selection rules; the appraisal detector,
which generates emotions, feelings, and an internal reward signal for reinforcement
learning; semantic memory, which contains symbolic structures representing facts;
episodic memory; which contains temporally ordered “snapshots” of working memory;
a set of processes and memories to support visual imagery, which includes depictive
representations in which spatial information is inherent to the representation; and
clustering, which dynamically creates new concepts and symbols.

Soar’s processing cycle is still driven by procedural knowledge encoded as
production rules. The new components influence decision making indirectly by
retrieving or creating structures in symbolic working memory that cause rules to match
and fire. In the remainder of this section, we will give descriptions of these new
components and discuss briefly their value and why their functionality would be very
difficult to achieve by the existing mechanisms.

3.1. Working Memory Activation

Inspired by ACT-R (Anderson 2007), we added activation to Soar’s working memory
(Chong, 2003; Nuxoll et al., 2004). Activation provides meta-information in terms of
the recency of a working memory element and its relevance, which is computed based

+ Activation

Figure 3: Soar 9

LT Visual Memory

Body

Symbolic Long-Term Memories
Procedural

Symbolic Short-Term Memory D
ecision

Procedure

Chunking

Episodic Semantic

A
pp

ra
is

al

D
et

ec
to

r

Reinforcement
Learning

Perception Action ST Visual Imagery

Clustering

Semantic
Learning

Episodic
Learning

on when the element matched rules that fired. This information is not used to determine
which rules to fire, as Soar fires all rules that match, but it is stored as part of episodic
memories, biasing their retrieval so that the episode retrieved is the most relevant to the
current situation. Empirical results verify that working memory activation significantly
improves episodic memory retrieval (Nuxoll & Laird, 2007). In the future, we expect
that working memory activation will be used in semantic memory retrieval and
emotion. Working memory activation requires architectural changes because it must
access and maintain information that is only available to the architecture (when
working memory elements are created and matched).

3.2. Reinforcement Learning

Reinforcement learning (RL) involves adjusting the selection of actions in an attempt
to maximize reward. In early versions of Soar, all preferences for selecting operators
were symbolic, so there was no way to represent or adjust such knowledge; however,
we recently added numeric preferences, which specify the expected value of an
operator for the current state (Wray & Laird, 2003). During operator selection, all
numeric preferences for an operator are combined, and an epsilon-greedy algorithm is
used to select the next operator. This makes RL in Soar straightforward – it adjusts the
actions of rules that create numeric preferences for selected operators (Nason & Laird,
2005). Thus, after an operator applies, all of the rules that created numeric preferences
for that operator are updated based on any new reward and the expected future reward,
which is simply the summed numeric value of the numeric preferences for the next
selected operator. RL in Soar applies across all goals, including impasse-generated
subgoals. One intriguing aspect of RL in Soar is that the mapping from situation and
operator to expected reward (the value-function) is represented as collections of rules.
Only those rules that match the current situation participate in the selection of an
operator, and there can be many rules contributing estimates of future reward for a
single operator. This representation supports varying degrees of coverage and
hierarchical representations, which can greatly speed up learning (Wang & Laird,
2007).

RL would be very difficult to implement in Soar using only chunking. RL applies
to every operator selection, on every decision, even when there is no impasse, while
chunking only learns rules through impasses. In addition, RL modifies existing rules by
changing the values of numeric preferences, while chunking only adds new rules. In
fact, RL and chunking are quite complementary because when there are no selection
rules, an impasse arises and problem solving in a subgoal can generate initial
preferences for the tied operators. Chunking then creates rules to generate these initial
preferences in the future, and RL then tunes the values as experience accumulates.

