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Abstract 

The development of Unmanned Aerial Vehicles (UAVs) is continuously pushing the boundaries for more autonomous 

systems. In order to make realistic the goal of autonomous civil UAVs flying within civil airspace, technology must be 

developed so that UAVs and all their critical subsystems can be certified for autonomous flight. In this paper, we address 

specifically the Propulsion subsystem and the problems that arise when engines are affected by failures. In a Pilot-Out-Of-the-

Loop situation, the engine controller must be able to autonomously detect, isolate and eventually mitigate failures, which 
involves making decisions that are delegated to the pilot in current systems. We propose a Propulsion Health Management 

System for a general twin-engine UAV, based on Intelligent Agent technology. The system fuses different software techniques 

to achieve the Fault Evaluation and Fault Mitigation functions, which would normally be performed by the pilot after Fault 

Detection and Fault Isolation. The proposed system is described in detail and then the results of simulation tests are presented. 
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1. Introduction: Autonomous UAVs and subsystems 
 

Unmanned Aerial Vehicles (UAVs) started being 

developed even before World War II, although their main 

function at the time was as target drones (Goebel, 2008). 

These were simple Radio-Controlled (RC) aircraft that 

focused on low cost and expendability, and were produced in 

large scale during the war. After WW2, UAVs gathered an 

increasing amount of interest and started being used for other 
functions. A whole new market was opened with the 

introduction of missiles, and in the 1960s the first 

reconnaissance UAVs were deployed. However, these were 

plagued by many issues and were not a credible solution for 

missions where expendability was not an asset, including of 

course all types of civil use. The problems included but were 

not limited to the following list: 

 ensuring a radio link with sufficient bandwidth as the 

range increases 

 having on-board instrumentation allowing the remote 

pilot to get complete situational awareness 

 designing complex control systems that could reduce the 

workload on the remote pilot 

 implementing the control systems using the limited 

capabilities of available computer hardware 

 dealing with safety issues which are worsened by the lack 

of situational awareness 

However, UAVs present a series of potential advantages over 

piloted aircraft: 

 operating costs can be greatly reduced, especially for 

aircraft with small payload 

 UAVs are generally more expendable, which is  an asset 

for military application 

 flight performance can be greatly increased, for example 

achieving longer endurance or making possible high-G 

manoeuvres that would render a human pilot unconscious. 

Such advantages kept high the interest in developing 

military and commercial use of UAVs and, thanks to the huge 

advances in avionics and related technologies, UAVs rapidly 

became popular in the early 1990s. Especially in the last 
decade, there has been a great increase of interest in the 

development and use of UAVs. They are now very common 

in military operations, especially reconnaissance and 

intelligence, but also for attack missions. UAVs have also 

found use in civil applications, mainly related to surveillance 

and environmental protection. 

Military applications usually do not involve flight within 

civil airspace, which 

allowed for earlier 

application, since in such 

cases UAVs are subject 

to military flight rules, 
which can be generally 

seen as more permissive 

than civil flight rules. 

For instance, this had led 

to greater levels of 

autonomy for military 
 

Figure 1. Predator UAV 

 



UAVs, while civil regulations are far from allowing UAV 

flight without strict supervision. Current military UAVs (like 

the Predator in Figure 1) are capable of carrying out an entire 

pre-planned mission, and generally only need supervision in 

order to address situational changes that ask for a modification 

to the flight plan. Civil applications are instead generally 

restrained by the need to avoid commercial airspace for safety 

reasons (UAV Task Force, 2004). 

It is foreseeable that UAVs will present increasing levels 

of autonomy in the future, as many research studies focus on 

two trends: control of UAVs by personnel without full pilot 
training and control of multiple UAVs by a single user. Also, 

civil applications would certainly receive great help by the 

opening of civil airspace to UAV traffic. The challenges 

presented by such objectives are great, since an autonomous 

UAV must be able not only to fly a pre-planned mission, but 

also to actively adapt to situational changes (such as the 

detection of new obstacles or the occurrence of a fault), 

communicate with other entities and follow flight rules. 

