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Abstract  

We present three different learning mechanisms 
for transferring spatial knowledge from one 
problem to another, related problem: memory-
based transfer, search-based transfer, and transfer 
using reinforcement learning. We describe the 
approaches and present preliminary results dem-
onstrating successful transfer using these ap-
proaches in Soar and testing them in the Urban 
Combat Testbed. 

1.  Introduction 

The study of transfer in learning is typically restricted to 
variants of a single learning mechanism. When multiple 
learning mechanisms are studied, underlying reasons for 
any differences in performance can be unclear, obscured 
by differences in task knowledge and the underlying per-
formance system. In this work, we study three different 
learning mechanisms, all within the same general cogni-
tive architecture (Soar) and all performing the same tasks, 
minimizing differences outside of the learning systems. 
The three learning mechanisms that we investigated are: 
storing map knowledge in short-term working memory; 
using chunking to learn operator selection rules; and using 
reinforcement learning to tune operator selection rules. 

We developed agents that use these learning mechanisms 
to solve simple navigation tasks within the Urban Combat 
Testbed (UT Arlington, 2006). The transfer tasks vary the 
position of the destination and introduce barricades that 
require finding new paths.  

2.  Soar Cognitive Architecture 

Soar is designed to be a general cognitive architecture, 
capable of using a wide range of methods and knowledge 
to solve problems requiring the integration of many cog-
nitive capabilities underlying general intelligence (Leh-
man, Laird & Rosenbloom, 2006). Soar encodes long-
term procedural knowledge as production rules and uses 
working memory to store short-term declarative knowl-
edge in a hierarchical graph structure. Rules in Soar pro-

pose, select, and apply operators, which in turn perform 
external actions or modify internal data structures. Im-
passes from inconsistent or incomplete knowledge lead to 
subgoals in which additional operators can be proposed, 
selected and applied. These subgoals can involve plan-
ning, hierarchical task decomposition or any other type of 
reasoning.  
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Traditionally, Soar has relied on two “learning” mecha-
nisms: modifying elements in working memory; and cre-
ating new rules through chunking (Laird, Rosenbloom & 
Newell, 1986). Recently, Soar has been enhanced with the 
ability to adjust operator selection rules using reinforce-
ment learning (Nason & Laird, 2005). 

Adding and removing elements in working memory via 
rules is a fundamental feature of Soar. Elements in work-
ing memory are not forgotten unless explicitly removed; 
thus, working memory can be abused by using it to main-
tain long-term declarative knowledge.  

Chunking creates new procedural knowledge encoded as 
rules when a result is created in a subgoal. The newly 
created rule summarizes the processing that led up to the 
creation of the result. When similar situations arise in the 
future, rules learned during the subgoal will fire before 
the subgoal even arises, eliminating the need for it en-
tirely. Over time chunking eliminates internal problem 
solving and moves the system from reflective problem 
solving to more reactive decision making.  

Reinforcement learning (RL) in Soar adjusts the expected 
reward for proposed operators. Rules that test features of 
the current state and operator generate numeric prefer-
ences for operators when they are proposed. These nu-
meric preferences encode expected reward, and their 
values are summed during the decision making process to 
provide a composite prediction of the utility of each op-
erator. Numeric preferences are updated using a variant of 
Sarsa(0) (Rummery & Niranjan, 1994) and are based on 
immediate observed reward as well as the discounted ex-
pected future reward of the next selected operator.  

Previous experimentation has demonstrated Soar’s capa-
bility to perform in many complex domains (Jones, Laird, 
Nielsen et al., 1999); including using many forms of 
learning (Steier, Laird, Newell et al., 1987). Although 
transfer within and across problems has been explored in 
Soar, previous work has concentrated exclusively on 
transfer using Soar’s chunking mechanism. 
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3.  Transfer Learning in Urban Combat 

The Urban Combat Testbed (UCT) is a multi-player first-
person shooter video game where the main activity (in the 
available preliminary scenarios) is moving through a map. 
Through the exposed interface, the agent perceives space 
as being partitioned into non-overlapping convex polyhe-
drons, of which there are on the order of 100 in a typical 
scenario. The agent senses the area (convex polyhedron) 
containing its current location as well as information such 
as the vertices of the area, objects contained within the 
area, and gateways to adjacent areas. Visibility is limited 
so that only objects in the current area can be perceived. 

There are two conceptual levels of navigation for the 
agent: moving within areas and moving between them. 
Since areas are convex and completely sensed by the 
agent, the agent can move within areas directly without 
any problem solving. For inter-area navigation, the agent 
must either randomly explore (when it has no prior 
knowledge of the topology of the areas) or use transferred 
spatial knowledge to direct its behavior. 

UCT contains scenarios specifically designed to test 
transfer learning. In UCT, a scenario consists of a pair of 
problems, the source and the target. The goal in all of the 
preliminary UCT scenarios is to move from a starting 
location to a second location in the map, containing a flag. 
In the source problems (and target problems solved with-
out transferred knowledge from the source), the flag loca-
tion and topology is unknown.  

