
Efficient Computation of Spreading Activation Using Lazy Evaluation
Steven J. Jones (scijones@umich.edu)

Arthur R. Wandzel (awandzel@umich.edu)
John E. Laird (laird@umich.edu)

University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121

Abstract

Spreading activation is an important component of many com-
putational models of declarative long-term memory retrieval
but it can be computationally expensive. The computational
overhead has led to severe restrictions on its use, especially in
real-time cognitive models. In this paper we describe a series
of successively more efficient algorithms for spreading acti-
vation. The final model uses lazy evaluation to avoid much
of the computation normally associated with spreading acti-
vation. We evaluate its efficiency on a commonly-used word-
sense disambiguation task where it is significantly faster than
a naive model, achieving an average time of 0.43ms per query
for a spread to 300 nodes.

Keywords: cognitive architecture; context-sensitive re-
trieval; Soar; semantic memory; spreading activation.

Introduction
As cognitive modeling moves to more complex and real-
world tasks, there is a challenge of maintaining efficient, scal-
able, context-sensitive access to long-term knowledge. In
prior research, our group developed efficient and scalable
algorithms for context-free cue-based retrievals (Derbinsky,
Laird, & Smith, 2010). In this paper, we extend that work to
context-sensitive retrievals by developing efficient and scal-
able algorithms for spreading activation (Anderson, 1983b).

In cognitive architectures, such as Soar (Laird, 2012) and
ACT-R (Anderson, 1983a), working memory defines the con-
text—the agent’s task-relevant knowledge. Spreading acti-
vation supports context-sensitive retrieval by biasing the re-
trieval of elements from long-term declarative memory to
those that have direct and possibly indirect long-term asso-
ciations to structures in working memory. Previous work has
focused on mitigating the cost of spreading activation through
using high-performance computers, external data-base tech-
nology, and parallelism (Douglass & Myers, 2010; Chen,
Petrovic, & Clark, 2014; Edmonds, Atahary, Taha, & Dou-
glass, 2015). The expense of spreading activation has led
cognitive modelers to severely limit the depth of spread or to
avoid it completely. Efficient spreading could dramatically
increase its use in cognitive models and decrease the time
it takes to run simulations. It could also enable spreads to
greater depth, so as to extract knowledge that is latent within
the structure of an agent’s long-term memory. Finally, effi-
cient spreading would support its use in real-time cognitive
models and AI agents.

As in our prior work, our investigations are within Soar.
Soar provides an efficient platform, both in terms of overall
performance, but more specifically in terms of an efficient

implementation of long-term declarative memory. For cogni-
tive modeling, Soar’s decision cycle corresponds to the pro-
duction firing cycle of ACT-R, which maps to approximately
50ms of human behavior. However, on a standard work-
station, Soar’s decision procedure runs at less than 0.3ms,
even with large numbers of rules and declarative memory el-
ements. The essence of this paper is adding spreading ac-
tivation to Soar with a simple naive algorithm, then recon-
ceptualizing that algorithm through a series of optimizations.
Those optimizations take advantage of important regularities
in the dynamics of Soar’s long-term semantic memory. The
ratio of changes to the context (working memory) to the to-
tal number of elements in the context is small. The ratio of
long-term memory changes to the total number of elements
in the long-term memory is even smaller. Many queries of
long-term memory are unambiguous and even those with am-
biguity are often constrained to only a few possibilities. We
evaluate these optimizations on a word-sense disambiguation
task that has proven usual for evaluating efficiency of long-
term memory retrieval in the past (Derbinsky & Laird, 2011).

Background
In the Soar cognitive architecture, working memory main-
tains an agent’s current knowledge of its task and environ-
ment, including active goals, results of perception, inferences,
and retrievals from long-term memory. Behavior is condi-
tional on the contents of working memory, so that for infor-
mation to influence behavior, it must be in working memory.