It is important to understand that UAV autonomy 

involves not only the ability of the UAV to control its path 

and perform its planned mission, but also the need to achieve 
sufficient external and internal situational awareness so that it 

can react properly to changes: on one hand, the UAV must be 

aware of what is happening around itself, on the other hand it 

must have knowledge about the operation of all of its 

subsystems. While there are many specific tasks that are 

usually handled by automatic control systems on a piloted 

aircraft (for example, an autopilot usually keeps the aircraft on 

its intended route during normal cruise), several other 

decisions are delegated to the pilot (for example, the action to 

take after the occurrence of a fault). A completely 

autonomous UAV must be able to make all types of decisions, 

including those that are normally delegated to the pilot, since 
minimal supervision is to be assumed. 

In the UK, the ASTRAEA (Autonomous Systems 

Technology Related Airborne Evaluation and Assessment) 

programme was launched with the intention to develop the 

technology that would make autonomous UAV flight within 

civil airspace possible. ASTRAEA is a £32 million civil 

programme led by an industrial consortium incorporating 

Agent Oriented Software, BAE Systems, EADS, Flight 

Refuelling, QinetiQ, Rolls-Royce and Thales UK, working 

with leading academics and supported by investment from the 

DTI, Welsh Assembly Government, Scottish Enterprise and 
regional development agencies covering the North West, 

South East and South West of England. 

Within the ASTRAEA programme, our group has 

focused on the development of technologies for the 

Propulsion subsystem. We particularly considered the case of 

Gas-turbine Engines, due to familiarity with related problems 

and the complexity of the problem space. When introducing 

autonomy, the main challenge related to this subsystem is 

Health Management. While automatic control systems have 

been developed for decades and are fully capable of ensuring 

smooth engine operation in normal situations, long-term 

mitigation actions to be taken after the occurrence of faults are 
decided by the pilot in current systems. Using Failure Modes 

Effect and Criticality Analysis (FMECA) data provided by 

Rolls-Royce, our industrial partner, we first developed a 

Prognosis framework that allows to quantitatively estimate the 

effect of a fault. Then, we used Intelligent Agent technology 

to build a Multi-Agent System capable of devising fault 

mitigation plans using the Prognosis information. The entire 

system (which will be referred to as the “Planner” from now 

on), comprising the Prognosis framework and the fault 

mitigation Planning Agents, was then tested in a simulated 

environment in order to demonstrate its ability to properly 

assess faults and propose effective mitigation plans. 

At present, a consistent amount of research is dedicated to 

new Fault Detection and Isolation (FDI techniques for aircraft 
engine (Kobayashi and Simon, 2003, and Austin et al., 2004). 

This research focuses heavily on the Detection, Isolation and 

Prognosis of faults, and the outputs are generally represented 

by warnings to the pilot or to ground maintenance. This paper 

aims instead at introducing a system that can use the output of 

a FDI system in order to determine the course of action that an 

autonomous UAV should follow after a fault is detected. This 

task is usually left to the judgement of the pilot, but similar 

functionality is to be included in a truly autonomous UAV. 

The paper presents a Fault-Prognosis and Fault Mitigation 

system, based on the integration of conventional technologies 
(for the Fault Prognosis part) and unconventional ones 

(Cognitive Intelligent Agents are used for Fault Mitigation). 

The system is tested in a simulated environment and 

simulation results are included. 

The paper is organized in three main sections; following 

this introduction (section 1), in section 2 the requirements for 

the Planner will be introduced; in section 3, the details of the 

system implementation will be covered; in section 4, the 

simulation environment will be presented together with 

simulation results; finally, a conclusions and future work 

section is placed in the end.  

 
 

2. Propulsion subsystem: what is needed when the 

Pilot is out-of-the-loop 
 

The Propulsion subsystem of an aircraft is the system 

which provides the thrust for forward movement and 

generates the electricity needed by other on-board subsystems 
and actuators. There are two main types of propulsion 

systems: alternative engines (usually comprising an Otto cycle 

engine and an alternator) and jet engines (with the typical 

layout of air inlet, compressor, combustion chamber, turbine 

and exhaust nozzle). For this study, we focused exclusively on 

jet engines, since these are the main product of our industrial 

partner and are more likely to be used within long endurance 

UAVs. 

At the current state of technology, jet engines are 

equipped with Full Authority Digital Engine Controllers 

(FADECs), which are basically computer systems that control 
and monitor the state of the engine using various sensors and 

actuators and digital signal processing (DSP). FADECs are 

usually capable of detecting unusual or dangerous running 

conditions of an engine (such as a surge or an airflow stall) 

and perform immediate reversionary action to counter these 

conditions. These actions are fully automated, since they can 

happen in the timescale of tens of milliseconds, so that the 

pilot would not be able to react in time. However, when such 



an event occurs, the pilot gets a warning through his 

instrumentation. 

