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Abstract

This paper brings together work in modeling episodic memory and reinforcement learning (RL). We demonstrate that is possible to
learn to use episodic memory retrievals while simultaneously learning to act in an external environment. In a series of three experiments,
we investigate using RL to learn what to retrieve from episodic memory and when to retrieve it, how to use temporal episodic memory
retrievals, and how to build cues that are the conjunctions of multiple features. In these experiments, our empirical results demonstrate
that it is computationally feasible to learn to use episodic memory; furthermore, learning to use internal episodic memory accomplishes
tasks that reinforcement learning alone cannot. These experiments also expose some important interactions that arise between reinforce-
ment learning and episodic memory. In a fourth experiment, we demonstrate that an agent endowed with a simple bit memory cannot
learn to use it effectively. This indicates that mechanistic characteristics of episodic memory may be essential to learning to use it, and
that these characteristics are not shared by simpler memory mechanisms.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study a mechanism for learning to use
the retrieval of knowledge from episodic memory. This uni-
fies two important related areas of research in cognitive
modeling. First, it extends prior work on the use of declar-
ative memories in cognitive architecture where knowledge
is accessed from declarative memories via deliberate and
fixed cued retrievals (Anderson, 2007; Nuxoll & Laird,
2007; Wang & Laird, 2006) by exploring mechanisms for
learning to use both simple and conjunctive cues. Second,
it extends work on using reinforcement learning (RL) (Sut-
ton & Barto, 1998) to learn not just control knowledge for
external actions, but also to learn to control access to inter-
nal memories, expanding the range of behaviors that can
learned by RL.
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Earlier work has investigated increasing the space of
problems applicable to RL algorithms by including internal
memory mechanisms that can be deliberately controlled:
Littman (1994) and Peshkin, Meulaeu, and Kaelbling
(1999) developed RL agents that learned to toggle internal
memory bits; Pearson, Gorski, Lewis, and Laird (2007)
showed that an RL agent could learn to use a simple sym-
bolic long-term memory; and Zilli and Hasselmo (2008)
developed a system that learned to use both an internal
short-term memory and an internal spatial episodic mem-
ory, which could store and retrieve symbols corresponding
to locations in the environment. All four cases demon-
strated a functional advantage from learning to use
memory.

Our work significantly extends these previous studies in
three ways: first, our episodic memory system automati-
cally captures all aspects of experience; second, our system
learns not only when to access episodic memory, but also
learns to construct conjunctive cues and when to use them;
and third, it takes advantage of the temporal structure of
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Fig. 1. Objects, resources, and adjacency in Well World.
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episodic memory by learning to advance through episodic
memory when it is useful (this property is also shared by
the Zilli & Hasselmo system, but for simpler task and epi-
sodic memory representations).

Our studies are pursued within a specific cognitive archi-
tecture, namely Soar (Laird, 2008), which incorporates all
of the required components: perceptual and motor systems
for interacting with external environments, an internal
short-term memory, a long-term episodic memory, an RL
mechanism, and a decision procedure that selects both
internal and external actions. In comparison, ACT-R
(Anderson, 2007) has many similar components but does
not have an explicit episodic memory. Its long-term declar-
ative memory stores only individual chunks, and it does
not store episodes that include the complete current state
of the system. To do so would require storing the contents
of all ACT-R’s buffers as a unitary structure, as well as the
ability to retrieve and access them, without having the
retrieved values being confused with the current values of
those buffers. Moreover, ACT-R’s declarative memory
does not inherently encode the temporal structure of epi-
sodic memory, where temporally consecutive memories
can be recalled (Tulving, 1983). While the work presented
in this paper is specific to learning to use an episodic mem-
ory, similar work could be pursued in the context of ACT-
R by learning to use its declarative memory mechanism.
However, we are unaware of existing work in that area,
and even if there were, it would fail to engage the same
issues that arise with episodic memory.

2. Background

Soar includes an episodic memory that maintains a com-
plete history of experience (Nuxoll & Laird, 2007), imple-
mented so as to support efficient memory storage and
retrieval (Derbinsky & Laird, 2009). Soar’s working mem-
ory is a relational graph structure, consisting of nodes and
links, similar to the structure of a semantic network. Com-
plete “snapshots” of working memory are automatically
stored in episodic memory following every processing
cycle.

