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Abstract 
Our long-term goal is to develop autonomous robotic systems that 
have the cognitive abilities of humans, including communication, 
coordination, adapting to novel situations, and learning through 
experience. Our approach rests on the integration of the Soar 
cognitive architecture with both virtual and physical robotic 
systems. Soar has been used to develop a wide variety of 
knowledge-rich agents for complex virtual environments, 
including distributed training environments and interactive 
computer games. For development and testing in robotic virtual 
environments, Soar interfaces to a variety of robotic simulators 
and a simple mobile robot. We have recently made significant 
extensions to Soar that add new memories and new non-symbolic 
reasoning to Soar’s original symbolic processing, which improves 
Soar abilities for control of robots. These extensions include 
mental imagery, episodic and semantic memory, reinforcement 
learning, and continuous model learning. This paper presents 
research in mobile robotics, relational and continuous model 
learning, and learning by situated, interactive instruction.  

Introduction   

Our goal is to support the creation of robotic agents that 
have the cognitive capabilities of humans. General 
intelligent entities are distinguished by their ability to 
pursue a wide variety of goals embedded in many different 
problem spaces and to use large bodies of different types of 
knowledge in many ways – to assess the current situation 
in the environment, to react to changes in the environment, 
to deliberately select actions in order to pursue goals, to 
plan future actions, to predict future states, to reflect on 
past behavior in order to improve future performance, and 
to adapt to regularities in the environment, all in real time. 
Approaches such as MDPs work well for specific tasks 
where there are limited and predictable numbers of 
features; however, they do not scale to complex behavior 
and planning; nor do they address how an agent efficiently 
manages its memory of situations, events, and the 
structured knowledge it acquires through experience. 

Our approach is to develop adaptive robotic agents using 
a cognitive architecture (Langley, Laird, Rogers 2009) that 
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is integrated with perceptual and motor systems. The 
cognitive architecture provides the underlying knowledge 
representations; memories to hold both short-term and 
long-term knowledge; processes for decision making, 
accessing memory, and learning; and interfaces that 
support the transductions of continuous perception into 
symbolic structures and discrete motor commands into 
continuous control systems. The same architecture is used 
across all tasks, as is task-independent knowledge that 
supports general capabilities such as planning. Domain 
knowledge specializes behavior to specific tasks so that a 
single agent, encoded with knowledge for many domains, 
can pursue a variety of tasks and with learning, an agent 
can dynamically extend the tasks it performs. Each new 
task or domain does not require starting from scratch – task 
knowledge must be added, but the architecture and general 
knowledge is shared across all tasks. A cognitive 
architecture also provides the focal point for integration of 
research on perception, control, motor systems, and 
cognition. Research into more advanced capabilities, such 
as coordination, metacognition, and advanced learning 
mechanisms builds on those core capabilities.  

We use the Soar cognitive architecture (Laird 2012) for 
our research in cognitive robotics. Soar was the first 
cognitive architecture integrated with real robots and has 
been used in multiple robotic agents (Laird et al. 1991; 
Laird & Rosenbloom 2000; Benjamin, Lyons, & Lonsdale 
2004; Benjamin, Lonsdale, & Lyons 2006; 2007). 
Recently, we made significant extensions to Soar, many of 
which enhance Soar’s ability to support cognitive robots.  

In this paper, we start with an overview of Soar, 
emphasizing the recent extensions to Soar and how the 
cognitive components of Soar interface to sensors and 
motor systems. We then present some of our current 
research projects where we are expanding the abilities of 
Soar robotic agents. We start with a Soar agent that 
controls a small mobile robot and performs missions in a 
combined simulated/real world domain. This agent 
demonstrates how many of the mechanisms in Soar 
provide capabilities for cognitive robotics. We then 
describe the integration of SLAM so that the agent builds 
an internal model of the environment from laser-range 
data. The following section describes research on learning 
continuous and relational models from experience. Finally 



we describe the use of situated interactive instruction, 
where a human can use language to dynamically extend an 
agent’s knowledge and skills through instruction.  