Usually, a FADEC can detect several other types of 

anomalies that do not represent an immediate risk to the 

engine but are rather general hints of deteriorating engine 

performance. In such cases, the pilot would receive a warning 

through the instrumentation and the event would be recorded 

for ground inspection. A pilot could also detect unusual 

behaviour of the engine. In any case, the pilot will then use 

his experience and knowledge in operating the specific 

aircraft and engine configuration to determine the course of 

action. 

When the pilot is taken out-of-the-loop, it is particularly 
this type of decision-making which is mostly affected. In fact, 

there is a great level of uncertainty related to such corrective 

action, and the judgement of a pilot is usually driven by a 

mixture of expert knowledge and experience that is very 

difficult to recreate in a computer system. While the 

mitigating actions for specific faults such as a surge are 

straight-forward decisions (fault is detected  mitigating 

action is taken), decisions about the course of action to take in 

the case of uncertain faults and in general non-severe 

propulsion subsystem anomalies are influenced by many 

factors and in general will fall under the realm of multi-
objective optimization (since usually decisions involve a 

trade-off between various aspects of the mission). In fact, 

such decisions are influenced by not only the situation of the 

propulsion subsystem, but also the general condition of the 

aircraft and knowledge about the current state of the mission. 

It is understood that a UAV which can fly in civil 

airspace must be able to make correct decisions on the 

occurrence of a fault, so as to ensure safety of other aircraft 

and on-ground structures at all times. Our aim is therefore to 

develop technology that will allow a fully autonomous UAV 

to make such correct decisions involving the propulsion 

subsystem. The resulting system has to be fully interfaced 
with the UAV supervisory authority and has four main 

functions: Fault Detection, which is the ability to detect 

anomalies in engine operation using sensor data; Fault 

Isolation, which is the ability to fuse information from Fault 

Detection to derive a Diagnosis of the current engine 

situation; Fault Evaluation, which is the ability to prognose 

the escalation of fault to higher levels of criticality and 

evaluate the effect of a fault in terms of airframe operations; 

Fault Mitigation, which is the ability to counteract a fault by 

performing various types of reversionary action, such as 

placing limitations on engine usage or demanding an engine 
shutdown and relight. 

For the purpose of this project, we focus exclusively on 

Fault Evaluation and Fault Mitigation. We are going to 

consider Fault Detection and Fault Isolation to have already 

been achieved, and the output of the Fault Isolation function 

will basically constitute the main input for the functions 

which we will develop. Fault Detection and Fault Isolation are 

considered important for all types of engine-aircraft 

configuration, and great effort is already spent within industry 

in improving systems that perform those functions. The 

system we propose is based on a FMECA database provided 

by Rolls-Royce; we used a representative subset of the 
database, in order to focus on the development of the 

technology rather than the implementation within a real 

system (proof-of-concept). The Planner system is modelled 
 

Figure 2. Screens of Visual Interface 
 

 



using the 

Simulink 

software tool as a 

basis; other 

technologies 

(Soar Intelligent 

Agents) are 

integrated within 

Simulink, as is a 

visual interface 

that allows to 
fully control the 

execution of 

simulations. 

Although it can be adapted to other cases, the system is 

configured to handle the case of a twin-engine UAV 

configuration. An input interface was developed, allowing 

injection of faults at different severity stages, along with 

thrust demands from the UAV supervisory authority. Inputs 

can come in two different formats: as manual input or as 

recorded input. Manual input is mainly used for demonstration 

purposes; a dedicated visual interface (Figure 2) was 
developed using NI LabView software, and is fully integrated 

with the Planner system model. The visual interface also 

shows the output in an easily understandable format, without 

the use of graphs. Recorded input takes the form of pre-

prepared files that take the system through a series of different 

input conditions, and are mainly used during simulations. In 

the case of recorded input, data is also recorded in data files 

for further analysis. The FMECA database subset models a 

total of 12 realistic faults; many of these faults can escalate 

through different severity stages, for a total of 28 possible 

fault input conditions for each engine. It is assumed that a 

single engine will only ever be in one of these states – in case 
of multiple faults, it is assumed that only the most critical will 

be addressed by the system. However, it is possible to inject 

separate faults into the two engines, leading to a total number 

of fault input combinations of 841 (including no-fault states). 