To retrieve an episode, a cue is created in working mem-
ory by the application of Soar’s procedural knowledge,
which is encoded as production rules (Laird, 2008). A cue
is a partial specification of an episode, created in a special
part of working memory. The episode that best matches the
cue is retrieved to working memory. The degree of match is
based on the number of elements in the cue found in an epi-
sode. If there are multiple episodes with the same degree of
match, the most recent of those episodes is retrieved. Once
an episode is retrieved to working memory, other knowl-
edge (such as procedural knowledge) can access it. This
style of cue-based retrieval process is similar to ACT-R’s
declarative memory retrieval process where procedural
knowledge creates a cue in a retrieval buffer, and the
declarative memory mechanism retrieves the appropriate
chunk from the long-term store.
We refer to this type of cue-based retrieval as deliberate,
to contrast it with spontaneous or automatic retrieval pro-
cesses. A spontaneous retrieval process is automatic and
depends on all the structures in working memory. Thus,
an agent with spontaneous retrieval lacks control over
when retrievals take place and what aspects of the situation
are the basis for retrieval, whereas with deliberate control,
the agent can control when episodic memory retrievals are
initiated and what cues are the basis for retrieval.

After performing a cue-based retrieval, the agent can
utilize the temporal structure of episodic memory and
retrieve the next episode, providing a mechanism for the
agent to move forward through its memories. This allows
an agent to recall sequences of experiences.

Previously, Nuxoll (2007) created agents that used epi-
sodic memory to support a variety of capabilities. In that
work, agents were given hard-coded procedural knowledge
that specified when cues should be created for episodic
memory, which structures should be used for cueing retri-
evals, and how to condition behavior based on the
retrieved knowledge. The procedural knowledge was not
tuned via learning (such as RL), so the agents used episodic
memory, but did not learn to use it.

In this research, rather than endow agents with pre-
existing fixed control knowledge, we investigate: learning
when to access episodic memory, learning what structures
to use as cues, and learning how to condition behavior
on the retrieved knowledge. All of these processes are using
episodic memory, and this work then learns to use episodic
memory in three different senses.

3. Well World

In order to explore how an agent might learn to use an
internal episodic memory, we constructed several tasks
within an artificial domain we call “Well World.” The
domain is simple enough to be tractable for an RL agent,
but rich enough such that episodic memory can potentially
improve performance.

The goal in Well World is to satisfy two internal drives:
thirst and safety. Thirst is the agent’s primary drive, and it
seeks to satisfy that above safety. Thirst is satisfied by con-
suming water at a well that contains it, while safety is sat-
isfied by consuming the safety resource at the shelter
location.

Fig. 1 shows the base Well World environment. In the
base configuration, there are three locations. At two of
the locations, there are wells; at the third, shelter. In each
location, the agent observes a set of attributes and values
specific to that location, but does not perceive information
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pertaining to any other location. For example, when the
agent is at Well 1, it observes: “location: Well 1”,
“resource: water”, “status: empty”. However, it observes
no information about the status of the Shelter or Well 2
locations. The agent also observes information regarding
exits from a location, but not their destination. For exam-
ple, at Well 1 the agent observes: “exit: right”.

There are two wells which can provide the water
resource (“resource: water” in the figure). Well 1 is cur-
rently empty, while Well 2 has water available. There is
also a shelter, which allows the agent to feel safe when
the agent is not thirsty. The shelter always provides the
safety resource; it is never exhausted. Water at wells, how-
ever, is exhausted after it is consumed once. If water is
available at Well 1 and the agent consumes it, the well
becomes empty and water then becomes available at Well
2. In this way, the well that provides water alternates every
time the agent consumes it.

The agent’s drives are modeled as follows. When the
agent’s thirst is quenched, its thirst drive is 0; thirst linearly
increases by 0.1 on every time step. After passing the
threshold of 1.0, the agent is considered thirsty until it
quenches its thirst, which requires that the agent move to
the well object that contains water and then consume water
from it, resetting the agent’s drive to 0. The agent’s drive
for safety is constant and cannot be satisfied for longer
than the duration of a single action (e.g. the agent is driven
to seek shelter on the time step immediately following one
in which it has taken an action to satisfy safety). The
agent’s thirst drive is of primary importance: if the agent
is thirsty, it is driven to quench thirst and disregard safety.

Critical to our experimental framework is that the agent
is provided with no background knowledge regarding the
semantics of the environmental features that it perceives.
The agent does not know that if a well is “empty,” then
it will not be able to drink “water” there; it does not know
that “thirst” is a drive that is quenched by “water”; and it
does not know about “safety”, “shelter”, etc. The meanings
of all of these features must be learned through trial and
error, and the only signal that the agent receives to learn
from is reward, the specifics of which are discussed in the
next section.

