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Abstract
In this paper we extend an interactive task learning agent to a mobile robot in a large, multi-room
environment. In such an environment, the instructor may make verbal references to objects that are
unseen or unknown. We describe a comprehensive approach to this problem that combines refer-
ence resolution, object finding, and anchoring. We also demonstrate how some of these capabilities
can be extended through interactive instruction. The agent is able to learn and use strategies for
finding objects that involve multiple sources of knowledge.

1. Introduction

The goal of research in Interactive Task Learning (ITL) (Laird, 2014) is to allow human instructors
to teach intelligent agents new tasks and extend existing tasks in real-time, through interactions such
as verbal instructions and demonstrations. In this paper, we extend an existing ITL tabletop agent,
Rosie (Mohan & Laird, 2014), to a mobile robot that learns new tasks across a large, multi-room
indoor environment. The robot drives around, interacts with simple objects, and communicates with
people. It learns new tasks such as ‘Deliver the package to the main office,’ ‘Tell Alice a message,’
and ‘Fetch a stapler.’ To teach a task, the instructor describes the goal (‘The goal is that the package
is in the main office’) and, if necessary, actions that the agent should execute to achieve the goal.
Once the goal is achieved, the agent learns a policy for the task.

The most significant difference between the tabletop and mobile domains is that in the tabletop
domain, all task-relevant objects and locations are immediately perceivable by the agent. This
greatly simplifies the problem of making a connection between any linguistic reference (such as
‘the stapler’) and a target object in the environment (the agent’s perception of the physical stapler).
In contrast, an instructor in the mobile domain can refer to objects that the agent cannot perceive or
is not aware of. Often work in interactive task learning ignores this problem by having environments
where all the objects are known (Saunders, Syrdal, Koay, Burke, & Dautenhahn, 2016; Mohseni-
Kabir, Rich, Chernova, Sidner, & Miller, 2015).

This paper describes a comprehensive approach to connecting linguistic references to objects
in a large, partially observable environment where the agent need not have prior knowledge about
the referenced object. We decompose this process into three stages. The first stage is reference
resolution, where the agent resolves the referring expression to an internal representation of the
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target object to be used in the task. This stage occurs during the extraction of the semantic meaning
of a sentence, using linguistic constructions (such as definite or indefinite determiners, anaphoric
references, relative clauses, and prepositional phrases) to inform how a linguistic referent should
be resolved. The agent first attempts to resolve it to an existing internal representation of a known
object (which may or may not be currently perceived). If no suitable one exists, the agent creates a
new internal representation that includes all the constraints implicit in the linguistic structure.

The second stage is object finding, which is necessary when the target object is not perceivable.
The agent must take actions so that it is physically in a position where it perceives the target object.
In some cases, it may not immediately know where to find the object. It may have to search long
term memory, ask the instructor, or do an external search in the environment to find it.

The third stage is reference anchoring, where the agent connects the internal representation of
the object reference to the agent’s perception of the object. Note that this stage is unnecessary if
the reference was resolved to an existing object representation that was already anchored. This
step may be delayed until a suitable object is perceived. If a perceived object matches the internal
representation of the reference, they are anchored together.

The object finding stage is the most unconstrained of the three. Some ways of finding objects
are useful across a wide variety of tasks. For example, systematically searching a room or going
to the last place the object was seen. However, some strategies for finding objects may be domain
specific, such as looking in the lost and found or looking for an employee in her office. Similarly, the
anchoring stage may fail because an unknown domain-specific concept is used in the reference. For
example, when the instructor refers to a new person by name or uses a new term (such as favorite
in ‘Bring Bob his favorite drink’). This domain specificity makes it difficult to impossible for an
ITL agent to be pre-programmed with all the knowledge to find and anchor all objects across all
tasks and domains. Our hypothesis is that interactive task learning should include the ability to
learn new approaches to object finding and anchoring. Our contribution is implementing these three
stages of connecting references to objects in an interactive task learning agent so that it can learn
and perform tasks in a large, partially observable environment. A critical component is providing
the capability for it to extend its object finding and anchoring capabilities through natural language
instruction. As part of supporting object finding and anchoring, we have extended the set of possible
instructions to include internal actions that manage the agent’s knowledge and memory – sometimes
proactively remembering information that will be needed later and sometimes deliberately retrieving
information stored in its long term memories.

In the remainder of this paper, we describe the embodiment of our ITL agent in a mobile robot
(Section 2). We then describe and categorize the different object-finding strategies that the agent
can use, and how these can be learned through instruction (3). Finally, we describe how these
capabilities extend the tasks our agent can learn (4) and evaluate through simulation the ability of
our agent to find objects in several experiments (5).