Within this project, we always assume the presence of a 

UAV supervisory authority, which is supposed to provide 

additional input for the Planner, represented by the total 

engine thrust demand and thrust asymmetry limits. Thrust 

asymmetry is calculated as (Tl-Tr)/(Tl+Tr), where Tl and Tr are 

the thrust demands in the left and right engines respectively 

(see Figure 3); the supervisory authority inputs an allowed 
range for asymmetry, for example -0.5/0.5. 

We make the assumption that the supervisory authority 

will possess the situational awareness needed to make the 

final decision regarding the course of action to take. Based on 

this assumption, the Planner system in practice generates a list 

of different reversionary action plans, ranging from the 

“optimal” plan (the best plan from the point of view of the 

engine subsystem) to the “do-nothing” plan (which basically 

ignores the fault). The number of generated plans is dependent 

on fault criticality and additional plans between the two 

extremes present “middle” options that are a trade-off. The 

Fault Evaluation algorithms are used to give an estimate of 

how effective a plan will be in mitigating the fault. The plans 

are then sent to the supervisory authority, together with the 

prognosis results from the Fault Evaluation algorithms. The 

authority can then decide which plan to apply, combining the 

data sent by the Planner system with its situational awareness. 

Overall, the Planner system we propose (which will be 

thoroughly described in Section 3) takes Fault Isolation data 

as input and then develops the Fault Evaluation and Fault 

Mitigation functions, which are in current Propulsion systems 

completely delegated to the pilot (whereas Fault Detection 

and Isolation are already automated, at least partially, 
although they are extremely complex tasks in their own). The 

next section will describe the algorithms and software 

technology that we employed to achieve this functionality in 

the Planner system. 
 

 

3. Propulsion Health Management System: Prognosis 

Framework, Agents 
 

“Propulsion Health Management System” is a more 

complete definition of the Planner system that has been 
introduced in the first two sections. In this section, the system 

will be described in detail. 

The system was designed using Simulink as the main 

development tool. The main architecture is modelled in 

Simulink, and non-Simulink modelling tools are implemented 

within the architecture as S-Functions. The architecture 

relative to a single-engine configuration is described in 

(Gunetti et al, 2008), although it has been complemented by 

new functions since then. 

Within the Planner system, three major subsystems can 

be identified: the Prognosis Framework, the Single-Engine 
Planner Agent (SEPA) and the Multi-Engine Manager Agent 

(MEMA). Figure 4 represents the top-level architecture of the 

Planner; the two cyan blocks represent the two engines, while 

the yellow block represents the MEMA. As can be seen in 

Figure 5, each of the engine blocks contains the Prognosis 

Framework (yellow and orange blocks) and SEPA (blue 

block) relative to that engine. 

 

 
Figure 3. Thrust asymmetry scheme 

 
 

 
Figure 4. Top-level Planner architecture 
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While the Prognosis Framework is based on standard 

control systems modelling techniques, the SEPA and MEMA 

components are based on Intelligent Agents. Intelligent agents 

are a new paradigm in the development of software 

applications (Jennings and Wooldridge, 1998) and are 

designed to address the need for flexible and autonomous 

computer systems. This technology is still at an early stage; it 

has been exploited thoroughly in certain areas of application 

(like internet search engines), but its use in other areas of 

software engineering is restricted at best. In fact, even 

agreement on the definition of IA is not universally accepted 

among computer scientists. A popular definition, which we 

take as our own point of view, is that “an Agent is a computer 
system situated in some environment, and that is capable of 

autonomous action in this environment in order to meet its 

design objectives” (Wooldridge, 1999). Furthermore, we can 

say that an Intelligent Agent is one that is capable of flexible 

autonomous action, where flexible implies reactivity (ability 

to understand the environment and react to its changes), 

proactiveness (goal-oriented behaviour) and social ability 

(ability to interact with other agents). 

The use of Intelligent Agents was one of the key elements 

to this project, because of a growing interest in the 

commercial application of this technology. In particular, 

results form the project will help in determining whether 
Intelligent Agents are ready for commercial application in the 

aerospace market, which is conservative in nature but also 

naturally open to new technologies (Dorfman, 1999). 