Two of Well World’s characteristics make it challenging
for RL: first, the agent can only perceive the status of the
object in its current location; second, wells alternate in con-
taining water and being empty. To perform optimally, an
agent must maintain a memory of the environment (the sta-
tus of the wells), knowledge that a conventional RL agent
lacks.

3.1. Reinforcement in Well World

The reward signal used by an RL agent in Well World is
determined by the state of the agent’s internal drives, as
well as changes in the states of those drives. Reinforcement
in Well World is internally calculated by the agent based on
its internal drives (similar to Singh, Lewis, & Barto, 2009),
rather than determined by the environment as in a conven-
tional RL setting.

The reward values are as follows. There is a cost associ-
ated with taking action in the world, which is related to the
amount of time it takes to execute an action. As a baseline,
actions in an environment incur �1 reward (which is com-
mon in RL systems); however, internal actions take
(roughly) an order of magnitude less time to complete and
thus, they incur �0.1 reward. Since thirst is unpleasant,
the agent receives �2 reward on every time step that it is
thirsty. As being safe is pleasant, the agent receives +2
reward on every time step that it is not thirsty and consumes
the safety resource. Satisfying thirst results in +8 reward for
the agent. Concurrent rewards (e.g. the agent is thirsty and
takes an external action) are summed together.

These reward settings have been selected to elicit a cer-
tain behavior: namely, the agent should seek water when
thirsty and shelter when not. The aspects of the agent’s
reward structure that are necessary to elicit this behavior
include: there is a reward for not staying at the wells when
the agent is not thirsty; there is a significant reward for per-
forming the desired action (consuming water when thirsty);
and there is a cost for taking external actions and it is
greater than the cost of internal actions. Another impor-
tant property is that there is no explicit reward for using
episodic memory, rather the agent must learn control strat-
egies for episodic memory while seeking to satisfy thirst.
Changes to the reward structure do not significantly affect
the agent’s ability to learn to use memory. However,
changes to the reward structure can change what the opti-
mal behavior in the task is—as in all RL domains, rewards
are a parameter of the environment, not the agent.

4. Experiments in Well World

Within the Well World domain, we developed a suite of
four experiments: the first three evaluate various strategies
for using episodic memory, while the fourth evaluates strat-
egies for using a simple bit memory mechanism. In the first
experiment, we test an agent’s ability to learn to select a cue
for episodic memory retrieval. The second experiment tests
an agent’s ability to learn to use the temporal aspects of
episodic memory retrievals. The third experiment investi-
gates the agent’s ability to create a conjunctive cue (i.e. a
cue that contains more than one feature). This set of exper-
iments investigates all of the ways retrievals can access
Soar’s episodic memory. The fourth experiment tests an
agent’s ability to learn to use a simple bit memory that does
not have all of the functionality of episodic memory, in
order to better understand the capabilities afforded by the
episodic memory mechanism. Before discussing the experi-
ments and results, we present the details of our agent.

4.1. Agent design and implementation

To explore learning to use episodic memory, we created
a Soar agent. In it, procedural knowledge determines what
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actions can be taken in the external environment as well as
what actions can be taken to access the internal episodic
memory. On each time step of the environment, the proce-
dural knowledge proposes applicable actions based on the
combination of the agent’s current perception of the envi-
ronment and its internal state. It proposes consuming
resources that are present, and moving to any objects.
There are two internal actions that it can propose for con-
trolling episodic memory (depending on the experiment, as
described below): create a cue to initiate a retrieval from
episodic memory, or if there has been a retrieval, advance
episodic memory forward in time so that the next episode
is retrieved. In experiments where the agent must learn
which retrieval cue to use, multiple retrieval actions are
proposed, one for each cue.

The agent learns how to act in the world via Q-learning
(Sutton & Barto, 1998; Watkins, 1989), one of the founda-
tional RL algorithms implemented in Soar (Laird, 2008;
Nason & Laird, 2005). As the agent selects internal and
external actions, it receives reward, which it uses to adjust
its estimates for the value of each action according to tem-
poral-difference updates. The agent’s motivation is to max-
imize future expected reward, and in the experiments below
this requires learning to use episodic memory in certain
ways.