Basics of the Soar Cognitive Architecture 

Figure 1 shows a structural view of Soar in terms of its 
primitive memories (square-edged modules), processes 
(round-edged modules), and their connections (arrows). 
Near the bottom of the figure is Soar’s task-independent 
Spatial Visual System (SVS; Lathrop, Wintermute, & 
Laird 2011) that supports interaction between with the 
continuous representations required for perception and 
motor control and the symbolic, relational representations 
in Soar. The continuous environment state is represented in 
SVS as a scene graph composed of discrete objects and 
their continuous properties. The identity of objects and 
extracted symbolic features are added to symbolic working 
memory; however, spatial relations are extracted only as 
requested: the Soar agent can query the scene graph with 
binary spatial predicates such as “left-of(A, B)” or 
“contacting(C, D)”. Thus, the set of predicates is task-
independent and fixed in the architecture, but decisions 
about which predicates to extract are determined by task-
specific agent knowledge.  
 In additional to extracting a symbolic description of the 
environment, SVS transduces discrete actions into 
continuous control of the motor system. SVS not only 
supports action in the external environment, but also action 
on its internal representation of perception. This allows an 
agent to use mental imagery (Kosslyn, Thompson & Ganis 
2006; Wintermute, 2009) where the agent can perform 
hypothetical reasoning on a continuous representation. The 

continuous controllers can support arbitrary behavior, such 
as nonholonomic control of a car, using modern path 
planning algorithms, such as RRT (Wintermute 2009). 
Planning at the continuous level uses models of continuous 
environment dynamics learned online and incrementally 
(Xu & Laird 2011). These capabilities overcome one of the 
major weaknesses of pure symbolic systems that are 
prisoners to their symbolic abstractions. Soar can 
reason/plan using both symbolic (described below) and 
non-symbolic structures. When planning with the non-
symbolic structures, the agent can monitor and control the 
non-symbolic reasoning by extracting relevant symbolic 
predicates. This approach has proved successful across 
many complex, continuous domains where pure symbolic 
reasoning is inadequate (Wintermute 2010).  

On the symbolic side, working memory maintains 
relational representations of current and recent sensory 
data, current goals, and the agent’s interpretation of the 
situation given its goals. Working memory buffers provide 
interfaces to Soar’s long-term memories and motor system. 

Semantic memory is Soar’s permanent store of its global 
world model, and corresponds to the long-term declarative 
memory in ACT-R (Anderson et al. 2004). Knowledge is 
retrieved from semantic memory via deliberate associative 
retrieval. Although knowledge accumulates in this memory 
as new information is discovered, it can be initialized from 
existing knowledge bases. Soar also has an episodic 
memory that stores snapshots of the agent's experiences. 
Episodic memory provides an agent with the ability to 
reflect on prior experiences and use them to guide future 
behavior and learning. Episodic memory is often 
overlooked in cognitive systems, but is critical for 
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providing access to contextualized experiences. Most robot 
architectures ignore semantic or episodic knowledge, and 
have only limited, task-dependent long-term declarative 
memories. Agents developed in these architectures are only 
in the “here and now” and do not have the sense of history 
made possible by these additional memories.  

Procedural memory contains Soar's knowledge of how 
to select and perform discrete actions, encoded as if-then 
rules called productions. Productions fire in parallel 
whenever they match working memory and act as an 
associational memory for procedural knowledge. 
Productions support the proposal, evaluation, selection, 
and application of operators. Operators are the locus of 
decision making in Soar. Operators are proposed (created 
in working memory) by rules based on the current context. 
Additional rules evaluate the proposed operators, creating 
preferences. This evaluation knowledge can be tuned by 
reinforcement learning if reward is available, either from 
the environment or from internal sources (Marinier, Laird 
& Lewis 2008). The preferences are analyzed by a fixed 
decision procedure and if a single operator is 
unambiguously preferred by the evaluation knowledge, it is 
selected for the cycle. If not, an impasse occurs and a 
substate is created in which more deliberate reasoning can 
occur, including task decomposition, planning and search 
methods.  

Once an operator is selected, rules sensitive to its 
selection perform its actions by modifying working 
memory. An action can be an internal reasoning step, a 
query to SVS, a retrieval from episodic or semantic 
memory, or an external motor command. Operators in Soar 
correspond conceptually to STRIPS operators; however, in 
Soar, the component parts of operators (preconditions and 
actions) are decomposed into individual rules, providing 
disjunction preconditions and disjunctive conditional 
actions. In addition, Soar has task-dependent rules for 
operator evaluation, providing context-dependent and fine-
grain control of operator selection and application.  