We now proceed to describe each of the subsystems in 

detail. 

 

3.1 Prognosis Framework 

The Prognosis Framework performs the Fault Evaluation 

function described in section 2, which means that it must be 

able to complement Fault Diagnosis with two types of data: a 

Prognosis of how the fault can be expected to escalate based 
on engine usage and FMECA data (Fault Escalation 

Prognosis), and a Prognosis of how the airframe is affected by 

the fault (System-Level Prognosis). 

Fault Escalation Prognosis is basically a direct 

implementation of the data extrapolated from the FMECA 

database. It uses a three-dimensional look-up table to 

prognose how a fault is expected to escalate in time. Each 

modelled fault is classified in a varying number of severity 

stages and the Fault Escalation Prognosis block estimates the 

timescale after which the fault can be expected to escalate to a 

higher severity stage. 

The key point is that the Escalation time is heavily 

influenced by engine usage, so the time to escalation generally 

increases as thrust demand reduces. This is the reason for 

using a 3D look-up table, as it necessary to provide escalation 

estimates for different running conditions. The output of the 

look-up table is the “time to escalation” estimate for the 

current stage of the fault towards more critical stages. 
Both the fault severity stages and the timescale values are 

discretized. Table 1 lists the currently modelled faults and 

their stages, while Table 2 indicates the timescale 

discretization we used. Obviously, Fault Escalation Prognosis 

is useless for faults that have reached their final stage, but the 

real value of the entire Planner system is evident before a fault 

reaches the final stage. In fact, in this 

case the Planner will generate 

reversionary action plans that will 

maximise the time to escalation for a 

fault, while when the final stage is 

reached the plan is usually a very 
straight-forward action. 

System-Level Prognosis is 

instead aimed at extracting useful 

information from the Fault Diagnosis 

input and the Fault Escalation 

Prognosis. From a theoretical point of 

view, it provides an answer to the 

question: “How will this engine fault affect the operation of 

the entire UAV?”. The concept behind this is the fact that a 

UAV supervisory authority is not concerned about the actual 

nature of an engine fault, but only about its effects on UAV 
capabilities. As an example, the supervisory authority is not 

interested in knowing that the outer annulus in the low-

pressure compressor casing is cracked, but it needs to know 

that this will cause a reduction in actual thrust that is 

dependant on how severe the crack is. This is the rationale 

behind the System-Level Prognosis function. 

 
Figure 5. Engine subsystem 
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Table 3 lists the 7 different types of System-Level Effects 

(SLEs) that have been identified for the purpose of this 

project. Some of these can evolve through subsequent stages, 

which are discretized as is the case with fault severity stages, 

leading to a total of 12 

SLEs. The SLEs are 

directly derived from the 

FMECA database. The 

system uses a simple two-

dimensional look-up table 

to calculate the SLEs 
related to a fault, since the 

relationship between fault 

and SLE is straight-

forward.   

The System-Level Prognosis function also performs 

another calculation: it assigns a Criticality level to the current 

detected fault and also to the relative escalation stages that are 

prognosed. These Criticality levels provide an immediate way 

of classifying the severity of a fault, and are discretized as per 

common practice within FMECA databases. Table 4 lists 

Criticality levels and their definitions. 
Overall, the output of the Prognosis Framework consists 

of three vectors, reporting respectively Fault Escalation 

Prognosis, System-Level Effects and Criticality levels. The 

Framework operates on single engines, so that three of these 

vectors will be generated for each engine, just as Fault 

Diagnosis input is separate for each engine. 

 

3.2 Single-Engine Planner Agent (SEPA) 

The Single-Engine Agent Planner or SEPA is the agent 

entity which performs the Fault Mitigation function related to 

a single engine. Its task is to develop reversionary action plans 

that address a fault from the point of view of a single engine. 
Once a fault is detected and evaluated through the Prognosis 

Framework, the SEPA proposes two courses of action: a “do-

nothing” plan and an 

“optimal” plan, which 

is the best action 

course for the engine 

regardless of what is 

the situation in the rest 

of the Propulsion 

system or the entire 

UAV. It is then the 
task of MEMA (subsequently described) to contextualize the 

plans and derive alternative ones. 

The SEPA has been thoroughly described in a previous 

paper. Therefore, in this section we will only introduce its 

main characteristics; for more details, please refer to (Gunetti 

and Thompson, 2008). 