2. Agent Overview

Our agent is implemented in the Soar cognitive architecture (Laird, 2012). Soar includes a procedu-
ral memory, encoded as rules, that holds knowledge for selecting and performing internal actions,
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Figure 1. Photo of the mobile robot detecting objects with fiducials (left). Image of the simulated robot
environment with objects (right).

external motor actions, and tasks. Procedural memory tests Soar’s working memory, which con-
tains representations of the agent’s current goals, tasks, and belief about the world. In order for
information to influence behavior, it must be in working memory. To maintain efficient execution,
working memory only contains task-relevant information. Other long term data are held in Soar long
term declarative memories: semantic memory contains facts about the world and episodic memory
contains the history of the agent’s working memory.

2.1 Perception and Action

The robot platform we use is a four-wheeled robot with a 360 laser range finder and a front-facing
camera (Figure 1). It starts with a known metrical grid map overlayed with a set of regions (navi-
gable rooms and hallways, also referred to as locations). The robot’s position within the map and
current location are reported to the agent. The agent starts with a topological map it can use to nav-
igate between locations via go-to-waypoint commands. It can associate a linguistic label with
a location, and these associations can be taught through instruction (e.g. ‘You are in the kitchen’).
The robot uses visual fiducials to detect and classify objects. These objects are represented as a set
of unary predicates (e.g. O3: {red(O3), visible(O3), grabbed(O3)}) and there are
also relations defined over those objects (e.g. in(O3, O5), holding(O2, O1)). Objects in
the agent’s current location are maintained in working memory, as are objects relevant to the current
task. When the agent leaves a location, all objects not involved in the current task are removed
from working memory. Objects with long term importance, such as people and locations, are also
permanently stored in semantic memory.

The agent starts with a set of simple actions it knows how to carry out. These include movement
actions (drive-to-location, turn), manipulation actions (pick-up, put-down), and
communicative actions (say, ask). (Currently we rely on a person to actually move objects
on/off the robot). The agent’s knowledge of the actions is encoded in Soar’s procedural memory as
rules. For each of these primitive actions, the agent knows when the action can be performed (its
pre-conditions), how to execute the action (it motor actions), and the effects of the action (its action
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model). The agent uses the action models during planning to find a sequence of actions that achieve
a task’s goal.

We also have a simulated environment which we use for development and testing. It allows us to
do more extensive and controlled experiments with more trials. The perceptual and motor interfaces
to the agent are identical to that in the real world. The simulated robot performs the same low-level
motor controls and only perceives objects in its line of sight.

2.2 Task Learning

The agent learns new tasks through situated interactive instruction (Mohan & Laird, 2014). The
instructor interacts with the agent through a chat interface. The agent parses the typed sentences to
create a semantic representation using knowledge encoded in the procedural and semantic memo-
ries. The agent assumes it is learning a new task when it receives a command that uses a novel verb,
such as ‘Deliver the package to Alice’. The agent creates a representation of the new task that in-
cludes the semantic structures of the arguments used in the command, and stores that representation
in semantic memory. As the agent learns more about the task, it adds more to this structure.

Next, the agent asks for the goal of the task. The goal is specified by a set of predicates over
objects that describe a desired state of the world. For example, the agent turns ‘The goal is that Alice
is holding the package’ into holding(Alice, package). The agent then uses its internal
models of its actions to search for a solution. If a solution is found, the agent executes it by selecting
and applying the appropriate actions. If the agent is unable to solve the problem because it does not
have sufficient knowledge to find a solution, the agent asks the instructor for advice. The instructor
then suggests actions that the agent executes until it can solve the problem by itself or the goal is
reached. Once the agent recognizes that it has achieved the goal, it learns a policy for selecting each
action in appropriate situation so that it will be able to solve the problem in the future. Our agent
can learn tasks where the goal is specified as a set of predicates, the known actions are sufficient for
achieving the goal, and the internal action models are sufficient for simulating the goal achievement.

3. Connecting References to Objects

During interaction with the agent, the instructor will reference different objects. The agent must
eventually connect those references to the perception of a suitable object. To do so, the agent needs
to first do reference resolution to get an internal representation of the reference. Then, if the object
is not being perceived it must find the object. Finally, it must anchor its perception of the object to
the internal representation. These stages are discussed below.