3.3. Emotion

The functional and computational role of emotion is open to debate; however, in the
last twenty years there has been substantial research on appraisal theories of emotion
(Roseman & Smith, 2001). These theories propose that an agent continually evaluates a
situation and that evaluation leads to emotion. The evaluation is hypothesized to take
place along multiple dimensions, such as goal relevance (is this situation important to
my goals?), goal conduciveness (is this situation good or bad for my goals?), causality
(who caused the situation?), control (can I change the situation?), and so on. These

dimensions are exactly what an intelligent agent needs to compute as it pursues its
goals while interacting with an environment. Thus, we have created a computational
implementation of a specific appraisal theory (Scherer, 2001) in Soar, represented by
the appraisal detector in Figure 3. In Soar, appraisals lead to emotions, emotions
influence mood, and mood and emotion determine feelings (Marinier & Laird, 2007).
Individual appraisals produce either categorical or numeric values, which combine to
form an intensity of the current feeling. This intensity becomes the intrinsic reward
(Singh et al., 2004) for reinforcement learning, which significantly speeds learning
(Marinier & Laird, 2008). A major goal of our future work is to explore how emotion,
mood, and feeling can be used productively with other modules (such as retrieval from
long-term memory and decision making), as well as in interacting with other agents.

It is possible to implement similar theories of emotion in Soar without modifying
the architecture (Gratch & Marsella, 2004); however, in these approaches, Soar is used
more as a programming language than as a cognitive architecture – all of the important
functionality of the system comes from procedural knowledge encoded in Soar as
opposed to the structure of the architecture. This makes it impossible for emotions,
mood, and feelings to directly influence other architectural modules, which we expect
is critical to many aspects of emotion, mood, and feelings.

3.4. Semantic Memory

In addition to procedural knowledge, which is encoded as rules in Soar, there is
declarative knowledge, which can be split into things that are known, such as facts, and
things that are remembered, such as episodic experiences. Semantic learning and
memory provides the ability to store and retrieve declarative facts about the world, such
as tables have legs, dogs are animals, and Ann Arbor is in Michigan. This capability
has been central to ACT-R’s ability to model a wide variety of human data and adding
it to Soar should enhance our ability to create agents that reason and use general
knowledge about the world. In Soar, semantic memory is built up from structures that
occur in working memory. A structure from semantic memory is retrieved by creating a
cue in a special buffer in working memory. The cue is then used to search for the best
partial match in semantic memory, which is then retrieved into working memory.

There has been a significant body of research on acquiring semantic knowledge
through Soar’s chunking mechanism, under the label of data chunking (Rosenbloom,
2007). Although it is possible, it is not easy. Data chunking requires pre-existing
knowledge about the possible structures that can exist in working memory, and the
agent has to interrupt its current task processing to deliberately force an impasse in
which chunking can learn the appropriate rules. Moreover, because the knowledge is
encoded in rules, retrieval requires an exact match of the cue, limiting the generality of
what is learned. These factors made it difficult to use data chunking in new domains,
begging the question as to how it would naturally arise in a generally intelligent agent.

3.5. Episodic Memory

In contrast to semantic memory, which contains knowledge independent of when and
where it was learned, episodic memory contains memories of what was experienced
over time (Tulving, 1983). In Soar, episodic memory includes specific instances of the
structures that occur in working memory at the same time, providing the ability to
remember the context of past experiences as well as the temporal relationships between

experiences (Nuxoll & Laird, 2007). An episode is retrieved by the deliberate creation
of a cue, which is a partial specification of working memory in a special buffer. Once a
cue is created, the best partial match is found (biased by recency and working memory
activation) and retrieved into a separate working memory buffer (to avoid confusion
between a memory and the current situation). The next episode can also be retrieved,
providing the ability to replay an experience as a sequence of retrieved episodes.

Although similar mechanisms have been studied in case-based reasoning, episodic
memory is distinguished by the fact that it is task-independent and thus available for
every problem, providing a memory of experience not available from other
mechanisms. Episodic learning is so simple that it is often dismissed in AI as not
worthy of study. Although simple, one has only to imagine what life is like for
amnesiacs to appreciate its importance for general intelligence (Nolan, 2000). We have
demonstrated that when episodic memory is embedded in Soar, it enables many
advanced cognitive capabilities such as internal simulation and prediction, learning
action models, and retrospective reasoning and learning.

Episodic memory would be even more difficult to implement using chunking than
semantic memory because it requires capturing a snapshot of working memory and
using working memory activation to bias partial matching for retrieval.