In Soar, complex behavior arises not from complex, 
preprogrammed plans or sequential procedural knowledge, 
but instead from the interplay of the agent’s knowledge 
and the dynamics of the environment on each primitive 
cycle. It is the speed of that cycle that determines agent 
reactivity. Based on our experience and informed by the 
human cognitive system, the maximum time per cycle 
must be below 50-100 msec. for an agent to maintain 
reactivity. Unfortunately, in most cognitive architectures 
the basic cognitive cycle can be much longer, which 
greatly complicates their integration with real time 
perceptual and motor systems. In contrast, Soar’s cycle is 
consistently below 50 msec. and averages below 1 msec. 
on commodity computer hardware (Laird et al. 2010). 

Mobile Robot Control in Soar 

In this section, we describe how Soar controls a small 
custom-built robot that uses a mixture of real-world and 
virtual sensors to navigate an office building. The robot 

can move forward and backward, and turn in place. It has a 
LIDAR mounted in the front that gives distances to 180 
points throughout 180 degrees that it uses for obstacle 
avoidance. The robot can sense its own location based on 
odometry, and it can also sense the room it is in, the 
location of doors and walls, and different types of objects. 
These additional sensors are simulated, and when 
controlling the real robot, the agent receives a synthesis of 
real and simulated sensor data. During a run, there are 
approximately 150 sensory data elements. The Soar agent 
interfaces to the robot through the Lightweight 
Communications and Marshalling (LCM) library for 
message passing (Huang, Olson, & Moore, 2010). 

The evaluation described below uses a simulation 
because of the difficulties in running long experiments in 
large physical spaces. The simulation is quite accurate and 
the Soar agent used in the simulation is exactly the same as 
the agent used to control the real robot.  

The agent performs multiple tasks, including exploring, 
cleaning rooms, and patrolling. A typical mission will 
involve initial exploration, followed by room cleaning, and 
then patrolling once all rooms are cleaned. Figure 2 shows 
a partial trace of the agent’s explorations at the beginning 
of a mission. In room cleaning, the agent picks up and 
moves specific types of blocks (such as square green 
blocks), one by one, to a storage room. The agent 
dynamically constructs a map of the rooms, doorways, and 
their spatial and topological layout, as well as the locations 
of all blocks, as it encounters them during exploration.  

Figure 2. Partial trace of agent exploration. 



The agent uses dynamic task decomposition and 
abstraction planning as needed. For example, when 
attempting to clean up by moving a block to the storage 
room, the agent internally searches for a path to the storage 
room using the map knowledge the agent has built up 
through experience. The search is a variant of A*. The 
internal search is performed within the agent, using rules, 
spread across multiple cycles. Over time, planning is 
converted into reactive selection knowledge through Soar’s 
chunking learning mechanism.  

As part of our research, we have investigated the costs 
and tradeoffs of maintaining topological map information 
in working memory versus semantic memory, as well as 
using episodic memory for accessing historical data, such 
as the most recent locations of specific objects (such as 
when was the last time the agent saw a blue block). One 
issue is that it is easier and faster to access map data if it is 
maintained in working memory instead of semantic 
memory because semantic memory requires explicit 
retrievals. However, the time to access and reconstruct 
prior episodes from episodic memory increases as working 
memory grows in size. Thus, there are tradeoffs in 
maintaining the map in working memory versus semantic 
memory. 

Figure 3 shows the results of an experiment where the 
robot explored the map in Figure 2, periodically accessing 
episodic memory to retrieve historical information. The x 
axis is time in seconds, where the agent runs for one hour 
(3600 seconds). The y axis is the maximum time for a 
processing cycle in msec. There are five sets of data. The 
first is from maintaining the map in working memory. This 
shows significant slowdown because of the growth in 
working memory and its interaction with episodic memory. 
The second is from maintaining the map in semantic 
memory but including task dependent knowledge to 
deliberately remove duplicate map information, which 
greatly decreases the average size of working memory and 
maintains reactivity. The next three data sets are agents 
where the map is also maintained in semantic memory, but 
where elements in working memory are automatically 

removed based on activation, which decays over time. The 
data sets differ in terms of the rate of decay. The graph 
shows that with a decay rate of .5, the automatic 
mechanism performs as well or better than the deliberate 
mechanism (decay rates higher than .5 cause the agent to 
thrash as it is unable to maintain sufficient internal state for 
planning).  