3.1 Reference Resolution

First, the agent must take a linguistic reference and either identify an existing representation or
create a new representation for the referenced object. Our approach is inspired by the Givenness
Hierarchy (Gundel, Hedberg, & Zacharski, 1993), which describes how to associate the form of
the reference expression (e.g., pronoun, definite noun phrase) with a cognitive status (e.g. in-focus,
uniquely identifiable). We use this cognitive status to determine which candidate objects to consider.
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Cognitive Status Linguistic form Candidate Set
In Focus it DL
Activated this, that, this NP ACT
Familiar that NP not used
Uniquely Identifiable the NP DL > VIS > STM > LTM > NEW
Referential indef. this NP not used
Type Identifiable a NP NEW

Figure 2. Candidate object sets considered during reference resolution based on the linguistic form of the
referring expression: previous dialog (DL), activated (ACT), visible (VIS), short term memory (STM), long
term memory (LTM), and a newly created representation (NEW).

In our system, we handle four of the cognitive statuses (Figure 2). The in focus status is indicated
by the word it and indicates an object in the current center of attention. The candidate set is the set
of objects previously mentioned in the dialog within the current task (DL), with a preference for
more recent objects that match usage constraints (for example, if ‘it’ is used as the direct object
of ‘move’, the referent must be an object and not a location). The activated status is indicated by
the word this, and indicates an object that has some recent salience. Currently, this is only used
when the instructor ‘points’ to an object (clicks on a graphical interface). The uniquely identifiable
status is indicated by a noun phrase with the word the, and is the most common form that our
agent encounters. This status is also assigned by default if no form is given. Here the instructor
is indicating that he expects that the agent can resolve the reference to a unique object based on
the constraints in the reference. Here, the agent looks through the following candidate sets in order
until it finds an object that satisfies all the constraints: objects referenced in previous dialog (DL),
currently visible objects (VIS), all objects in short term memory (STM), and all objects in long term
memory (LTM). If no match is found, it generates a NEW representation containing the constraints
in the referring expression. Finally, the type identifiable status is indicated by a noun phrase with
the word a, and indicates that the instructor is referring to a class of objects, not a specific one. In
this case the agent generates a NEW representation that includes the constraints in the reference.
The end result of this process is that the reference has been resolved to an internal representation,
either existing or newly created. If more than one object matches, the agent engages in additional
interactions to determine which is intended (e.g. ‘Which red block?’, ‘The large one’).

3.2 Object Finding

Once an object reference has been resolved to an internal representation, the agent can use that
representation to continue with the task even if it does not perceive the object. For example, the
object representation can be used to generate a goal or to do internal planning. At some later point,
the agent may need to actually perform an action involving that object, such as picking it up. To do
so, the agent must find the object in the world. This may require taking actions like turning to face
the object or searching through multiple rooms. Thus the agent needs different strategies for finding
an object that depend on the agent’s knowledge about that object.
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We categorize the different strategies according to where they get knowledge about the object.
Some strategies utilize internal sources of knowledge: short term memory and long term memory.
Others get knowledge from external sources, through interaction or external search. We describe
each of these four categories of strategies and what actions our agent can perform to handle each
case. These strategies are implemented within the existing task learning and execution framework
(Mohan & Laird, 2014). A significant extension has been adding actions that access knowledge
in long term memories (think and recall) and allowing the instructor to use these actions in
instructions.

3.2.1 Short Term Memory

There may already be knowledge in short term memory about the location of the object. This knowl-
edge could come from previous experience with the object, information provided by the instructor,
or from a previous retrieval from long term memory. Whatever its source, the agent can immediately
act on this information to try and find the object. In our system, the agent may have the object’s
position stored in its spatial memory. In this case, it can execute a face command to turn towards
where it thinks the object is. Alternatively, the agent could have knowledge that the object is in a
different location. In this case, it can perform a go-to-location action to drive there.

3.2.2 Long Term Memory

The agent might have knowledge about where to look for the object stored in its long term memory.
For example, the object may have been encountered in the past and subsequently removed from
working memory (usually when leaving a room). This knowledge will have been automatically
stored in episodic memory, and the agent will need to retrieve it into working memory for it to
be useful. To perform this strategy we created the recall action. Any arguments of the recall
action form a description of a hypothetical state of the world that is then used to access episodic
memory. For example, suppose the agent is trying to find Alice. The instructor can say ‘Recall
Alice in a location.’ The agent then searches episodic memory for an episode with {Alice(A),
location(B), in(A, B)} in the world state. If such an episode exists, the location of Alice
(B) is added to working memory along with in(Alice, B). This strategy is equivalent to asking
where the agent last saw Alice. The agent can then search in that location.