In the following experiments the agent learns which
actions to select in each situation that it is faced with,
where a situation is the state of its internal drives, the
agent’s location, and the features of the well or shelter that
it is co-located with. The agent is not learning to generalize
or chunk over its procedural knowledge; rather it is learn-
ing which actions in the world will result in maximum
reward over time. Using RL, the agent learns through trial
and error in its environment. The only initial knowledge
the agents begin with is the procedural knowledge that pro-
poses possible actions in each state (e.g. consume water,
move to shelter, use a particular cue to retrieve an episode
from memory).

Action selection is performed using an epsilon-greedy
selection process with a linearly decaying exploration rate
(Sutton & Barto, 1998). Initially, the agent selects actions
with the best value estimates 50% of the time, and the other
50% of the time, it selects from all available actions accord-
ing to a uniformly random distribution. The random selec-
tions prevent the agent from prematurely converging on an
action that only initially appears to be best. As time passes,
the rate at which random actions are selected decays line-
arly, until the agent is selecting the actions with the best
value estimate 100% of the time. The specific rate of decay
differs between experiments, below; it was selected so as to
maximize agent learning performance in each task. Select-
ing random actions is common to agent-based RL
algorithms and is necessary due to the exploration/exploi-
tation tradeoff endemic to RL (Sutton & Barto, 1998).

Results presented in this paper are the average of 250 tri-
als. The average values are noisy due to the high underlying
variance in reward accumulated at each time step, and
therefore the learning curves have been smoothed with a
4253 Hanning function (a standard windowed smoothing
function, see Cohen, 1995) and rescaled so that an average
reward of 0 per action is optimal in each experiment (the
average reward per time step for the optimal policy varies
per experiment; this allows for easy comparison between
experiments).

4.2. Learning to retrieve episodic memories

The first experiment tests the basic behavior of using RL
to learn to use an internal episodic memory. Its purpose is
to determine whether an RL agent can learn what to
retrieve and when retrieval is appropriate. The agent must
learn that when it becomes thirsty it should perform a
retrieval from episodic memory, using a cue of “resource:
water”, and then learn which action to take based on the
retrieved knowledge.

In Well World (Fig. 1), the optimal behavior in the envi-
ronment is for the agent to move to the shelter and con-
sume the safety resource when it is not thirsty, and when
it is thirsty to move to the well that contains water and then
consume it. Agents in Well World are unable to perceive
which well contains water, and thus an agent that does
not possess an internal memory cannot know which well
it must move to when it becomes thirsty. However, an
agent endowed with episodic memory can use it to remem-
ber which well the agent last consumed water from. The
agent’s optimal behavior, then, is for the agent to move
to the shelter and consume the safety resource when it is
not thirsty. When it becomes thirsty, it must select the
cue of “resource: water” to retrieve the well that it last vis-
ited (and hence consumed water from). It then moves to the
other well and consumes water there.

Thus, the agent must learn to select specific actions in
each situation it encounters. With RL, the agent learns to
associate an expected reward with each situation/action
pair, and over time, it learns which action for a situation
will lead to the most reward. Note that it is not learning
the general concept of moving to the opposite well here,
as the agent performs no generalization: it must learn
both that when it retrieves Well 1 it should move to Well
2 and that when it retrieves Well 2 it should move to Well
1.

Fig. 2 shows the performances of an agent under the fol-
lowing conditions: only the correct cue is available to be
learned (labeled “no distracters”); the correct cue and five
distracters are available to be learned (“5 distracters”);
and a baseline condition in which episodic memory is
lesioned and the agent cannot perform retrievals (“lesioned
ep. mem.”). The baseline condition demonstrates how a
“pure” RL agent lacking any internal memory would per-
form. The five distracter cues are nonsense cues that result
in either failed retrievals from memory or episodes in which
the agent was at the shelter; retrievals made using those
cues are thus not useful for solving the task.
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When only a single cue is available for retrieval (“no
distracters”), the agent quickly learns both when to act in
the environment and when to use its internal memory so
as to receive the maximum amount of possible reward.
Thus, the agent learns to select actions to satisfy its safety
and thirst drives at appropriate times, as described above
as the optimal behavior. The presence of the distracters
(“5 distracters”) slows learning because the agent has to
gain sufficient experience in using each cue to learn which
cue leads to a retrieval that makes it possible to go to the
correct well, and thus higher reward. Finally, when an
agent’s episodic memory is lesioned, there is never sufficient
information in the state for the agent to reliably determine
which well contains water when it becomes thirsty, and
thus its average reward is low. The results from Fig. 2 indi-
cate that the agent can learn when to use its internal mem-
ory while simultaneously learning when to interact with its
environment.