3.6. Visual Imagery

All of the previous extensions depend on Soar’s existing symbolic short-term memory
to represent the agent’s understanding of the current situation and with good reason.
The generality and power of symbolic representations and processing are unmatched
and our ability to compose symbolic structures is a hallmark of human-level
intelligence. However, for some constrained forms of processing, other representations
can be much more efficient. One compelling example is visual imagery (Kosslyn et al.,
2006), which is useful for visual-feature and visual-spatial reasoning. We have added a
set of modules to Soar that support visual imagery (Lathrop & Laird, 2007), including a
short-term memory where images are constructed and manipulated; a long-term
memory that contains images that can be retrieved into the short-term memory;
processes that manipulate images in short-term memory, and processes that create
symbolic structures from the visual images. Although not shown, these extensions
support both a depictive representation in which space is inherent to the representation,
as well as an intermediate, quantitative representation that combines symbolic and
numeric representations. Visual imagery is controlled by the symbolic system, which
issues commands to construct, manipulate, and examine visual images.

With the addition of visual imagery, we have demonstrated that it is possible to
solve spatial reasoning problems orders of magnitude faster than without it, and using
significantly less procedural knowledge. Visual imagery also enables processing that is
not possible with only symbolic reasoning, such as determining which letters in the
alphabet are symmetric along the vertical axis (A, H, I, M, O, T, U, V, W, X, Y).

3.7. Clustering

One additional capability that has been missing from Soar is a mechanism that detects
statistical regularities in the stream of experiences and automatically creates new
symbolic structures that represent those regularities, providing a mechanism for
automatically generating new symbols and thus concepts that can be used to classify

perception. Few existing cognitive architectures have the capability to create new
symbolic structures – they are a prisoner of the original encodings provided by a
human programmer. To remedy this shortcoming, we have added a clustering module
to Soar that is based on research by Richard Granger (Granger 2006). The underlying
algorithms are derived from the processing of thalamocortical loops in the brain, where
it appears there is clustering and successive sub-clustering of inputs using winner-take-
all circuits. Although we do not yet have a general implementation of clustering for all
types of perception in Soar, we have used clustering to create new symbolic structures
that enrich that state representation and speed reinforcement learning.

3.8. Integration of New Modules in Soar

As mentioned earlier, the processing cycle of Soar did not require any changes to
accommodate the new modules beyond invoking them at appropriate times. Working
memory activation is updated when rules fire, while reinforcement learning is invoked
when a new operator is selected and clustering is invoked during input processing. The
retrieval for semantic and episodic memories is performed during the input phase, so
that the results are available during the next processing cycle. The visual imagery
system is treated as if it was an external module, with commands to the system creating
by rules and then executed during the output phase, with new interpretations of the
images created during the input phase. Although the modules are invoked at specific
points in the processing cycle, they could run asynchronously. For example, when a
cue is created for episodic memory, the retrieval processes could run in parallel with
rule matching and firing. We have maintained the more rigid approach because it
simplifies development and debugging, and because there was no computational
advantage to having asynchronous threads before the advent of multi-core processors.

Although knowledge encoded in rules still controls behavior through the selection
and application of operators, the new modules influence behavior through the working
memory structures they create. For example, if a list of instructions is stored in
semantic memory, with the appropriate rules, they can be retrieved, and lead to the
selection of operators that interpret and execute them. Reactivity is maintained by rules
that propose and prefer operators to process unexpected external events.

4. Discussion

4.1. Non-symbolic processing in Soar

One of the major changes in extending Soar has been the introduction of non-symbolic
processing. In Soar, clustering is subsymbolic, where non-symbolic perceptual
structures are combined together to create symbols. All the other non-symbolic
processing is co-symbolic – it either controls symbolic processing (similar to ACT-R’s
use of non-symbolic processing), or in the case of visual imagery, provides an
alternative to symbolic processing by providing a representational media for reasoning
about the world. In contrast, Clarion has extensive subsymbolic processing (Sun 2006)
where it supports neural networks processing for some of its reasoning in addition to
symbolic processing. Below is a chart of the different functional uses of non-symbolic
processing in Soar.