There might also be knowledge about the object in semantic memory that would be useful when
deciding where to look for an object. For example, the agent could know that sodas are stored in the
kitchen, or that Bob might be in his office. Although the agent could search semantic memory by
generating many different cues that could potentially be relevant, that approach is computationally
expensive and would degrades the agent’s responsiveness. Moreover, the instructor may know spe-
cific cues to use to find the most relevant knowledge in the current situation. To support this type
of instruction, we created the think action, which is used to retrieve facts from semantic memory.
For example, ‘Think of the office of Bob.’ Here the agent looks for a predicate office(Bob, X)
in semantic memory. If such a predicate with object X is found, that object is added to working
memory as well as the hypothesis in(Bob, X). The instructor can also add this information to
semantic memory by giving instructions such as ‘The office of Alice is the main office’.
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3.2.3 Interaction

If the agent has no knowledge about where to find the object, it can ask the instructor for help, for
example: ‘Where is the red box?’ The instructor then has a number of options to help the agent find
the object. The instructor can describe the location of the object (‘The red box is in the conference
room’), tell the agent where to go (‘Go to the main office’ or ‘Turn around.’), go get the object and
put it in front of the robot (‘Here it is’), or decide not to provide any help (‘I don’t know’).

3.2.4 External Search

Finally, the agent can try to find the object through external search. This search can involve search-
ing within the current location (local) or the entire environment (global). For this, we have added
two actions: scan and explore. The scan action involves slowly turning in a complete circle to
look around the room. The explore action involves driving to all known locations. These actions
need to be terminated when the object is perceived, so the instructor should give the command with
an until clause. For example: ‘Explore until you see the soda.’

3.3 Find Object Subtask

In addition to knowing how to find an object, it is important that the agent knows when to find an
object. The agent is often able to plan and reason using non-anchored representations of objects,
and it should not try to find an object until it becomes necessary in order to make progress with
the task. For example, when delivering a package to Bob, the agent should pick up the package
before trying to find Bob. In order to support a general approach to selectively finding objects in
appropriate situations, we created the find-object subtask that is proposed for each object in
working memory that is not visible. The goal (and action model) of this task is that the object
becomes visible. During planning, the agent includes the find-object subtask as one of the
possible actions it can use for solving a task. Since most actions require that the objects involved to
be visible, the agent will discover during planning that it needs to include the find-object action in its
plan. For example, in the task ‘Deliver the package to Bob’, once it has picked up the package, the
agent must give it to Bob. Since a precondition for give(package, Bob) is visible(Bob),
if Bob is not visible the agent will include the action find(Bob) in the plan.

In the find-object subtask, the agent can then try to execute the different strategies described
above. If none are successful, the agent initiates a new interaction to ask for help. It will say
something such as ‘I can’t find the soda. Can you help?’ The instructor can then provide information
(e.g. ‘The soda is in the kitchen’) or teach a new strategy in the form of a command (e.g. ‘Think of
the storage location of sodas’). For the latter, the agent will then learn a rule to propose that action in
the find-object subtask. A benefit of having a separate subtask for finding objects is that strategies
learned during one task can be used in other tasks. If the agent has to choose between multiple
strategies, it orders them based on the source of knowledge, from most specific and efficient to most
general: short term memory, long term memory, interaction, and finally, external search.
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3.4 Anchoring

Once an object is perceived, the agent must connect its perception to the internal representation of
the object reference. This process is called anchoring (Coradeschi & Saffiotti, 2003). New object
perceptions are matched against non-anchored objects in the agent’s working memory that contain
all of its predicates. Thus if the agent is looking for an object and one matching its description is
perceived, the anchoring step is done immediately. However, sometimes the object is perceived but
not anchored to the internal representation because the reference contains a name or visual attribute
that is not familiar to the agent. This is not a case we currently handle, except for allowing the
instructor to teach the name of the current location by saying ‘You are in the kitchen’.

In other cases, the agent is unable to anchor the representation because the instructor referred
to the object using a new concept the agent does not yet know how to anchor. For example, in the
task ‘Serve Bob’, the agent should ask ‘What drink would you like?’ and Bob can answer ‘The
soda’. The instructor can refer to this answer as the ‘desired drink’ (as in ‘The goal is that Bob
is holding the desired drink’), but the agent may not know how to anchor this reference because it
does not know the concept of desired. To have the agent learn this, we created the remember
action. This action takes the form remember(A, B), where A is a known object and B is the
object the agent can’t anchor. The result is that the two objects are merged (all references to B
are changed to A). In the current example, once Bob has answered ‘the soda’ the instructor says
‘remember the answer as the desired drink.’ The effect of this action is that the known soda object
(which is anchored and has the answer predicate added by the ask action) is merged with the
representation of the desired drink. The agent now knows what object in the world corresponds to
the phrase desired drink and can then pick up the soda and give it to Bob. Note that the agent does
not need any previous knowledge about what the concept of desired drink means in order to learn
the task. Through instruction it learns to associate the person’s answer with the concept desired.