4.3. Learning to retrieve what happened next

A unique aspect of episodic memory is that events are
linked and ordered temporally. In Soar’s episodic memory,
memory retrievals can be controlled temporally by advanc-
ing to the next memory after performing a cue-based retrie-
val, providing a primitive envisioning or planning
capability where the agent can use its prior history to pre-
dict potential future situations. Through RL, the system
has the potential of learning when and how to perform
such primitive planning.

In the previous experiment, the agent retrieved episodic
memories of the last time that it had perceived the water
resource, which was sufficient knowledge to determine
which well to move to in order to find water. An alternative
strategy, explored in this experiment, is for the agent to
retrieve a past situation that closely resembles the agent’s
current situation, and then advance to the next memory
to retrieve what the agent did the last time that it was in
a similar situation.

In this experiment, the agent has available the normal
actions in the environment (moving and consuming
resources). It also has two internal actions available to it:
a cue-based episodic memory retrieval, which uses all cur-
rent perceptual knowledge to retrieve the most recent situ-
ation that most closely resembled its current situation; and
a second action (called advance) that retrieves the next epi-
sode (the episode that was stored after the episode most
recently retrieved). Thus, the agent must learn when to
do a cue-based retrieval (where the cue is the complete
state), when to advance its retrieval, and what action to
take in the world given the knowledge retrieved from epi-
sodic memory.

For this task, the optimal behavior for the agent when it
is not thirsty is to move to the shelter and consume the
safety resource. When it becomes thirsty, the agent must
perform a retrieval cued by its current state, which results
in the agent remembering the last time it was thirsty at
the shelter. The next step is to perform an advance retrie-
val, which results in the agent remembering where it moved
to after it was last thirsty at the shelter. This is followed by
moving to the other well, where the agent will find water
(as the well that it previously visited will be empty).

An important characteristic of this task is that the
knowledge stored in episodic memory and the agent’s
actions in the world are more closely related than in the
previous experiment. The best strategy for memory usage
strongly depends on the agent’s prior actions in the envi-
ronment; if the agent does not visit and consume resources
in the appropriate order (i.e. behave optimally for external
actions), then the agent is not guaranteed to gain useful
information from internal memory retrievals. In the previ-
ous task, a successful retrieval contained knowledge of the
last well from which water was consumed. In this task, a
successful retrieval contains knowledge of the action that
was taken after the agent last became thirsty: this action
may not be informative if the agent has not yet learned a
good behavior.

The performances of the agent under two conditions are
plotted in Fig. 3. In the first condition, the agent learns
when to make a cue-based retrieval and when to advance
the episodic memory, although the advance action cannot
be selected until a cue-based retrieval has taken place (this
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condition is labeled “state-based retrieval”). The second
condition is a baseline comparison in which episodic mem-
ory is lesioned.

There is a dramatic improvement in performance after
the agents have taken 4000 actions. In this experiment,
the exploration parameter decays linearly over time (as dis-
cussed in Section 4.1). On the 4000th action, and every suc-
cessive action after that, the agent ceases to select actions
randomly and only selects the actions with the best learned
value estimates. The dramatic difference in performances
between when the agent is selecting random actions very
rarely (e.g. just before the 4000th action) and never (e.g.
immediately after the 4000th action) indicates that small
amounts of random action selection in this task have a sig-
nificant negative impact on behavior. In the previous task,
random action selection did not interfere with an agent’s
ability to recover and complete the task.

Our hypothesis for this sensitivity is that in this task,
there is a precise sequence of actions that must be executed.
If an agent becomes thirsty and randomly selects to con-
sume the safety resource, then when the agent next
becomes thirsty and attempts to retrieve a memory of when
it was last thirsty and what it did next, that memory will
not be informative as to which well contains water – which
in turn leads the agent to bias its learned behavior against
performing retrievals. Effectively, any random action selec-
tion is disruptive when episodic memory is used to remem-
ber a sequence of past actions.

Another notable feature of the results is that while the
agent nearly reaches the optimal level of performance,
the agent does not converge to the optimal behavior in
all trials, but instead converge to a behavior that is very
near to optimal. We determined that the agent achieves
optimal behavior 71% of the time.