Extending Mobile Robot Control with SLAM 

In the previous section, the agent used its real sensory 
system only for obstacle avoidance, and depended upon a 
simulation to provide it with symbolic descriptions of its 
local topography. While ground truth data may be known 
within simulation, real world operation requires algorithms 
capable of processing the inherent error found within 
sensor measurements. In this section, we describe how we 
extended the agent by incorporating simultaneous 
localization and mapping (SLAM) into the agent, so that 
the agent builds up its own representations of rooms and 
doorways from scratch. Although one could imagine 
incorporating SLAM into SVS, in this case, a separate 
module builds up the appropriate data and then feeds it to 
working memory. Soar maintains control of the robot, and 
the SLAM process runs in the background as the robot 
moves through its environment.  

Our mapping system uses wheel encoders to provide 
movement information, and LIDAR to provide 
environmental information. In order to deal with 
measurement error inherent in both sensors, a solution to 
the least-squares SLAM formulation known as square root 
smoothing and mapping (SAM) is employed (Dellaert & 
Kaess, 2006). This algorithm provides the system with a 
state estimation of the robot’s movement throughout the 
environment. The sensor observations also provide the 
necessary data to detect gateways adjoining unique areas. 
Using the SLAM state estimation, a better approximation 
of the location of gateways can be retrieved and added to 
the SLAM map for future gateway data association. 
Additional algorithms were developed for finding 
doorways. Together, these algorithms allow for a 
topological representation of the environment to be built 
incrementally. A key feature of the algorithms is that they 
build up symbolic, topological descriptions of rooms and 
doorways, and are able to detect when two doorways are in 
fact the same one, just sensed from different rooms.  

Figure 4 show a trace of the agent as it explores a test 
environment generated via solving the SLAM problem. 
The poses of the robot (red) are connected via constraint 
edges (green) recovered through LIDAR scan matching. 
The ground truth movement of the robot is shown in 
yellow, whereas the raw odometry movement is in black.  
A detailed description of the underlying implementation is 
beyond the scope of this paper and available from Kinkade 
(2012). The software is based in part on the April Robotics 
toolkit provided by Edwin Olson.  
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This integration demonstrates how it is possible to use 
special-purpose sensor processing systems with Soar. 
Future work includes creating a tighter integration with 
SVS as well as investigating how map information  
maintained in the SLAM system can be more directly 
shared with the map representations in Soar.  

Learning Continuous and Relational Models 

In the robot domain described in the previous section, the 
agent was able to perform its tasks effectively by moving 
toward landmark values in its continuous state 
representation, such as when its relative bearing to a 
waypoint was close to 0.0, and using symbolic actions such 
as move forward and turn left/right. The agent’s procedural 
knowledge implicitly encoded a simple model of how the 
continuous state properties change under a certain action, 
e.g. turning left will lower the relative bearing to the 
waypoint. A more general agent must be able to perform in 
novel continuous domains where actions are continuous 
rather than discrete, and where the agent has no a priori 
knowledge of how these continuous actions change the 
state. In these cases, the agent can speed learning and 
improve the robustness of its behavior by learning a model 
of how continuous state properties change with continuous 
actions. We call these continuous models. 
 The success of the robot agent was also dependent upon 
its ability to plan at the abstract level of rooms and 
navigating between rooms. This abstraction reduced the 
plan space by orders of magnitude from the level of turning 
and driving. Furthermore, casting the world into symbolic 
relational structures allowed the agent to employ universal 
weak methods such as look-ahead search and means-ends 
analysis to solve the problem. Being able to reason at the 
abstract level requires not only a mapping from concrete 
continuous states into abstract symbolic states, but also a 
model of how the abstract state changes in response to 
actions. We call these relational models. 

 In this section, we describe how SVS learns continuous 
and relational models, how continuous models are used by 
a controller for generating continuous plans that implement 
relational actions, and how these components allow the 
agent to automatically learn and plan in relational 
abstractions. Figure 5 gives an overview of this system. 