3.1  Approaches 

There are three types of knowledge that can transfer from 
the source to the target problem: the topology of the map, 
shortest path information for navigating from area to area, 
and the location of the flag. As we shall see, different 
learning mechanisms acquire different subsets of these 
types of knowledge, leading to different levels of transfer.  

3.1.1  MEMORY-BASED TRANSFER 
Our first approach explicitly stores all spatial knowledge 
in working memory, including map topology, complete 
path information from each area to every other area, and 
the flag location. This requires extensive exploration and 
computation in the source problem to compute the path 
information, but eliminates all search in the transfer prob-
lem. Complete paths are not stored; rather, a “path ele-
ment” from a given area consists of a destination area and 
the gateway in the given area that is on the shortest path 
to the destination area. To move to a destination area, the 
agent repeatedly traverses gateways leading to the desti-
nation; at no point does it store the complete path in 
memory. If the path information is absent, the agent uses 
a strategy of directed exploration in the environment. 

The memory-based approach exploits Soar’s unlimited 
working memory. As there are approximately 102 areas in 
the UCT maps used in these experiments, working mem-

ory contains on the order of 104 elements when the map is 
fully explored. Having such a large number of working 
memory elements impacts the efficiency of the Rete 
matcher used in Soar, but the matcher is still sufficiently 
fast so as to provide real-time control in UCT. 

3.1.2  SEARCH-BASED TRANSFER 
Rather than pre-computing paths in the source problem, 
another approach is to store the topology and flag location 
but not paths. To find the shortest path in the target prob-
lem, an agent can search through the transferred map. In 
Soar, this search arises from a series of impasses that oc-
cur because the agent doesn’t know which area to move to 
next. A side effect of this search is that chunking learns 
rules for each decision, effectively encoding a procedural 
memory of the path. When knowledge of the flag is avail-
able, the agent biases its internal search to first consider 
the gateway nearest to the assumed location of the flag. 
For this domain, this heuristic is extremely effective.  

3.1.3  REINFORCEMENT LEARNING TRANSFER 
RL learns the expected value of moving into adjacent 
areas. This is encoded in Soar by having operator selec-
tion rules that test for the destination area of each opera-
tor. These rules are generated dynamically as the agent 
explores the world. Through repeated trials, the agent 
learns the value of moving to every area. The agent re-
ceives negative reward for every action not leading to the 
area containing the flag, and no reward when it reaches 
the flag; as operator preferences are initialized to 0, this 
biases the agent to search initially. In contrast to the other 
approaches, this approach does not involve explicitly stor-
ing the map topology or the location of the flag, both of 
which are implicit in the operator selection rules.  

In the transfer tasks, the learning parameter for the agent 
is set to 1. A high learning rate serves to inform the agent 
that the domain may have changed and it should update 
its numeric preferences quickly so as to adapt. In a do-
main with stochastic actions, it would still be appropriate 
to initialize the learning rate to be high and then decay it 
over time; no such decay is necessary with the determinis-
tic actions of our domain. Additionally a negligibly small 
exploration parameter is used in order to focus the agent 
on exploiting learned knowledge that it had transferred. 

3.2  Scenario Descriptions 

We tested our transfer learning approaches on three tasks 
in UCT. In each, the goal is to reach the flag – the agent is 
only competing against the clock and there are no adver-
saries. These tasks are designed to test the first three lev-
els of transfer as defined by DARPA (2005).  

The level 0 task tests transfer performance involving 
memorization; the source and target are identical. The 
level 1 task tests transfer across problems that are 
reparameterized; maps are identical across problems but 
the flag location changes. The level 2 task tests transfer 
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requiring extrapolation; an obstacle is introduced in the 
target that qualitatively changes the optimal solution. 

3.2.1  IMPLEMENTATION DETAILS 
At levels 0 and 1, the topology is identical in source and 
target problems so that route information transfers per-
fectly. In the original level 1 UCT scenario, the flag 
changes location within an area which is equivalent to 
level 0 for our agent. We created a more difficult sce-
nario: the flag is moved three areas away from its original 
location. When the memory- and search-based agents 
reach the original flag location in the target, they initiate a 
breadth-first search of surrounding areas to find the flag. 

At level 2, the flag location is unchanged but a gateway 
on the previously shortest path to the flag is blocked, 
which can be detected only from an adjacent area. The 
memory-based approach uses its stored path information 
to navigate up to the blocked gateway. Similarly, the 
search-based approach generates a path based on its 
stored map topology and follows it up to a blockage. Both 
approaches then initiate a model-based search to find and 
then follow a new path to the flag. The RL approach uses 
a high learning rate to quickly update the expected values 
of areas and force exploration to find a new path.  