In the cases where the agent converges to the sub-opti-
mal behavior, it is not using episodic memory retrievals
to recall a past situation and then advance to the next sit-
uation. Instead, it is using episodic memory in a more
primitive way, as a single bit of information, as was used
in the agents in Littman (1994) and Pearson et al. (2007),
as well as our fourth experiment presented in Section 4.5.
In this second behavior, when the agent becomes thirsty,
it immediately moves to one of the wells (the same well
every time). If the well contains water, it consumes it; if
not, it performs a cue-based retrieval and moves back to
the shelter. At the shelter, the agent now knows that it
has performed a retrieval and instead of moving to the
same well again (the one that it just visited and knows is
empty), it moves to the other well and consumes water
there, regardless of the contents of the retrieval. Essen-
tially, the agent learns which well to move to when it is
thirsty based on whether a retrieval has been performed,
and not based on the contents of what was retrieved. This
behavior is suboptimal because it requires an additional
action in the environment every time the agent becomes
thirsty, leading to slightly less accumulated reward over
time.

These phenomena are explained by the difficulty of the
learning problem that was identified above: for the agent
to learn the optimal strategy for using its internal memory,
it must also learn a near optimal strategy for acting in the
environment. The learning problem is difficult because the
effects of the agent’s memory actions depend on the history
of the agent’s actions in the environment, which the agent
cannot perceive (technically, the problem is partially obser-

vable; Sutton & Barto, 1998). The agent must learn how to
use its memory while settling on a good behavior in the
environment, but it must also settle on a good behavior
in the environment without knowing how to use its mem-
ory. Often the agent is successful in learning to simulta-
neously control both memory and external action, but
occasionally the agent is unable to converge to the best
behavior.

4.4. Learning to construct a retrieval cue

In the first experiment, one condition involved the agent
learning to select between multiple cues when retrieving
from memory. In the second experiment, the agent used
cues with more than one feature (features of its current
state) in order to retrieve from memory. The purpose of
the third experiment is to investigate whether an agent
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can learn to select multiple features to use as a cue, combin-
ing aspects of both previous experiments.

In order to test this capability, it was necessary to extend
the base Well World configuration so that there were more
wells and more features that could be used for retrieval. A
third well was added to the environment, and a color fea-
ture was added to all objects; the modified environment
is shown in Fig. 4. As in the base environment, only Wells
1 and 2 ever contain water, and they continue to alternate
between full and empty as before. Well 3 never contains
water; it was added to the environment to serve as a dis-
tracter to the agent when it performs a cue-based retrieval
with features not present on the other two wells.

In this task, the optimal behavior when the agent is not
thirsty is still to navigate to the shelter and consume the
safety resource. When thirsty, the agent must construct a
cue containing features corresponding to the two wells that
can contain water in order to determine which well it vis-
ited last; these features are “resource: water” and “color:
blue”. After retrieving the memory of the last blue well that
it visited, the agent must then navigate to the other blue
well and consume water there to satisfy its thirst. To
achieve the effect of a cue with multiple features, the agent
performs successive cue-based retrievals from episodic
memory (e.g. performing a cue-based retrieval with
“resource: water”, then a second retrieval with “color:
blue”, creates a cue of the conjunction of those features).

If the agent constructs a cue with some other combina-
tion of features, the retrieved episode does not provide suf-
ficient information for the agent to determine which well to
visit next, since no combination of features result in a mem-
ory of the well that last contained water. Soar’s episodic
memory mechanism retrieves the most recent episode when
multiple memories are perfect matches to the cue, thus
building a cue that contains only “resource: water” or
“color: blue” does not result in the agent remembering
the last blue well that it visited (assuming that it has moved
back to the shelter). Instead, “color: blue” leads to the
retrieval of the shelter, while retrieval of “resource: water”

leads to retrieval of Well 3.
The performances of the agent that constructs retrieval

cues in the modified Well World are shown in Fig. 5 for
three conditions: learning to construct a cue from only
Fig. 4. Well World modified with an additional well and an additional
feature, color.
the two correct features (“no distracters”), learning to con-
struct a cue when two distracters are also present, and a
baseline where episodic memory is lesioned. In the first
two conditions, there are different sets of features with
which an agent may construct the cue: the first has only
the two correct features available (resource: water, and
color: blue), while the other also has their complements
(resource: water/shelter, and color: blue/red). A cue can
be any subset of the available features, and thus the agent
must learn to construct the correct cue in both cases.

The agent converges to the optimal behavior under both
conditions, more slowly when two distracter features are
present, as expected. These results indicate that an agent
can learn to build conjunctive cues from primitive features,
and use them in a task to retrieve from episodic memory.