Semantic memory contains the agent’s long-term declar-
ative knowledge, such as facts about the world, and corre-
sponds to ACT-R’s long-term declarative memory. Informa-
tion can be retrieved from semantic memory into working
memory via a query. A query is initiated using a cue that
is composed of a single-level symbolic directed graph, an-
chored in a single node. Consider an example where there
has previously been a retrieval for the word “activation” that
returned a result with substructure ˆmeaning A1437. The
agent may then decide to retrieve a second word sense of
“activation” using the following cue: (<cue>ˆword-string
activation ˆmeaning A1437 -), where “-” is used to
prohibit the retrieval of the previous word sense. All nodes
in semantic memory that match the cue are found. If no node
matches, then the query fails. If more than one node matches,
a bias term is computed for every cue matching node and the
node with the highest bias term is the result. One important
component of the bias term is base-level activation (BLA).
BLA combines information on the recency and frequency of



a node’s previous accesses. Although BLA is useful, it does
not support context-sensitive retrieval, where structures in the
context (the contents of working memory) influence the bias
term. One approach to incorporating context into the bias
term is to use spreading activation (SA) as another compo-
nent. Adding together the BLA component blam and the SA
component sam for every cue matching node m gives us an
overall bias term BTm.

Naive Spreading Activation
Activation spreads out from semantic memory nodes that are
in working memory to adjoining nodes in semantic memory.
One point of variability is whether activation spreads in the
direction of edges (forward), opposite that direction (back-
ward), or in both directions. Our algorithms are agnostic on
spread direction and support all three directions. For sim-
plicity and ease of analysis, our implementations track and
record the SA- and BLA- component independently. Their
only interaction is during the calculation of the overall bias
term, simply related: blam + sam = BTm

For the Naive Algorithm, spreading begins whenever a
node n enters the context and becomes a source of spread. In
Figure 1, node A is the source and spreads activation of .45
forward to the two nodes labeled B and C. Nodes that receive
activation are spread recipients, and they can accumulate ac-
tivation from many sources or even from the same source at
varying depths, such as nodes E and F. The total accumulated
activation for recipient r, is denoted as sT .

The calculation of the activation of a recipient depends on
three factors. The first is the initial activation of the source,
which we set to 1. Second, as activation spreads deeper, there
is a decay factor, p < 1. In this example, the decay fac-
tor is .9. Third, the activation of a parent node is divided
equally among all of its children nodes, leading to the fan
effect through the spread of activation (Anderson, 1983b).
Thus, the calculation for the activation of a recipient node r,
where there are a total of k children nodes from parent node
sn is sr =

1
k × p× sn. For the children of A (nodes B and C),

the calculation is 1
2 × .9×1 = .45. If a recipient receives ac-

tivation from two distinct parents, the activations from both
parents are summed together. Thus, for node F, C and G are
both parents that respectively issue .45 and .135 to result in
an activation value of .19575 for F.

We denote the activation that accumulates in a spread re-
cipient, r, from a source, c, as sr,n, so that the total activation
for node sT = ∑

c∈C
sr,c where C is the set of all context nodes

that are sources. If a node does not receive any activation,
then sT = 0.

The total spread from a source can be controlled in multi-
ple ways. For example, a spread can be restricted to a fixed
distance from the source node, called the depth limit or there
can be a limit to the total number of nodes traversed, termed
the spreading size limit. In our experiments, for simplicity
we use a fixed spreading size limit, which is 300. The spread-
ing size limit is applied within the context of a breadth-first

.45

.4995

.405

.19575

.135 .06075

.45

1

A

B

D

E

C

F

G H

I

Figure 1: An example network, with forward spread from a
single source A. Initial activation is 1, decay factor is .9, and
depth limit is 3.

traversal of the graph, so that activation is spread to all nodes
at the current depth before it is spread to nodes at the next
depth level. With a size limit, it is possible to not spread to
every node at the same depth. For example, if we use a size
limit of 300 and we assume a regular graph where every node
has exactly five children, after depth 1, 5 nodes will be vis-
ited; after depth 2, 5+25= 30 nodes will be visited; and after
depth 3, 5+ 25+ 125 = 155 nodes will be visited. An addi-
tion 145 nodes at depth 4 (out of 625) will be explored, but
480 nodes at depth 4 will not.

Observations on Naive Spreading Activation
In order to compute the overall bias term, a naive algorithm
spreads from every context node when it is introduced into
working memory and updates the SA component of every re-
cipient per each spread. In such an implementation, the pri-
mary cost of spreading activation is the breadth-first traver-
sal that computes the activation for nodes that receive spread
from a given source. A secondary cost is updating the new
value of the SA component and recalculating the overall bias
term, which for the naive algorithm is performed for every
spread recipient. In a naive algorithm, these costs scale with
the number of source nodes multiplied by the spread size
limit.