4. Extending Interactive Task Learning

A major contribution of this work is extending our previous task learning agent to function in par-
tially observable environments and use internal actions that deliberately access and modify the
agent’s memories. Previous work involved the agent in a table-top environment where the entire
workspace was always visible. Extending reference resolution to access objects in semantic memory
means that the agent can learn tasks involving objects that are known but not immediately present,
and implementing the ability to create and use hypothetical representations of objects means the
agent can learn tasks involving objects the agent has not previously encountered. Tasks such as
‘Deliver the package to Alice’ or ‘Fetch a stapler’ are now possible, even if the objects involved are
not visible or even known. Figure 3 shows some examples of the kinds of tasks that our agent can
now learn and perform. Our agent is able to learn and execute all the tasks on the real-world robot.
Below, we describe three tasks in detail. The interactions for these tasks are shown in Figure 4.
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Task Command Task Goal
Discard the package The package is in the trash
Deliver the package to Alice Alice is holding the package
Fetch a stapler The stapler is in the starting location
Fetch a stapler from the office The stapler is in the starting location
Take the stapler to the main office The stapler is in the main office
Tell Charlie a message Charlie heard the message
Serve Bob Bob is holding the desired drink
Guide Bob You are in the desired location
Greet Alice Alice heard the welcome message

Figure 3. Examples of tasks and their goals that our agent can learn through instruction.

Deliver the package to Alice.
What is the goal?
The goal is that Alice is holding
the package.
(Rosie picks up the package) I
cannot find Alice. Can you help?
Think of an office of Alice.
(Rosie goes to her office and
gives her the package)

Fetch a stapler.
What is the goal?
The goal is that the stapler is in
the starting location.
What do I do next?
Remember the current location
as the starting location.
I cannot find the stapler. Can
you help?
Recall the stapler in a location.
(Rosie goes to the location and
brings the stapler back)

Guide Bob.
What is the goal?
The goal is that you are in the de-
sired location.
What do I do next?
Ask ‘Where do you want to go?’
Where do you want to go?
The kitchen.
What do I do next?
Remember the answer as the de-
sired location.
(Rosie goes to the kitchen)

Figure 4. Examples of teaching three tasks. Rosie’s responses are in italics

4.1 Deliver

Here we go through a detailed example of how the agent learns to deliver an object to a person.
The instructions for this task can be seen in Figure 4. The instructor gives the command ‘Deliver
the package to Alice’. We assume that the package is already visible and represented in working
memory, while Alice is not. An object will be denoted by a symbol Oi along with the set of unary
predicates that define it. For example, the package is O1:{object, package, visible}.

The agent parses the command and identifies two noun phrases to try and resolve: ‘the package’
and ‘Alice’. The reference ‘the package’ is given the cognitive status uniquely identifiable. Since
this is the first reference to the package, no match is found in the dialog list. However, the object
O1 is visible and satisfies the package constraint, so the reference is resolved to that object. The
second reference ‘Alice’ is given the cognitive status uniquely identifiable, but no match is found
in working memory. The agent constructs a query to semantic memory for some object X with the
predicate Alice(X). It finds a match with object O2 which it adds with all its unary predicates to
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working memory: O2:{person, Alice}. Once the reference resolution is complete, the agent
has a representation of the action:

deliver(O1, to(O2)) ‘Deliver the package to Alice.’
O1:{object, package, visible} O2:{person, Alice}

The agent then tries to execute the action, but reaches an impasse because it has no goal repre-
sentation. It asks ‘What is the goal?’. The instructor responds ‘The goal is that Alice is holding the
package’ Now, during reference resolution both references can be resolved to objects in the previ-
ous dialog, and the following representation of the goal is generated: holding(O2, O1). Note
that the agent stores generalized representations of the action and goal in semantic memory, where
specific objects are replaced with variables (e.g. deliver(A, to(B)) goal=holding(B,
A)). Now that it knows the goal, it tries to find a sequence of actions that can achieve the goal. In
this task, it finds the following sequence of actions:

Action Preconditions Postconditions
pick-up(O1) !grabbed(O1) +grabbed(O1)

visible(O1)
find(O2) !visible(O2) +visible(O2)
give(O1, O2) visible(O2) +holding(O2, O1)

grabbed(O1) -grabbed(O1)

Figure 5. Actions needed to deliver the package (O1) to Alice (O2). The goal is holding(O2, O1).