4.5. Learning to use bit memory

The three experiments above demonstrate that there are
circumstances in which it is computationally feasible to
learn to use episodic memory. The Well World domain,
however, is relatively simple and in order to perform suc-
cessfully in it the agent must remember only a single unit
of knowledge: the identity of the well from which it last
consumed water. Given that only a single unit of knowl-
edge is necessary in order for an agent to perform opti-
mally, it might be computationally feasible for an agent
endowed with a less powerful memory mechanism to learn
behaviors comparable to those learned with episodic mem-
ory. The experiment in Section 4.3, in which the agent
learned to use episodic memory as a bit memory on some
trials, directly motivated this experiment.

Episodic memory is more powerful than necessary in the
Well World domain because of several characteristics.
First, episodic memory has unlimited capacity, whereas
performance in Well World requires only a single unit of
knowledge. Second, knowledge in episodic memory has
unlimited persistence, whereas the Well World domain
requires that the identity of the last well that was consumed
is known only for a finite number of steps in the domain,
after which the knowledge becomes irrelevant to future
behavior. Third, knowledge is stored to episodic memory
automatically via an architectural mechanism, whereas an
agent could learn to store knowledge deliberately instead.
Fourth, knowledge in episodic memory is accessed via a
retrieval cue, allowing for single episodes to be retrieved
and thus condition immediate behavior.

In order to better understand the dynamics of episodic
memory and reinforcement learning in Well World, we cre-
ated an agent endowed with a simple bit memory mecha-
nism. Comparing the behaviors of agents that learn to
use the different mechanisms allows us to better understand
whether some or all of these characteristics of episodic
memory are essential for an agent to be capable of learning
to use memory while acting in Well World, or whether sim-
ply being endowed with a simpler memory mechanism is
sufficient.
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The bit memory mechanism that we used for this exper-
iment consists entirely of a single unit of knowledge in
Soar’s working memory that is under the agent’s deliberate
control. The agent can set the contents of memory to either
true or false by selecting corresponding internal actions,
and it can then use the knowledge stored in bit memory
to condition its behavior in Well World. This bit memory
mechanism is inspired by earlier work that investigated
learning to use memory with simple internal memory mech-
anisms (Littman, 1994; Peshkin, Meuleau, & Kaelbling,
1999).

The performance of the agent endowed with bit memory
is evaluated in the original Well World domain (Fig. 1)
under three different conditions. In the first condition, the
agent does not need learn a memory management strategy,
but rather has a fixed strategy in which it toggles its bit
memory to true after consuming Well 1 and to false after
consuming Well 2. This agent learns to use the contents
of bit memory in order to support correctly select actions
in the environment, such as moving and consuming
resources. In the second condition (called “Fixed true strat-
egy”), the agent has a fixed strategy for when to set its
internal memory bit to true (after consuming Well 1), but
must learn when to set its memory bit to false as well as
how to act in the environment. In the third and final con-
dition, the agent has no fixed strategy to control its
Fig. 6. Performances of agents learning
memory, and instead must learn both when to toggle its
memory as well as how to act in the environment.

The performances of the agent under these three condi-
tions is illustrated in Fig. 6. The agent that had a fixed
strategy for managing its bit memory learns very quickly
how to perform in Well World, converging to the optimal
behavior in 500 actions. The performances of the other two
agents are both poor and nearly equivalent, although the
agent that has a partial memory management strategy
behaves slightly better than the agent that has no fixed
memory management strategy between the 250th and
1000th actions.

That the agent with a fixed memory management strat-
egy quickly converges to the best possible behavior in the
domain demonstrates that a single bit of memory is suffi-
cient in order to support optimal behavior in the Well
World setting. However, both agents that had to learn
strategies to control their bit memory failed to learn effec-
tive behaviors, indicating that in Well World agents cannot
learn to use bit memory.