In the following sections, we identify properties of pro-
cessing that suggest ways of reducing the costs of a naive
algorithm. Many of these shortcuts are obvious, while others
are more subtle, but in general the unnecessary computation
can be avoided by one major approach: avoid calculations of
spread until it is necessary, because it is possible they may
never be necessary. This approach is called lazy evaluation
and attempts to only compute activations that play a role in
determining which candidate is retrieved from memory. In
the naive algorithm, a significant proportion of nodes that re-



ceive spread do not influence which candidate is retrieved
from memory. It is because of this that lazy evaluation can
reduce computation while resulting in no change to which
candidates are retrieved.

Our final algorithm incorporates optimizations made pos-
sible by the following observations.

There are Consistent Elements Shared Between Old
and New Context
If there are no changes in the set of context elements, the
results of spread will be exactly the same on subsequent cy-
cles. Thus, spread only has to be computed when context
elements change, which we call Change-Only Processing.
This optimization is expected to have a large impact because
working memory remains largely unchanged from one cycle
to another. For an architecture where working memory has
rapid changes, this may not be much of an improvement.

The Long-Term Memory Network Changes Slowly
The knowledge in semantic memory is not expected to change
rapidly. Thus, the breadth-first traversal that computes the
spread is relatively stable. We can take advantage of this sta-
bility by explicitly caching a trace of the breadth-first traver-
sals and the activation values they produce. These can be used
to directly access these values for updating the SA compo-
nent without performing the breadth-first traversals. When-
ever an edge is added to or removed from semantic mem-
ory, the traversals containing the parent of that edge are no
longer valid. Under these circumstances, if these traversals
are needed in the future, they will be recomputed. This im-
provement is simply referred to as Caching.

One implication is that we can compute traversals during
task initialization. Thus, if the agent starts with a large knowl-
edge base pre-loaded into its long-term semantic memory, it
can pre-compute and cache the traversals for future use. Nev-
ertheless, the agent must still recalculate traversals when the
network changes according to the invalidation cases we out-
lined above. This is Precalculation.

Queries are Less Frequent than Context Changes
Even when there are context changes during a cycle, spread
does not need to be computed unless there is a query. Even
when the calculation of spread is tied to only changes in the
context, this modification eliminates calculations for cases
where context elements become active and then become in-
active without any intervening queries. This improvement
is called Query-Deferred Calculation and exists in ACT-R.
This improvement also supports implementation of two fur-
ther improvements.

A Query’s Cue can be Unambiguous
If a cue is used that is constraining enough so that only one
long-term memory node matches, there is no need to spread.
We call this improvement Ambiguity-Only Processing.

The Number of Cue Matches is Small
A naive approach to spreading activation normally computes
the activation of all recipients of a spread. However, it is rare
that more than a small percentage of those nodes match the
cue, and the SA component is needed only for those nodes
that match. Thus, if a node does not match the cue, it is
unnecessary to calculate the overall bias term for that node.
Even when only a few constraints are included in a cue, they
can eliminate a substantial proportion of the nodes from con-
sideration.

In response to this observation, our approach flips the nor-
mal way of thinking about computing spread. Instead of up-
dating the SA component of every recipient, our algorithm
only computes the overall bias term for nodes that match the
cue. This improvement is named Candidate-Only Process-
ing and it is included in ACT-R. Note that if a cue has so little
constraint such that every node is a candidate, this optimiza-
tion will not help.

While this series of improvements generates our final algo-
rithm, we restate the final algorithm explicitly below.

Algorithm Review
We reconceptualize spreading activation as the calculation re-
quired to provide the bias term necessary for context-sensitive
retrieval. In algorithm 1, we follow the procedure PROCES-
SAGENTCYCLE() every cycle. The first step is to check
whether or not a query is present. If not, processing stops.
This corresponds to our Query-Deferred Calculation im-
provement. If a query is present, then there is a check as
to whether there is only one node that matches the cue. If
so, all spreading activation calculation is skipped and that
node is returned. This is called Ambiguity-Only Processing.
However, if the cue is ambiguous, then spreading activation is
computed using DOTRAVERSALS() and DOAPPLICATIONS().