4.  Evaluation  

We evaluated our three approaches on the previously 
mentioned scenarios testing transfer at levels 0, 1, and 2 
using two metrics. Given that TT is time spent in the prob-
lem with transfer and that TN is time spent with no trans-
fer, a ratio of times indicating improvement is: 

Time ratio =  TN TT /
By measuring the best time in which a human expert 
could complete each task from a repeated set of trials, we 
allow for another ratio which uses this optimal time (O): 

Transfer ratio =  )/()( OTOT TN −−

4.1  Level 0 (Memorization)  

As shown in figure 1, transferred knowledge improves 
performance using all three approaches as expected. A 
human expert can complete this problem in 7 seconds. 

4.2  Level 1 (Reparameterization)  

Although level 1 is slightly more difficult than level 0, the 
agents perform similarly (figure 2). The implicit search 
performed by the RL agent serves the same role as the 
other agents’ breadth-first search to find the new flag lo-
cation. The breadth-first search should scale better as the 
distance between flags from source to target increases. A 
human expert can complete this problem in 17.4 seconds.  

4.3  Level 2 (Extrapolation) 

As seen in figure 3, the memory- and search-based ap-
proaches continue to show significant transfer at level 2. 
While the RL agent shows a slight performance gain from 
transfer, the qualitatively different path required in this 
scenario demonstrates that RL is weak when drastically 
different paths are required but the flag location is known. 
A human expert can complete this problem in 24.5s. 

However, figure 4 shows that the RL agent does demon-
strate transfer when measured over repeated episodes of 
the same task. These results were collected by simulating 
movement through the UCT map and thus measure the 
number of areas visited by the agent rather than elapsed 
time. With transfer, the agent performs near-optimally 
after approximately 10 episodes; without transfer, the 
same performance is not reached until the 40th episode.  

The search-based approach also improves on a successive 
episode. In the first target episode, the agent performs a 

Figure 1, results for original level 0 sce-
nario 2 in UCT (median of 40 trials).  

Figure 2, results for a modified level 1 
scenario in UCT (median of 40 trials). 

Figure 3, results for original level 2 sce-
nario 1 in UCT (median of 40 trials). 
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Figure 4, results of the RL agent on successive episodes in a 
simulated level 2 target problem. Results are averaged over 20 
trials, each consisting of 50 episodes. Optimal is 19 areas. 
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model-based search and chunks the results. These chunks 
eliminate all search in the second episode, improving per-
formance. As time spent internally reasoning is dominated 
by time spent moving in UCT, this improvement isn’t 
significant; in other problem-solving domains it could be.  

Table 1, Summary of time and transfer ratios at all levels. 

METRIC LEVEL MEMORY SEARCH RL 

TIME RATIO 0 3.1 3.2 4.2 
TIME RATIO 1 2.4 2.4 2.7 
TIME RATIO 2 3.4 3.8 1.2 
TRANSFER RATIO 0 10.5 10.8 15.5 
TRANSFER RATIO 1 3.3 3.3 4.0 
TRANSFER RATIO 2 5.5 6.2 1.2 

4.4  Further Discussion 

There are a few questions that arise from these results. 
Why don’t the agents ever achieve optimal performance? 
The emphasis in our agent design is on learning, and the 
agents’ low-level movement is not optimized. 

Why present median times? We present medians due to 
the long-tailed (and multi-modal) nature of the underlying 
distributions. While the results for agents not transferring 
in the target have high variance (with standard deviations 
as much as 100s or more), the medians are robust against 
high-valued outliers and present a fair and accurate depic-
tion of the agents’ observed behaviors. Results for agents 
using transferred knowledge have low variance. 

Are there any differences between the memory- and 
search-based approaches? Even though the results for the 
search- and memory-based approaches are equivalent, 
they are so similar because the time to move through the 
environment dominates the time to reason internally. The 
results would be very different, and favor the memory-
based approach, on pure reasoning tasks. 

Why didn’t RL do better on level 2? It transfers only what 
is required to perform well on a particular task. The other 
methods transfer the topology, paths, and flag location; 
the RL approach transfers only the expected value of 
moving to an area. Therefore, the former two should scale 
better on more complex tasks. However, the RL agent 
would natively handle domains with stochastic actions, 
while the others would need similar statistical knowledge 
to be competitive. The RL agent has the best time and 
transfer ratios for level 0, so isn’t it the best? One oddity 
with these metrics is that they can reward inefficiency. In 
this case, it has the best scores because its performance is 
worst when not transferring. 

What is the best method? While time and transfer ratios 
are informative, they are only part of the story for decid-
ing which approach to use. Another consideration is the 
training required in source scenarios. The search-based 
approach requires several hundred seconds to exhaus-
tively explore the map; the memory-based approach re-

quires twice that time as it must enumerate all paths. The 
RL agent requires significantly more time: hundreds of 
repeated episodes of the source problem. 

5.  Future Work 
Our first step will be to store all map information in 
Soar’s newly created semantic memory system instead of 
working memory. The semantic memory is optimized for 
storing large bodies of declarative facts, while working 
memory is optimized for maintaining the current state of 
the agent and matching that against the system’s rules.  
Beyond that we plan to explore additional learning 
mechanisms (episodic memory and hierarchical cluster-
ing) on the remaining DARPA transfer levels.  
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