The agent picks up the package, then tries to find Alice. It fails and asks for help: ‘I cannot find
Alice, can you help?’ The instructor says ‘Think of an office of Alice’. During reference resolution,
the reference ‘Alice’ is connected to O2. The reference ‘an office’ is given the type identifiable status
and a new representation O3 is created for it. The final action is:

think(O3, of(O2)) ‘Think of an office of Alice’
O3:{office} (new) O2:{person, Alice}

The agent carries out the think action by looking for the predicate office(O2, X) in
semantic memory. It finds the predicate office(O2, O4) and adds O4 (Alice’s office) along
with its predicates to working memory. It also adds the belief in(O2, O4) to working memory.
This belief causes the agent to drive to her office to look there. It arrives at the office and the new
perception of Alice is anchored to O2. The predicate visible(O2) is added and the find(O2)
subtask is finished. The agent also uses this instruction to learn a new object finding strategy. It
learns a rule that when it is trying to find an object A, it should propose the action think(B,
of(A)) with office(B). This strategy of looking in an office can be used to find objects or
people in other tasks. Note there is nothing special about the label office. The agent does not
need to know ahead of time how it will be used. The instructor can just have easily used the terms
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classroom, cubicle, or storage as long as they match a predicate in semantic memory
(which can be added through other interactions).

Once the agent has found Alice, it will give her the package and complete the task. Then, the
agent does a retrospective analysis (Mohan & Laird, 2014) to learn a policy for selecting each of
the operators in the solution in appropriate states. For example, it learns to prefer finding the person
once the object being delivered is grabbed.

4.2 Fetch

The agent can also be taught to fetch an object and bring it to the agent’s original location (Figure
4). The instructor starts by giving the command ‘Fetch a stapler’. We assume that there is no stapler
in the immediate environment, and the robot’s current location is the kitchen (O1). In the command
is a single reference ‘a stapler’. It is given the type identifiable status, so a new representation is
created and added to working memory: O2:stapler(O2). The action becomes:

fetch(O2) ‘Fetch a stapler’
O2:{stapler} (new)

The goal is given through the statement ‘The goal is that the stapler is in the starting location’.
The reference ‘the stapler’ is resolved to the object O2 because it is in the previous dialog. The
reference ‘the starting location’ fails to match anything, so a new representation is created. The
resultant goal is {in(O2, X), starting(X), location(X)}. The agent cannot find a
way to achieve this, because no known actions add the starting predicate. The agent can be
taught to mark where it starts with the starting predicate through the remember action:

remember(O1, as(O3)) ‘Remember the current location as the starting location’
O1:{location, kitchen, current-loc, visible}
O3:{location, starting}

The effect of this action is to merge the objects, replacing all references to O3 with O1. This
changes the starting predicate to starting(O1). In addition, a rule is learned to propose
this remember action inside the fetch task. Now that there is a starting predicate in working
memory, the agent can find a sequence of actions to reach the goal (Figure 6).

Action Preconditions Postconditions
find(O2) !visible(O2) +visible(O2)
pick-up(O2) !grabbed(O2) +grabbed(O2)

visible(O2)
go-to(O1) !current(O1) +current(O1)
put-down(O2, O1) grabbed(O2) -grabbed(O1)

current(O1) +in(O2, O1)

Figure 6. Actions needed to fetch the stapler (O2) and bring it back to the kitchen location (O1). The goal is
in(O2, O1), starting(O1), location(O1)
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First, the agent needs to find the stapler. It saw one before in a different location, and that
knowledge is in episodic memory. The instructor teaches it to retrieve this information through the
following command:

recall(O2, in(O4)) ‘Recall the stapler in a location’
O2:{stapler} O4:{location} (new)

The agent carries out the recall action by constructing an episodic memory query cue from
the predicates in the command: {stapler(X), location(Y), in(X, Y)}. It retrieves
an episode from episodic memory which contains all the predicates. In it, the lab location (O5)
matches the variable Y, so it and all its predicates are added to working memory as the object
O5:{location, lab}. It also adds the belief in(O2, O5) to working memory. This belief
causes the agent to drive to the lab to look for the stapler. Once there, it scans the room and perceives
the stapler. This perception is anchored to O2 and the predicate visible(O2) is added. If the
stapler was not in the recalled location, the in predicate would be removed and the agent would
do something else to find the object. This recall strategy is learned within the find subtask,
so in the future it can be used within different tasks to find different objects. It learns a rule that
when it is trying to find an object A, it should propose the action recall(B, in(A)) with
location(A). Once the stapler is found, the agent can go on to complete the rest of the task and
learn the policy.