Non-symbolic Processing Function
Numeric Preferences Control operator selection
Reinforcement Learning Learn operator selection control knowledge
Working memory activation Aid long-term memory retrieval
Visual Imagery Represent images and spatial data for reasoning
Appraisals: Emotions & Feelings Summarize intrinsic value of situation – aid RL
Clustering Create symbols that capture statistical regularities

4.2. Analysis of Memories and Learning in a Cognitive Architecture

The second major change is the addition of new memories and learning systems. Below
we summarize the major dimensions of variations in the memory and learning systems:

Memory/Learning
System

Source of
Knowledge

Representation of
knowledge

Retrieval of knowledge

Chunking Traces of rule firings
in subgoals

Rules Exact match of rule
conditions, retrieve actions

Clustering Perception Classification networks Winner take all
Semantic Memory Working memory

existence
Mirror of working
memory object structures

Partial match, retrieve object

Episodic Memory Working memory
co-occurrence

Episodes: Snapshots of
working memory

Partial match, retrieve episode

Reinforcement
Learning

Reward and numeric
preferences

Numeric preferences Exact match of rule
conditions, retrieve preference

Image Memory Image short-term
memory

Image Deliberate recall based on
symbolic referent

4.3. Future work

The addition of these new modules only scratches the surface of the potential research,
with explorations of the interactions and synergies of these components being the next
order of business. Some of the interactions are obvious, such as using RL to learn the
best cues for retrieving knowledge from episodic memory, or using episodic memory
for retrospective learning to train RL on important experiences. Other interactions
require deeper integrations, such as how emotion and visual imagery are captured and
used in episodic memory, how knowledge might move between episodic and semantic
memories, how emotions and feelings influence decision making, or how emotion and
working memory activation might influence storage and retrieval of knowledge in
episodic and semantic memory. Finally, we need to study the impact of these
extensions on Soar’s status as a unified theory of cognition (Newell 1990).

4.4. Final thoughts

So far, the explorations in psychology and AI through the space of cognitive
architectures have been extremely fruitful. Research on ACT-R has led to
comprehensive computational theories of a wide variety of human phenomena,
including brain activity (Anderson, 2007), while research on EPIC has made great
strides in modeling the detailed interactions of cognition with perception and action
(Kieras & Meyer, 1997). However, these architectures and others have ignored many of
the cognitive capabilities we are now studying in Soar (episodic memory, emotion,

visual imagery), and it has taken us close to twenty years to study them. Why is this?
The simple answer is that our architectures are prisoners of the tasks we study. To date,
most of the research on cognitive architecture has arisen from studying short-term tasks
– similar to those that arise in a psychology laboratory setting where there is minimal
emotional engagement and little need for personal history. The challenge for the future
is to develop general artificial systems that can pursue a wide variety of tasks
(including novel ones) over long time scales, with extensive experiential learning in
dynamic, complex environments. As is evidenced from this paper, my belief is that
research in cognitive architecture provides the building blocks to meet this challenge.

Acknowledgments

The author wishes to thank the current and former graduate students and research
programmers who have contributed to the extensions to Soar described in this paper:
Ron Chong, Karen Coulter, Michael James, Scott Lathrop, Robert Marinier, Shelley
Nason, Andrew Nuxoll, Jonathan Voigt, Yongjia Wang, and Samuel Wintermute.

References

Anderson, J. R. (2007) How Can the Human Mind Occur in the Physical Universe?
Oxford University Press.

Cho, B., Rosenbloom, P. S. & Dolan, C. P. (1991) Neuro-Soar: A neural-network
architecture for goal-oriented behavior, Proceedings of the Thirteenth Annual
Conference of the Cognitive Science Society, 673-677. Chicago, IL.

Chong, R. (2003) The addition of an activation and decay mechanism to the Soar
architecture. Proceedings of the Fifth International Conference on Cognitive
Modeling, Pittsburgh, PA.

Granger R (2006) Engines of the brain: The computational instruction set of human
cognition. AI Magazine 27: 15-32.

Gratch, J. & Marsella, S. (2004) A Domain-independent Framework for Modeling
Emotion. Cognitive Systems Research, 5:269-306, 2004.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V.
(1999) Automated intelligent pilots for combat might simulation. AI Magazine,
20(1), 27-41.

Kieras, D. & Meyer, D. E. (1997) An overview of the EPIC architecture for cognition
and performance with application to human-computer interaction. Human-Computer
Interaction, 12, 391-438.