The SEPA is modelled using the Soar Intelligent Agent 

tool. Soar is the computational implementation of a cognitive 

architecture which has been developed at the University of 

Michigan since the late 1980s (Soar Technology Inc., 2002). 

It provides a robust architecture for building complex human 

behaviour models and intelligent systems that use large 
amounts of knowledge. At a high level of abstraction, it uses a 

standard information processing model including a processor, 

memory store, and peripheral components for interaction with 

the outside world. At a low level of abstraction, Soar uses a 

Perceive-Decide-Act cycle to sample the current state of the 

world, make knowledge-rich decisions in the service of 

explicit goals, and 

perform goal-

directed actions to 

change the world in 

intelligent ways. The 

distinguishing 

features of Soar are: 

parallel and 
associative memory, 

belief maintenance, 

preference-based deliberation, automatic sub-goaling, goal 

decomposition and adaptation via generalization of 

experience. A Soar agent is based on its production rules; 

these represent long-term knowledge and are practically the 

program code for the agent. Production rules are in the form 

of if-then statements, where an action is performed only if the 

conditions are met. When the conditions of a production are 

met, the production is said to fire; as Soar treats all 

productions as being tested in parallel, several productions can 
fire at once, and this can happen at different levels of 

abstraction, giving the Soar agent natural pro-active behaviour 

(the agent is inherently aware whether the conditions to apply 

certain production rules are still valid). Short-term knowledge 

is instead constituted by external input, and appropriate 

functions must be developed to interface the Soar agent with 

its environment. 

A dedicated interface was developed in order to 

implement Soar agents within the Simulink model of the 

Planner system. This is achieved by executing the Soar kernel 

as an S-Function within the model. Multiple agents can run at 

the same time, and in fact two instantiations of the SEPA are 
executed, each connected to a single engine. 

The SEPA core rules implement a decision making 

scheme that uses data generated by the Prognosis Framework 

to propose reversionary action plans. The SEPA enters 

different states depending on the current input and goes 

through a stepped decisional tree in order to derive a full 

action plan. The plan consists of a proposed thrust value for 



the engine (usually limited to some degree if a fault is 

detected), a “do-nothing” thrust value and three binary 

indicators that complement the plan by indicating other 

possible reversionary action. 

Table 5 lists the possible states that the SEPA can enter 

when generating the most important part of the plan, which is 

the proposed engine thrust value. 

 

 

3.3 Multi-Engine Manager Agent (MEMA) 
Once a reversionary action plan is generated for a single 

engine by the SEPA, this plan needs to be put in the context of 

the entire propulsion system. This involves considering the 
situation of the other engine at first, and then the demands that 

are coming from the UAV supervisory authority. 

The MEMA generates at first a “do-nothing” plan and an 

“optimal” plan, which are basically a symmetric thrust 

distribution and an asymmetrical one respectively. The 

asymmetric thrust distribution usually found in the optimal 

plan is a consequence of the usage limitations that are placed 

on a faulty engine. In practice, the plan will usually involve 

following the advice from SEPA regarding the faulty engines, 

and then compensating a decrease in thrust on that engine by 

increasing the thrust on the other engine. The “optimal” plan 

will always keep the usage limits requested by SEPA, whereas 
the “do-nothing” plan disregards these and just provides a 

symmetrical thrust distribution that matches the total engine 

thrust demand by the supervisory authority. It is important to 

understand that the optimal plan does not guarantee that the 

total thrust provided will be meeting the total demand. 

The MEMA then eventually generates alternative plans 

that are a trade-off between the optimal and “do-nothing” 

plans. The number of alternative plans is dependant on the 

Criticality of the faults being addressed, and the total number 

of plans ranges between two (Criticality Level 4, no 

alternative plans) and five (Criticality level 1, three alternative 

plans). 

Since the system is meant to address the situation where 

both engines present a fault, a series of decisional behaviours 
have been outlined. Depending on the state of SEPA on each 

engine (see Table 5), the MEMA enters a combined state, 

which is an abstraction of the type of action that must be 

taken, basically indicating whether one engine should get 

priority in Fault Mitigation or if it is instead advisable to 

simply decrease the total thrust demand. Table 6 represents 

the decisional matrix for the MEMA state, depending on 

SEPA state, and explains the meaning of MEMA states. 