4.3 Guide

The guide task involves asking a person where he would like to go and then driving to that loca-
tion. For example, the instructor says ‘Guide Bob’, where ‘The goal is that you are in the desired
location’. However, the agent does not know how to anchor the reference ‘desired location’ to an
actual location in the world. The instructor teaches it to ask the question ‘Where do you want to
go?’, to which Bob answers ’The kitchen.’ As part of the ask action, the agent adds an answer
predicate for the response (in this case, answer(kitchen)). It then associates the answered
location with the desired location via a remember action (’remember the answer as the desired lo-
cation’). In a future execution of this task, the agent will perform the remember step automatically.
This remember action allows the agent to learn tasks where some knowledge needs to be delib-
erately added to working memory to be used later. And the agent can learn a task involving a new
concept (like desired) whose usage is determined by the instructor.

5. Experiments

Our evaluation focuses on whether the different find-object strategies transfer between different sit-
uations, thereby contributing to the agent’s overall ability to successfully find objects independent
of task. We also want to determine whether those strategies are as effective when taught instead of
pre-encoded. We explore these questions by performing several experiments in a simulated envi-
ronment. The simulator realistically simulates the low-level perception and motor controls of the
physical robot in real time. While all of the tasks in the previous section (including find-object) can
be done on the real robot, the simulated environment provides more control over reproducibility
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and allows us to precisely control the placement and dynamics of objects in the environment. It also
allows us to avoid spurious perceptual errors that have little to do with our research on task learning.
In the experiments, we measure the ability of the agent to find different objects.

Our testing environment has eight rooms connected by four hallways, with thirty objects and
eight people. This environment is large enough so that the agent usually has to search a few rooms
during exploration before finding an object, and has enough objects so that each room has multiple
objects in it. The agent starts with a complete map of this environment. Half of the objects are
assigned to a storage location and half of the people to an office. This information is stored in
the agent’s semantic memory so that it has semantic information about some of the objects. The
environment is dynamic, so that the agent’s knowledge about an object is not always correct. Thus
after each find-object request, each object and person has a 20% chance of being moved to a new
random location.

5.1 Comparing Finding Strategies

Our first experiment examines how the different strategy categories contribute to the ability of the
agent to find objects. We want to evaluate the benefit of having multiple strategies – when the agent
has specific knowledge about where to look for an object, can it use it to quickly find the object,
and if not, can the agent still find it using a more time-consuming, but still effective search? We
grouped the strategies into three sets according to their categories. In the Short Term Memory (S)
set, the agent knows the location of an object and must either face it or drive to its location. In the
Long Term Memory (L) set, the location is not in short term memory and the agent must use the
think action to retrieve an object’s expected location (either office or storage location) from semantic
memory, or the recall action to retrieve an object’s previous location from episodic memory. The
External Search (E) set is for when it does not have knowledge it can use to find the object. In this
case, the agent either scans the room by doing a complete revolution or explores all the rooms until
the object is found. We did not use the interaction strategy because the effectiveness of it depends
on what the instructor does, not on the agent.

For each combination of strategy sets, we had the agent find 20 random objects. The environ-
ment was changed between each find-object request as described above. To reduce variance, the
sequence of objects being found and the way the objects were moved was the same in each test. We
measured the number of those find-object requests that the agent could satisfy, and measured the
average number of rooms searched when it was successful.

For the first comparison, we ran the test only using the most specific strategy (S) first. This
would only succeed when the agent already knew about the necessary object. We then added the
more general strategies (L and then E), which should improve its ability to find the objects. The
results are shown in Figure 7 on the left. The short term memory strategy (S) can utilize very
specific and relevant knowledge, so when it had that knowledge, it could use it right away. However,
the agent often did not have that knowledge so it failed 90% of the time. Adding in the long term
memory strategy (S+L) meant the agent succeeded more often because it could use knowledge from
more sources. And when all three kinds of strategies were used (S+L+E) the agent achieved 100%
success because when it didn’t have knowledge to rely on, it could do external search. However,
these less specific strategies meant searching more rooms.
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Figure 7. Results of 20 find-object tasks with different combinations of finding strategies. Short term memory
(S) includes face and go-to-location. Long term memory (L) includes think and recall. External actions (E)
includes scan and explore. Results include the number of successes (blue/left bar) and the average number of
rooms searched when successful (green/right bar).