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The Case for Mental Imagery.
New York, New York: Oxford University Press.

Laird, J. E., & Rosenbloom, P.S. (1996) The evolution of the Soar cognitive
architecture. In T. Mitchell (ed.) Mind Matters, 1-50.

Lathrop, S.D., and Laird, J.E. (2007). Towards Incorporating Visual Imagery into a
Cognitive Architecture. Eighth International Conference on Cognitive Modeling.

Marinier, R. P., & Laird, J. E. (2007) Computational Modeling of Mood and Feeling
from Emotion. Proceedings of 29th Meeting of the Cognitive Science Society. 461-
466. Nashville: Cognitive Science Society.

Marinier, R. P., & Laird, J. E. (2008) Emotion-Driven Reinforcement Learning. (under
review for Cybernetics and Systems, will know decision before final copy is due)

Nason, S., & Laird, J. E. (2005) Soar-RL: Integrating reinforcement learning with Soar.
Cognitive Systems Research, 6(1), 51-59.

Newell, A. (1990) Unified Theories of Cognition. Harvard University Press.
Nolan, C. (2000) Memento, New Market Films.
Nuxoll, A. M., Laird, J. E., & James, M. (2004) Comprehensive working memory

activation in Soar, Sixth International Conference on Cognitive Modeling, 226-230.
Nuxoll, A. M., & Laird, J. E. (2007) Extending cognitive architecture with episodic

memory. Proceedings of the 21st National Conference on Artificial Intelligence.
Pearson, D. J., & Laird, J. E., Incremental Learning of Procedural Planning Knowledge

in Challenging Environments, Computational Intelligence, 2005, 21(4), 414:439.
Roseman, I. & Smith, C. A. (2001) Appraisal theory: Overview, Assumptions,

Varieties, Controversies. In Scherer, Schorr, & Johnstone (Eds.) Appraisal processes
in Emotion: Theory, Methods, Research, 3-19. Oxford University Press.

Rosenbloom, P. S. (2006) A cognitive odyssey: From the power law of practice to a
general learning mechanism and beyond. Tutorials in Quantitative Methods for
Psychology, 2(2), 38-42.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1993) The Soar papers: Research on
Integrated Intelligence. MIT Press, Cambridge, MA.

Scherer, K. R. (2001) Appraisal considered as a process of multi-level sequential
checking. In K. R. Scherer, A. Schorr, & T. Johnstone (Eds.) Appraisal processes in
Emotion: Theory, Methods, Research. 92-120. Oxford University Press.

Singh, S., Barto, A. G., & Chentanez, N. (2004) Intrinsically motivated reinforcement
learning. 18th Annual Conference on Neural Information Processing Systems (NIPS).

Steier, D.S., Laird, J.E., Newell, A., Rosenbloom, P.S., Flynn, R., Golding, A., Polk,
T.A., Shivers, O., Unruh, A., Yost, G.R. (1987) Varieties of Learning in Soar.
Proceedings of the Fourth International Machine Learning Workshop.

Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive modeling
to social simulation. In: Ron Sun (ed.), Cognition and Multi-Agent Interaction.
Cambridge University Press, New York.

Taatgen, N. A., Juvina, I., Herd, S., Jilk, D., & Martens, S. (2007) Attentional blink:
An internal traffic jam? Eighth International Conference on Cognitive Modeling.

Tulving, E. (1983) Elements of Episodic Memory. Oxford: Clarendon Press.
Wang, Y., and Laird, J.E. (2007) The Importance of Action History in Decision

Making and Reinforcement Learning. Proceedings of the Eighth International
Conference on Cognitive Modeling. Ann Arbor, MI.

Wang, Y., and Laird, J.E. 2006. Integrating Semantic Memory into a Cognitive
Architecture. CCA-TR-2006-02, Center for Cognitive Architecture, University of
Michigan.

Wray, R. E & Laird, J.E. (2003) Variability in Human Behavior Modeling for Military
Simulations. Proceedings of the 2003 Conference on Behavior Representation in
Modeling and Simulation. Scottsdale, AZ.

Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., & Kerfoot, A. (2005) Synthetic
adversaries for urban combat training. AI Magazine, 26(3), 82-92.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