Continuous Model Learning 

Formally, the continuous model is a function ݂ሺݔ, ሻݑ →  ,ݕ
where ݔ and ݕ vectors of real numbers representing the 
continuous properties of the starting and resultant states are 
encoded by the SVS scene graph, and ݑ is the continuous 
action. In the robot domain, the state vectors include the (x, 
y, z) coordinates of all objects as well as the robot’s 
velocity and rotation rates of the wheels. We assume that 
all properties that play a role in environment dynamics are 
observable (there is no hidden state). The robot’s 
continuous action ݑ is a pair of real-numbered motor 
voltages to the left and right wheels. 
 In the object-oriented spatial environments that SVS was 
designed for, objects often exhibit qualitatively distinct 
behaviors based on their interactions with other objects. 
For example, a ball flying through the air follows a 
parabola, but upon contacting the ground it abruptly 
changes to a bouncing trajectory. The continuous model 
our system learns is composed of a set of linear functions 
and a classifier that determines which function to use for a 
particular state. The linear functions capture the individual 
qualitative behaviors, while the classifier determines which 
behavior is being exhibited. Figure 6 depicts the prediction 
process. To make a prediction starting in state ݔ and taking 
action ݑ (), the model first calculates a spatial predicate 
description  () of the starting state  .ݔ is a vector of the 
values of all spatial predicates that can describe the 

Figure 6. Prediction with continuous model. 

Figure 5. Overview of models and abstraction. 

Figure 4. Trace of robot exploring rooms using SLAM. 



environment. A decision tree () in which the nodes test 
the values of single predicate classifies  into one of 
several qualitative behaviors. For example, states where a 
ball is in free-fall may be classified under one behavior, 
states where the ball is contacting the ground under 
another. Next, the linear function () associated with the 
behavior is used to predict precisely how ݔ will change in 
response to ݑ (). This two-level approach is similar to 
several existing systems (Quinlan 1992, Toussaint & 
Vijayakumar 2005). The important difference is that 
classification is based on position-independent spatial 
relationships rather than splitting the input space into 
contiguous regions, leading to more general models.  
 Model learning occurs in the opposite order. Given a 
training instance ሺݔ, ,ݑ  ሻ, the model learner first usesݕ
Expectation-Maximization to simultaneously determine 
which qualitative behavior generated the instance and also 
learn the parameters of the associated linear function. Once 
the instance is assigned to behavior q, the predicate 
description  of ݔ is calculated. The pair ሺ,  ሻ is then usedݍ
as a training instance for the decision tree classifier.  

Relational Abstraction and Model Learning 

Previously, we had described how the symbolic agent can 
query SVS’s scene graph for the truth values of spatial 
predicates such as “left-of(robot, block1).” This is the 
primary method of abstracting from continuous to 
relational state. 
 For a complete abstraction, the agent must be able to 
perform relational actions that can change the state. We 
define these relational actions to be changes to single 
predicate values, such as “Make contacting(A, B) true.” 
SVS has a controller module that operationalizes these 
relational actions into trajectories of continuous actions 
sent to the environment. For example, when the agent 
performs the relational action “Make contacting(robot, 
block1) true,” the controller will use greedy or random-tree 
search techniques to find a sequences of motor voltages 
that will drive the robot to block1. The controller uses the 
learned continuous models when performing these look-
ahead searches. Note that although relational actions are 
associated with single predicate changes, additional 
predicates may change as side effects, or the controller 
may fail to find a suitable trajectory, and no predicates will 
change at all. For example, executing “Make 
contacting(robot, block1) true” may result in making 
contacting(robot, block2) false.  
 With the abstraction in place, the agent can learn a 
model of how the relational state changes in response to 
relational actions, allowing it to plan completely at the 
relational level. Our system uses an instance-based 
learning method to capture these behaviors. For every 
decision cycle in which at least one predicate changes 
value, the relational state is stored as an episode in episodic 
memory. To make a prediction for a starting relational state 
 and relational action ܽ, the agent queries episodic ݏ
memory for an episode that is most similar to ݏ in which it 
also performed ܽ. Similarity is measured as the degree to 

which the predicate structures of two relational states align, 
discounting object identities. The predicate changes that 
were recorded in episodic memory for the retrieved state 
are then mapped into the starting state to form a prediction. 
Note that because similarity is based on relational structure 
rather than object identity, the training episodes generalize 
to novel states using a form of analogical mapping. This 
work is described in more detail in Xu & Laird (2010). 
 To summarize, SVS provides a symbolic representation 
of the continuous environment state, and grounds desired 
predicate changes into continuous action trajectories. The 
continuous model learner learns how continuous actions 
change the continuous state. This model allows the 
controller to plan continuous trajectories that implement 
relational actions. The relational model learner learns how 
relational actions affect the abstract relational state, 
allowing the agent to create abstract plans. These methods 
enable Soar agents to autonomously transition from having 
minimal domain knowledge to being able to plan with 
relational abstractions in novel continuous domains. 