In DOTRAVERSALS(), if there are changes to the con-
text elements then the following processing occurs. If a
source’s traversal has never been calculated or there has
been a change to the network that invalidates the traversal,
then it is necessary to recalculate the traversal via breadth-
first search (TRAVERSE()). A map from node to traversal,
cachedSpread, maintains a history of currently usable traver-
sals. If these conditions do not hold, then a cached traversal
is retrieved to bypass additional calculation.

After all source node traversals are calculated and re-
trieved, DOAPPLICATIONS() updates the SA component of
all the recipients in these traversals that also match the cue
as looked up against a recorded history of currently usable
traversals. Updating the SA component of only the cue-
matched nodes corresponds to Candidate-Only Processing.

Finally, the cue-matched node with the highest overall bias
term is returned as the result to the query.

The worst case for this algorithm is when there are frequent
changes to declarative memory that invalidate the cached
traversals, and when there are frequent changes to context ele-
ments that require continual recalculation of the traversals. In



Algorithm 1 : Lazy algorithm for spreading activation

cachedSpread . global variable

1: function DOTRAVERSALS(contextChanges)
2: for source ∈ contextChanges do
3: if source /∈ cachedSpread OR

ISINVALID(cachedSpread[source]) then
4: spread ← TRAVERSE(source)
5: cachedSpread[source]← spread

1: function DOAPPLIES(cueMatches,contextChanges)
2: for match ∈ cueMatches do
3: if match ∈ cachedSpread[contextChanges] then
4: UPDATEBIASTERMOF(match)

1: procedure PROCESSAGENTCYCLE()
2: if agent issues a query command then
3: cueMatches← DOQUERY(cue)
4: if SIZEOF(cueMatches) == 1 then
5: ADDTOWMEM(match)
6: else
7: DOTRAVERSALS(contextChanges)
8: DOAPPLIES(cueMatches,contextChanges)
9: contextChanges← /0

10: ADDTOWMEM(MAX(cueMatches))

this worst case, our algorithm essentially performs the naive
algorithm.

Evaluation
Our hypothesis is that our proposed algorithm can result in a
significant reduction in the time spent computing spreading
activation and that each component of the algorithm provides
some benefit. To test these claims, we evaluate the time ef-
ficiency as we incrementally incorporate each component of
the final algorithm.

The task we use is the word sense disambiguation (WSD)
task that we previously used for evaluating implementations
of base-level activation (Derbinsky & Laird, 2011). In this
task, the agent must disambiguate the word senses used in a
sentence. Each input word is annotated with its name and
part-of-speech (e.g. noun) but not its sense. When an agent
encounters and issues a query for the word, such as the word
“English” with part-of speech “noun”, it must choose one
of the following possible senses: 1) the West Germanic lan-
guage; 2) the humanities discipline; 3) the people of England;
4) the spin given to a ball in pool or billiards. The agent keeps
retrieving senses until the retrieved sense matches the correct
sense.

The test sentences and the ground truth are provided by
SemCor, a popularly used sense-tagged corpus. SemCor con-
sists of 352 texts from the Brown corpus (Kucera & Fran-
cis, 1967), with every word linked to its correct sense in
the English lexical database WordNet, version 3.0 (Miller,

1995). Our construction of WordNet 3.0 includes all synset
and lemma links for every part-of-speech, and our construc-
tion of SemCor includes all available sense-tagged words,
numbering 217,918, of which approximately 75% are multi-
sense1.

In our experiment, there are seven different agents, corre-
sponding to different spreading activation algorithms. These
are listed in Table 1. All agents are preloaded with our con-
struction of WordNet 3.0 in their semantic memory and they
all use Soar’s existing base-level activation mechanism in ad-
dition to spreading activation. We compare as well to one
agent that does not use spreading activation, instead using
only base-level activation.

All agents iterate through all SemCor sentences, maintain-
ing in working memory the retrieved correct word sense for
all words previously encountered within a paragraph as con-
text. Table 1 displays the time spent on spreading activation
during the task. The execution of the task is deterministic
with negligible variance in execution times. All spreading
activation agents have a spread size limit of 300, and they all
compute exactly the same spread values (and bias terms) for
all the candidate retrievals, and they retrieve the same node
from semantic memory. Thus, the seven algorithms differ
only in the efficiency of computing the retrieved nodes.