5. Discussion

We begin by discussing the three experiments in which
an agent learned to use episodic memory while simulta-
neously learning to perform in the environment. Although
to use bit memory in Well World.
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the agent is faced with learning to use its memory while act-
ing in the environment (and thus affecting what knowledge
will be retrieved from memory in the future), the interac-
tion of memory and action in the environment is signifi-
cantly more intertwined in the second experiment. There,
the agent’s past actions directly impact the utility of knowl-
edge retrieved from episodic memory. In all experiments,
the agent learns very early on to consume the safety
resource when it is not thirsty, and to immediately move
to the shelter as soon as it is not thirsty. In the first and
third experiments, this means that when the agent retrieves
an episode from memory using features of a well as a cue, it
will typically be the well that it last consumed water from.
However, in the second experiment, the agent is retrieving
memories of the first action that it took to quench its thirst,
and not the memory of when it finally managed to quench
it. It not only takes longer to learn how to best act in this
setting, but the eventual result is that it sometimes con-
verges to a local maximum in the behavior space instead
of converging to the globally optimal behavior.

These three experiments demonstrate that RL can be
applied successfully to learn to use internal actions over
an episodic memory mechanism while simultaneously
learning to act in its environment. Additionally, RL alone
cannot be successfully applied to those same tasks, demon-
strating that there is a functional advantage to combining
RL with an episodic memory in some settings. We also
demonstrated that RL can learn when to retrieve, learn
which cue to use for retrieval, learn when to use temporal
control, and learn to build a cue from a set of possible
features.

In the fourth experiment, it was demonstrated that
while a bit memory can store sufficient knowledge for
an agent to act in Well World, an agent endowed with
bit memory is unable to learn to use it while learning to
act in the domain. This contrasts with results from the
first three experiments, in which it was demonstrated that
an agent can learn to use episodic memory. It starkly con-
trasts with the results from Section 4.3, in which an agent
did learn to use a more expressive episodic memory as a
less powerful bit memory.

Although episodic memory is powerful and significantly
more complex than bit memory, the process by which ret-
rievals are made in these experiments tightly constrains the
space of possible actions that are available to an agent. In
the first and third experiments, a small and finite number of
possible cues are available with which an agent can make
retrievals from episodic memory. This has the effect of lim-
iting the amount of initial learning that an agent must
undertake before finding effective memory usage strategies.

When using bit memory, however, the space of memory
control strategies is relatively under constrained. When the
agent has no fixed strategy for memory management, the
space of possible memory usage strategies is so large that
it is unable to find an effective strategy. Even when the
agent has a fixed strategy for when to toggle its memory
bit to true, the agent cannot effectively settle on a strategy
for when to toggle its bit to false, simply because if the
agent toggles it at the wrong time it cannot simply toggle
it back since it has no other knowledge that might help it
recover from an error.

6. Conclusion

More broadly, this research opens up the possibility of
extending the range of tasks and behaviors modeled by
cognitive architectures. To date, scant attention has been
paid to many of the more complex properties and rich-
ness of episodic memory, such as its temporal structure
or the fact that it does not capture just isolated structures
and buffers but instead captures working memory as a
whole. Similarly, although RL has made significant con-
tributions to cognitive modeling, it has been predomi-
nantly used for learning to control only external
actions. This research demonstrates that cognitive archi-
tectures can use RL to learn more complex behavior that
is dependent not just on the current state of the environ-
ment, but also on the agent’s prior experience, learning
behavior that is possible only when both RL and episodic
memory are combined.

Although our research demonstrates that it is possible to
learn to use episodic memory, it also raises some important
issues. Learning is relatively fast when the possible cues
lead to the retrieval of an episode that contains all of the
knowledge that an agent requires in order to determine
how to act in the world. When retrieving episodes that
most closely match the current state and then using tempo-
ral control of memory to remember what happened next,
however, learning is slower and does not always converge
to the best possible behavior. Learning to use episodic
memory to project forward is difficult – requiring many tri-
als to converge and without a guarantee that optimal
behavior will be achieved. Do these same issues arise in
humans or do they have other mechanisms that avoid these
issues? One obvious approach to avoid the issues encoun-
tered in our experiment is to use one method, such as
instruction or imitation, to initially direct behavior so that
correct behavior is experienced and captured by episodic
memory, and then learning to use those experiences would
probably be much faster.

Another approach that we are pursuing is to simplify
both the memory models and tasks to better understand
how characteristics of each influence an agent’s potential
to learn to use memory. Although the tasks presented in
this paper appear to be simple, they do contain a number
of features and rewarding situations. Soar’s episodic
memory mechanism is complex and powerful. By investi-
gating agents endowed with simpler memory models situ-
ated in the simplest of tasks, we can incrementally add
different sources of complexity and measure the effects.
This approach is directly motivated by our desire to better
understand the implications of our fourth experiment, in
which we demonstrate that an agent cannot learn to use
bit memory while it can learn to use episodic memory.
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