For the second comparison we ran the test on the most general strategy first (E), and then added
the more specific strategies of L and then S. The results are shown in Figure 7 on the right. The
external search strategy (E) always succeeded, but it required searching many rooms. As strategies
that involved more knowledge were added, the agent found the object with much less search.

These results demonstrate how the agent took advantage of these different sources of knowledge
to quickly find objects in the environment. With all the strategies (S+L+E), the agent successfully
found objects 100% of the time, and did so much more quickly than when using random search by
taking advantage of relevant knowledge.

5.2 Strategy Learning

Our second experiment compared the ability of the agent to find objects when the strategies were
taught though instruction instead of pre-encoded. Here the agent started only with the ability to ask
for help and use knowledge in short term memory. We taught the agent five strategies – three using
long term memory (L) and two using external search (E). This happened in five teaching interac-
tions, one for each strategy, where the instructor gave the agent a find-object task that required that
strategy in order to succeed. We taught the strategies in the following order: think(office),
think(storage), recall(location), scan, and explore. After these five training in-
teractions, we had the agent find the same 20 objects as in the previous experiment with no further
teaching. The results were then compared to the performance of the agent with the full set of hand-
coded strategies (S+L+E) from the first evaluation. The agent achieved 100% success when the
strategies were learned, the same as when they were pre-encoded. This occurred without any ad-
ditional instruction, showing that the agent successfully transferred strategies from one find-object
subtask to another. In addition, the agent visited an average of 3.6 rooms per task with the taught
strategies; roughly equivalent to the 3.75 rooms per task for the hand-coded strategies. This shows
that the agent used its knowledge to quickly find objects just as effectively with taught strategies.
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A major strength of our approach to doing ITL within a cognitive architecture is that the agent
learns representations native to the architecture. In our agent, strategies are encoded as proposal
rules for the actions in the find-object subtask. When we code these by hand, as in the first exper-
iment, only a single rule is required. When our agent learns these strategies through instruction, it
first generates a declarative representation, but then learns via chunking a single rule to propose the
action, so that the learned representation is similar to what an expert would encode.

6. Conclusion

In this work we have combined capabilities in reference resolution, object finding, and anchoring
in an existing interactive task learning framework to enable task learning and execution in a large,
partially observable, open-world environment. These capabilities allow the agent to do tasks with
unseen and unknown objects. Furthermore, we have shown how the object finding and anchoring
capabilities can be extended through instruction.

A major contribution of this work is the integration of these capabilities in a end-to-end task
learning agent. Much of the related work involves a subset of these capabilities or exist in a simpler
environment. Williams, Acharya, Schreitter, & Scheutz (2016) implement a more sophisticated
reference resolution scheme in an open world environment, but do not worry about how to find
unseen objects that were referenced. Work by Lemaignan, Ros, Sisbot, Alami, & Beetz (2012) and
Skočaj et al. (2016) also involves connecting references to objects in a situated discourse, but do so
in a limited workspace.

Other researchers have explored using knowledge when finding new objects in new environ-
ments. Samadi, Kollar, & Veloso (2012) present an agent that can use information from the web
to identify the likely locations of new objects in an indoor environment. Aydemir, Pronobis, Gob-
elbecker, & Jensfelt (2013) make visual search more effective by taking advantage of background
knowledge to focus the search on more likely places. Joho, Senk, & Burgard (2011) describe a way
to improve its search technique in a new environment by using experience gained previously from
similar environments. While these examples can learn within a strategy, they do not involve the
ability to learn new strategies. On the other hand, our learned strategies are fairly simple. Those
involving long term memory are limited; the agent could not learn a strategy involving a more com-
plicated use of semantic or episodic memory. Also, the instructor requires significant knowledge of
the internal representations of the agent and how to give the instructions in order to properly teach it
these strategies. However, this work represents a crucial step in extending interactive task learning
to a mobile robot in a large, indoor environment. Future work will involve extending the kinds of
tasks the agent can learn and improving the ways the agent can use its internal memories during
tasks. In addition, there is work to be done on making the language interactions more flexible and
natural, with the end goal to have non-expert users be able to teach the agent new tasks with minimal
training. Finally, we would like to improve the perceptual capabilities of the agent with real object
recognition and handling of perceptual noise and errors.
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