All agents ran for a total of 1,644,058 decision cycles
while issuing a total of 565,223 queries. The naive algorithm,
omitting all improvements, took over 100,000 seconds. Ev-
ery change to the algorithm decreased execution time. The
amount of time our final algorithm took on spreading activa-
tion alone was 245 seconds. On average, the amount of time
spent on the rest of the agent’s processing was 290 seconds
(not shown in Table 1). When examined at the individual
query level, the final algorithm spent an average of 0.43ms per
query on spreading activation compared compared to 5.87ms
for the naive algorithm with change-only processing.

We confirm that precalculation (and thus the correspond-
ing reduction in the breadth-first traversals during the task)
speeds up the agent. The memory cost to precalculation is
storage of the traversal to 300 nodes for each node. While
query-deferred processing has little direct impact, it sup-
ports candidate-only processing and ambiguity-only process-
ing. While the effect of ambiguity-only processing is modest,
candidate-only processing shows a significant improvement
associated with selectively updating only spread recipients
that are potential query results. The naive algorithm, which
omits all improvements, is the slowest.

The amount of time to calculate spread from a single node
is expected to scale linearly with spreading size limit. As
a check, we used a test agent that first randomly selects a
word and then adds new word information to the network.
The randomly-selected word serves as a context element. The
agent then initiates an artificially constrained query, such that

1The SemCor and WordNet 3.0 data sets are available to down-
load at http://web.eecs.umich.edu/˜mihalcea/downloads
.html#semcor and http://wordnet.princeton.edu, respec-
tively.

http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
http://wordnet.princeton.edu


Spreading Activation Mechanism Spread Time (s) Spread Time Per Query (ms)
Naive Algorithm > 100,000
+ Change-Only Processing 3,316 5.87
+ Caching 1,200 2.12
+ Precalculation 810 1.43
+ Query-Deferred Processing 803 1.42
+ Ambiguity-Only Processing 778 1.38
+ Candidate-Only Processing 245 .43

Table 1: Timed performance on the WSD task across seven spreading activation variants. Rows with prefaced with “+” denote
incremental cumulative improvements to our algorithm.

the breadth-first traversal must be calculated for the new con-
text element and that query has a sufficiently general cue such
that the candidate set includes all spread recipients. The test
agent thus induces the maximum cost of a single network
change. As expected, the maximum spreading times shown
in this figure are significantly greater than the average times
achieved in the WSD task.

The timing results for this test are found in Figure 2. Graph
points that fall below the linear trend reflect spread traversals
that exhaust the network before reaching the spread size limit.
We note that given our random selection of words, there is
some noise and furthermore that a traversal of a given size
can have variable cost depending on whether repetition in the
traversal reduces the number of elements requiring applica-
tion further below the spread size limit. However, it is over-
whelmingly the spread size limit that determines the total cost
and we observe the expected linear scaling.

While the termination criterion of spreading size limit al-
lows for direct control over computational cost and is conve-
nient for the above analysis, we add an additional termination

0 60 120 180 240 300
0

1

2

3

4

Spread Size Limit

M
a

x
 S

p
re

a
d

in
g

 T
im

e 
(m

s)

Figure 2: The maximum time spent on spreading activation
from a single context node, with varying spread size limit, for
randomly selected words.

criterion. A spreading size limit of 300 does not provide a
meaningful bound in terms of the influence spreading has on
retrieval. In the presence of noise or uncertainty, small values
of spreading activation may be irrelevant. We thus introduce
a threshold termination criterion such that spreading traver-
sals terminate if spreading activation values generated in the
traversal are below the threshold. In other words, we assume
a minimum acceptable spreading activation value as an ad-
justable parameter. We also change the traversal so that in-
stead of breadth-first traversal, the traversal is biased to where
there is still the most spread to distribute.

The intuition is to pick a value such that spreading activa-
tion is not applied if it would be “lost in the noise.” Note that
in ACT-R, such a noise term is added to activation. Consider
an ACT-R noise set to .1. A threshold of .0025 in Figure 3
represents a 95% chance that such a noise magnitude is larger
than the terminated spread. Figure 3 shows that such a termi-
nation criterion would result in spread sizes of approximately
65 nodes. Per query, a spread size of 65 nodes is expected to
take an average of .094ms. The threshold has the potential to

.0001 .001 .01 .1 0
0

50

100

150

200

250

300

Spreading Value Threshold

A
v

er
a

g
e 

T
ra

v
er

sa
l 

S
iz

e

Figure 3: The average sizes of spreading traversals are plot-
ted with varying thresholds for termination. The vertical line
denotes a threshold value of .0025.



change which candidates are retrieved.