Situated Interactive Instruction 

Our final section addresses the issue of how a robotic agent 
can learn from interaction with a human. Much of the prior 
research on robot learning from human interaction has 
focused on learning from demonstration, imitation, and 
observation. Although these methods can be useful, they 
are not efficient for communicating the hierarchical goal 
structures that are often needed for complex behavior.  
 Our approach is to focus on natural language instruction 
(Huffman & Laird, 1995), where the agent is actively 
trying to perform the associated task while receiving 
instruction. The approach we are pursuing has the 
following characteristics:  
1. Situated: Instructions are grounded in particular 

situations, with specific objects, eliminating many 
forms of ambiguity. The instructor does not need to 
come up with general rules or procedures. 

2. General: The instruction mechanism is general and can 
be applied to any type of missing knowledge, including 
object identification and categorization, labeling objects 
with words, learning action models, or labeling actions.  

3. Interactive: When the agent’s knowledge is insufficient 
to make progress on a task, or the instructions are 
incomplete or ambiguous, the agent can ask for help. In 
a mixed control setting, the instructor can ask the agent 
for information regarding its state and the environment, 
verify an agent's learning by questioning the agent, and 
provide corrections.  

4. Knowledge-level interaction: The instructor provides 
knowledge to the agent by referring to objects and 
actions in the world, not the agent's internal data 
structures and processes. 

To explore the potential of learning with situated 
instructions, we are developing a robotic agent that learns 
new nouns, adjectives, prepositions, and verbs in a simple 
real world table top robotic environment. There is a single 
robot arm that can pick up colored foam blocks, and there 



is an overhead Kinect camera, with associated software for 
segmenting the imaging and extracting color, shape, and 
size information about the objects. To learn nouns and 
adjectives, the agent must learn to associate linguistic 
forms (words such as red) to perceptual features (RGB 
values). The agent acquires prepositions by associated 
linguistic descriptions (to the right of) provided by 
interactive instruction with a set of spatial primitives.  
 The new verbs are learned by generalizing from a 
situated example execution. The instructor leads the agent 
through an example of a composite action (move) which is 
a composition of pick-up and put-down actions. The agent 
uses explanation based generalization (chunking) to learn a 
general execution of move. In order for this type of 
instruction to work, the agent must have a pre-existing set 
of primitive actions that are known to the instructor. 

Below is a painfully brief overview of the processing 
steps involved in situated interactive instruction. 
1. Task Performance: The agent attempts to perform a 

task using existing linguistic, procedural, semantic, 
and spatial knowledge. 

2. Detection: The agent detects that its available 
knowledge is incomplete (and impasse arises). 

3. Retrieval: The agent attempts to retrieve prior 
instructions from episodic or semantic memory that 
are relevant to the current situation. If successful, goes 
directly to steps 6 and 7. 

4. Acquisition: The agent requests help from the human, 
who instructs the agent. The agent creates a 
declarative representation of the instructions in its 
short-term memory, which is automatically stored in 
episodic memory. 

5. Comprehension: The agent maps the instructions to 
the current situation, making connections between the 
words in the instructions and perceived objects and 
actions. If comprehension fails, possibly because of 
ambiguous instruction, further instruction is requested. 

6. Execution: The agent executes the action, which may 
involve a change to the agent’s internal state (such as 
associating a label with an object) or performing an 
action in the world.  

7. Retrospective Reflection: Following execution, the 
agent can reflect back to understand what went right or 
what went wrong with the instructions. This is an 
internal debrief that allows the agent to review and 
further generalize and learn from its experiences. 

The agent learns nouns and adjectives by storing 
associations between the words and perceptual features in 
semantic memory. Prepositions are acquired by 
deliberately storing associations between linguistic forms 
that describe spatial relationships between objects to the 
spatial primitives extracted by the spatial visual system 
(and then refining this set through additional experience.) 

For learning verbs and associated actions, the agent 
simulates the instructions on an internal model to verify 
that it understands why it is performing the instructions, 
which allows the agent to generalize the instruction to 
future situations, reducing the need for future instruction. 