In the end, the MEMA outputs a list of plans; each plan is 

represented by two thrust values, one for each engine. The 

plans are then sent to the supervisory authority, which has the 
final word on choosing the plan to be actuated. In order to 

make this decision, the supervisory authority needs an 

evaluation of the expected outcome of the plans. To obtain 

this, the proposed thrust levels are fed into the Fault 

Escalation Prognosis algorithms used in the Prognosis 

Framework; in this way, each plan can be presented to the 

supervisory authority together with an estimate of how the 

plan will affect the escalation timescale. The authority is then 

able to make a decision based on this data and other data 

situational awareness data that is not concerning the 

propulsion subsystem. 

As an example, let us consider the following case: while 
the total engine thrust demand is 70%, a fault at the first 

severity stage is detected on the right engine. At 70% thrust, 

the fault would escalate to the next severity stage in one hour 

time (timecode 6). The SEPA proposes a plan that reduces 

thrust on the faulty engine to 40%, thus the MEMA proposes 

an optimal plan with thrust distribution 40%-100%. This plan 

is evaluated to extend the escalation of the fault to 5 hours 

time (timecode 8). However, this means that the asymmetrical 

thrust coefficient is -0.43. Due to the low fault severity, only 

one alternative plan is generated, corresponding to a 55%-

85% thrust distribution (asymmetry coefficient -0.21) and an 
escalation timescale of 2 hours (timecode 7). These options 

are presented to the supervisory authority; we can assume that 

the supervisory authority has knowledge of a minor rudder 

fault that does not allow for an asymmetry coefficient greater 

than ±0.3, therefore excluding the optimal plan; however, it 

knows that the remaining mission time is between one and 

two hours, so the middle option is chosen since it represents a 

good trade-off, as the fault does not escalate before the end of 

the mission and the thrust is provided with an acceptable 

asymmetry. 

This is just an example of how the decision process might 

work for our proposed Planner system; the range of possible 
situations is much wider and largely different strategies will 

be adopted under different conditions, however the governing 

philosophy remains the same: mitigating faults by reducing 
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engine usage, while at the same time considering situational 

awareness that is not related directly to the Propulsion system. 

 

 

4. Simulation tests: Architecture and Results 
 

The Propulsion Health Management System was tested 

using a simulation environment, also modelled in Simulink. 

Within this environment, the system receives input including 
Isolated Faults and UAV supervisory authority commands, 

processes it and then outputs the plans together with their 

respective evaluation data. While most of the simulations stop 

here, where the output of the system is in a format that is 

meaningful only within this research, we have also performed 

simulations that included a real engine model. In this case, the 

plans are fed into a very simple decision-making algorithm 

that simulates the presence of the supervisory authority by 

choosing a plan among the proposed ones. The plan is then 

executed by feeding it into a twin-engine model, so that actual 

engine running parameters can be monitored. However, these 
engine models do not take account of the existence of a fault, 

so they are useful only in determining that the proposed plan 

can be realistically actuated by an engine. 

The results presented in this section are obtained from 

simulations that do not include an engine model. Simulation 

runs use files for input and output, so that pre-recorded input 

can be used and output can be recorded for later analysis. 

One type of simulation run is made assigning fixed 

demands from the supervisory authority and then inputting all 

of the 841 possible fault input combinations; this type of 

simulation is useful in proving the determinism of the system 
and verifying that it always responds within certain 

constraints. Other simulations involve verifying the behaviour 

of the system when demands from the supervisory authority 

are changing. 

Finally, since evaluating the correctness and 

appropriateness of generated plans can be a very complex 

task, manual simulations were also performed. In these cases, 

a set of input configurations was determined randomly and 

then the behaviour of the system verified directly by a human 

user, which could evaluate the performance of the various 

components of the system. Such tests made large use of the 

LabView visual interface, which allows for a clear and 
immediate understanding of the results. 

 

4.1 Full fault input combination tests 

This is the type of test where the demands from the 

supervisory authority are set and the fault input spans all the 

841 possible combinations. The simulation involves changing 

the fault input at every second of simulation. Figure 6 shows 

part of the results for such a test; in this case, the total thrust 

demand is set to 70% (which would normally require 70% on 

each engine). It is possible to note that the “do-nothing” plan 

is stable at 70%, while the “optimal” plan varies depending on 
the type of fault. The number of generated plans also changes, 

ranging from cases where only two plans are present to cases 

with five generated plans. It is also possible to note how the 

non-faulty engine is used to compensate for proposed 

limitations to the faulty engine, but in many cases cannot 

guarantee the same amount of thrust since it cannot go over 

100%. 