Conclusion and Future Work
A central motivation of implementing spreading activation is
to support context-sensitive retrieval for cognitive agents. To
satisfy the constraints of a cognitive architecture while meet-
ing the demands of complex, dynamic, or real-world envi-
ronments, spreading activation must be efficient and reactive.
We have developed an optimized algorithm for spreading ac-
tivation that has an average time of .43ms for a spread to
300 nodes. Although optimized, there is no compromise in
correctness – results of the spread are exactly the same as
the results of a straightforward (naive) algorithm. Adding
a threshold-based termination criterion for spread based on
noise or confidence further reduces the cost to .094ms, al-
beit potentially changing query results. We expect that such
efficient spreading activation will change how spreading is
used in cognitive architectures. It will be possible to explore
deeper spreads where there are more indirect associations be-
tween concepts, and it will be possible to use it for real-world
applications.

In the future, we plan to further evaluate this algorithm on
much larger networks and networks with more varied struc-
ture to get a better profile of its performance characteristics
for different network organization and dynamics.

We also plan to extend our algorithm so that it includes a
temporal decay for spreading activation. Our plan is to ini-
tialize the magnitude of the spread from a source node with
that source node’s base-level activation. Additionally, we
plan to extend the representation of semantic memory so that
it includes association strengths between nodes. These two
changes should have only minimal impact on the spreading
algorithm and its efficiency while allowing us to study algo-
rithms that dynamically modify those association strengths
based on the co-occurrence of nodes in working memory.
This suite of changes has the potential to allow spreading ac-
tivation to adapt to an agent’s experience, which is lacking in
our current implementation.

Acknowledgments
The work described here was supported by the Office of
Naval Research under grant number N00014-08-1-0099. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressly or implied, of the ONR
or the U.S. Government.

References
Anderson, J. R. (1983a). The architecture of cognition. Cam-

bridge, Mass.: Harvard University Pres.
Anderson, J. R. (1983b). A spreading activation theory of

memory. Journal of Verbal Learning & Verbal Behav-
ior.

Chen, Y., Petrovic, M., & Clark, M. (2014). Semmemdb: In-
database knowledge activation. In Flairs conference.

Derbinsky, N., & Laird, J. E. (2011). A functional analysis
of historical memory retrieval bias in the word sense
disambiguation task. Ann Arbor, 1001, 48109–2121.

Derbinsky, N., Laird, J. E., & Smith, B. (2010). Towards
efficiently supporting large symbolic declarative mem-
ories. In Proceedings of the 10th international confer-
ence on cognitive modeling (pp. 49–54).

Douglass, S. A., & Myers, C. W. (2010). Concurrent knowl-
edge activation calculation in large declarative memo-
ries. In Proceedings of the 10th international confer-
ence on cognitive modeling (pp. 55–60).

Edmonds, M., Atahary, T., Taha, T., & Douglass, S. A.
(2015). High performance declarative memory systems
through mapreduce. In Software engineering, artificial
intelligence, networking and parallel/distributed com-
puting (snpd), 2015 16th ieee/acis international con-
ference on (pp. 1–8).

Forgy, C. L. (1982). Rete: A fast algorithm for the many
pattern / many object pattern match problem. Artificial
Intelligence, 19(1), 17–38.

Kucera, H., & Francis, W. N. (1967). Computational anal-
ysis of present-day american english. Providence, RI:
Brown University Press.

Laird, J. E. (2012). The Soar cognitive architecture. MIT
Press.

Miller, G. A. (1995). Wordnet: A lexical database for english.
Communications of the ACM, 28, 29–41.


	Introduction
	Background
	Naive Spreading Activation
	Observations on Naive Spreading Activation
	There are Consistent Elements Shared Between Old and New Context
	The Long-Term Memory Network Changes Slowly
	Queries are Less Frequent than Context Changes
	A Query's Cue can be Unambiguous
	The Number of Cue Matches is Small

	Algorithm Review
	Evaluation
	Conclusion and Future Work
	Acknowledgments
	References