As a side effect of execution, Soar compiles the processing 
(via chunking) into new rules that avoid future impasses. 

Interaction Model 
One of the challenges of interactive instruction is that the 
agent must maintain a representation of the state of 
interactions with the instructor while acting in the 
environment, and then learn from the instructions in the 
context in which they were provided. Thus, the agent needs 
a model of task-oriented interaction. Such a model is 
required to support the properties described below. 
1. Both the instructor and the agent can assume control 

of the interactions at any time. 
2. The interaction model provides a context for 

instructor's elicitation, allowing the agent to take 
relevant actions. 

3. The interactions by the agent should be informed by 
agent's reasoning, learning, and acting mechanisms. 

4. The interaction model and the sequence of interactions 
should inform agent's learning.  

The interaction model we use has been adapted from Rich 
and Sidner (1998). It captures the state of task-oriented 
interaction between the agent and the instructor. To 
formalize the state of interaction, we introduce (1) events 
that change the state of interaction; these include dialog 
utterances, actions, and learning, (2) segments that 
establish a relationship between contiguous events, and (3) 
a focus-stack that represents the current foci of interaction. 
 In accordance with the discourse interpretation 
algorithm described by Rich and Sidner (1998), each event 
changes the focus-stack by, (i) starting a new segment 
whose purpose contributes to the current purpose (and 
thus, pushing a new segment with a related purpose on the 
focus stack), (ii) continuing the current segment by 
contributing to the current purpose, (iii) completing the 
current purpose (and thus eventually popping the focus 
stack) or (iv) starting a new segment whose purpose does 
not contribute to the current purpose (and thus pushing a 
new, interrupting segment on the focus-stack, changing the 
purpose of the interaction). An event contributes to a 
segment, if (i) it directly achieves the purpose, and (ii) it is 
a step in achieving the purpose. 

Results 

Using the approach described above. The robotic agent 
acquires new adjectives such as red and small and nouns 
such as triangle, rectangle, and arch for novel objects. 
Typically, the agent requires a few interactions and 
situated examples of objects to acquire these linguistic 
forms. After learning, the agent can classify novel objects 
along the dimensions previously observed and can 
associate correct nouns and adjectives to them. The 
learning is verified by asking questions such as “Which is 
the blue rectangle?”  
 To teach novel prepositions and prepositional phrases 
(such as to the right of), the agent is provided with 
examples of objects that satisfied the desired spatial 



relationships along with the phrase via interaction. The 
learning is verified by arranging objects and querying the 
agent using questions like “Which object is to the right of 
the blue rectangle.” The agent is the able to provide 
appropriate answers to such questions. 
 The agent can also be taught a new verb, such as move, 
by leading it through a situated execution of the composite 
action. The example execution involves picking up a blue 
rectangle and placing it at the desired position. Through 
internal explanation, the agent learns a general execution 
of move, and is able to execute other instances of move, but 
with different arguments, such as move a red rectangle. 
     The learning is embedded within the interaction and 
action execution framework. The instructor can ask the 
agent to perform an action, or describe an object. When the 
agent encounters unknown words, such as “Pick up the red 
triangle,” where either “red” or “triangle” are undefined, 
the agent engages the instructor in an interactive dialog to 
learn the unknown words. 

Conclusion 

The purpose of this paper was to describe how the Soar 
cognitive architecture supports creating flexible and 
adaptive cognitive robotic agents. It incorporates both 
symbolic and non-symbolic processing, has multiple 
learning mechanisms, and has been applied to multiple 
robotic systems. Each of the areas we presented is an 
active research project, and there is much to be done on 
them individually. In addition, one obvious place for future 
work is their integration.  

A second place for future research is to push further on 
the interaction between low-level perception and high-level 
cognition. SVS provides one level of processing where 
these come together, but as of yet, we do not have a 
general theory (or implementation) of adaptive low-level 
perception that translates noisy pixels into object 
descriptions, categories, features, and spatial relations.  

Acknowledgments 

The work described here was supported in part by the 
Defense Advanced Research Projects Agency under 
contract HR0011-11-C-0142 and by the Office of Navy 
Research under grant number N00014-08-1-0099. The 
views and conclusions contained in this document are 
those of the authors and should not be interpreted as 
representing the official policies, either expressly or 
implied, of the DARPA, ONR, or the U.S. Government. 