 

4.2 Platform input variation tests 

This is a type of test in which a specific fault condition is 

fixed and the behaviour of the system on the occurrence of 

changes in the demands from the supervisory authority (or 

platform) is monitored. Figure 7 shows the results for such a 

test; in this case, an outer annulus crack fault at the second 

severity stage is injected in the left engine and total thrust 

demand is varied in time. The number of generated plans in 
this case is four, and the fault is addressed using a limitation at 

20% thrust. Note that for total thrust demand equal or less 

than 20%, four plans are still generated but they converge. 

 

4.3 Manual tests 

This type of tests is very simple in concept, just involving 

manual input through the interface and visual verification of 

the output. However, due to the complexity of the output data 

of the Planner system, these manual tests cannot easily be 

replaced with automated tests, since the analysis of the results 

involves evaluating a huge amount of data and the 
relationships between certain values. 

For this reason, a representative set of input 

configurations was chosen and visually verified by a human 

user in order to verify the correctness and appropriateness of 

generated plans. Going back to Figure 2 (section 2), we can 

see capture screens for the visual interface (input and output) 

for one of these cases. In particular, a case with 80% total 
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thrust demand and different faults on both engines is 

presented. Looking at the first output screen, it is possible to 

notice that the fault on the left engine is expected to escalate 

in timecode 4,while the fault on the right engine is expected to 

escalate in timecode 7. The faults present different SLEs that 

are also expected to escalate when the fault reaches the 

highest severity stage. The fault on the left engine is classified 

at Criticality Level 2 (Severe) while the fault on the right 

engine is classified as Negligible; however, both faults are 

prognosed to escalate to Criticality Level 1 (Catastrophic), 

although they will do so at different times. The SEPAs 
generate that place a 20% limit on the left engine and a 50% 

limit on the right engine. The MEMA decides to follow the 

“risk-situation” protocol, due to current low level of 

Criticality on the right engine. This involves actually 

increasing usage on this engine, since priority is given to 

addressing the other fault. The four generated plans are 80%-

80% (do-nothing), 20%-100% (optimal), 40%-100% 

(alternative 1) and 60%-100% (Alternative 2). Note that only 

the Alternative plan 2 does not require a reduction of total 

thrust provided. 

The second output screen analyzes plans in detail, 
providing the thrust asymmetry and thrust deficiency for each 

plans and showing the estimated effects on fault escalation. It 

is possible to note that the limitations on the left engine 

provide a substantial benefit (from timecode 4 to timecode 7 

for the optimal plan), while the added usage on the right 

engine does not involve a reduced time to escalation (although 

in reality there will be a reduction, this is not big enough to be 

captured using the discretized timescale values).  

 

 

5. Conclusions 
 

This paper presents a system that is designed to maximize 

the advantages provided by advanced techniques for Gas-

Turbine Engine Fault Detection and Fault Isolation. This is 

obtained by automating the Fault Evaluation and Fault 

Mitigation functions, which are in current systems delegated 

to the pilot. The system is designed to be useful in improving 

autonomous UAV safety by strengthening situational 

awareness through a detailed and meaningful analysis of the 

state of the engine and providing reversionary action plans 
from which the UAV supervisory authority can choose, 

considering general airframe situation in addition to engine 

situation. The system is described in detail and examples of 

simulation results are presented. The system is based on a 

novel Systems Engineering approach which integrates Soar 

Intelligent Agents and conventional control systems 

techniques. This approach was proven to be feasible, but 

unable to bring significant advantages within this application 

field. In fact, a comparison with a similar “conventional” 

system was performed, and the only clearly perceived 

advantage was a faster development time. This is offset by the 
many issues that arise when trying to apply unconventional 

software like Soar within a safety-critical application field 

such as Gas-Turbine Engines. It is now planned to use the 

same Systems Engineering approach within the larger 

problem of UAV Mission Management, which offers 

significantly more degrees of freedom. It is hoped that the 

higher complexity of the problem will allow to bring forward 

more significant advantages in the use of the integrated Soar 

approach, since Soar agents should scale better in terms of 

software complexity and hardware requirements when 

problem complexity arises. 
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