References 
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., Qin, 

Y. (2004). An Integrated Theory of the Mind. Psychological Review, 
111 (4), 1036-1060. 

Benjamin, P., Lonsdale, D., and Lyons, D. (2006). Embodying a 
Cognitive Model in a Mobile Robot, Proceedings of the SPIE 
Conference on Intelligent Robots and Computer Vision. 

Benjamin, P., Lonsdale, D., and Lyons, D. (2007). A Cognitive Robotics 
Approach to Comprehending Human Language and Behaviors. 
Proceedings of the 2nd ACM/IEEE International Conference on 
Human-Robot Interaction, 185-192. 

Benjamin, P., Lyons, D., and Lonsdale, D. (2004). Designing a Robot 
Cognitive Architecture with Concurrency and Active Perception, 
Proceedings of the AAAI Fall Symposium on the Intersection of 
Cognitive Science and Robotics.  

Dellaert F. and Kaess, M. (2006). Square Root SAM: Simultaneous 
Localization and Mapping via Square Root Information Smoothing, 
International Journal of Robotics Research. 25 (12) 1181-1203. 

Huang, A., Olson, E., and Moore, D. (2010). LCM: Lightweight 
Communications and Marshalling, Proceedings of the IEEE/RSJ 
International Conference on Intelligent Robots and Systems. 

Huffman, S. B., and Laird. J. E. (1995). Flexibly Instructable Agents, 
Journal of Artificial Intelligence Research, 3, 271-324. 

Kinkade, K. R. (2012). Cooperative SLAM of Local and Topological 
Features for Soar Robot Agents, Technical Report of the Center for 
Cognitive Architecture, University of Michigan.  

Kosslyn, S. M., Thompson, W. L., and Ganis, G. (2006). The case for 
mental imagery. New York, New York: Oxford University Press. 

Laird, J. E. (2012). The Soar Cognitive Architecture, MIT Press. 
Laird, J. E., Derbinsky, N., Voigt, J. R. (2011). Performance Evaluation 

of Declarative Memory Systems in Soar. Proc. of the 20th Behavior 
Representation in Modeling and Simulation Conf. 33-40. 

Laird, J. E., Hucka, M., Yager, E., and Tuck, C. (1991). Robo-Soar: An 
integration of external interaction, planning, and learning, using Soar, 
IEEE Robotics and Autonomous Systems. 8(1-2), 113-129. 

Laird, J. E., and Rosenbloom, P. S., (2000). Integrating execution, 
planning, and learning in Soar for external environments, Proceedings 
of the National Conference of Artificial Intelligence, 1022-1029. 

Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive architectures: 
Research issues and challenges, Cognitive Systems Research, 10(2), 
141-160. 

Lathrop, S. D., Wintermute, S., Laird, J. E. (2011), Exploring the 
Functional Advantages of Spatial and Visual Cognition from an 
Architectural Perspective. Topics in Cognitive Science, 3, 796-818.  

Marinier, R., Laird, J. E., and Lewis, R. L. (2008). A Computational 
Unification of Cognitive Behavior and Emotion. Journal of Cognitive 
Systems Research. 

Quinlan, J. R. (1992). Learning with Continuous Classes. Proceedings of 
5th Australian Joint Conference on Artificial Intelligence. Singapore. 
343-348. 

Rich, C., and Sidner, C. 1998. COLLAGEN: A Collaboration Manager 
for Software Interface Agents. User Modeling and User-Adapted 
Interaction. 

Toussaint, M., and Vijayakumar, S. (2005). Learning Discontinuities with 
Products-of-Sigmoids for Switching between Local Models. 
Proceedings of the 22nd International Conference on Machine 
Learning, 904-911.  

Wintermute, S. (2009). Integrating Reasoning and Action through 
Simulation, Proceedings of the Second Conference on Artificial 
General Intelligence. 

Wintermute, S. (2010). Abstraction, Imagery, and Control in Cognitive 
Architecture. Ph.D. Thesis, University of Michigan, Ann Arbor. 

Wintermute, S. and Laird, J. E. (2008). Bimodal Spatial Reasoning with 
Continuous Motion, Proceedings of the 23rd AAAI Conference on 
Artificial Intelligence, Chicago, Illinois. 

Xu, J. Z., Laird, J. E. (2010). Instance-Based Online Learning of 
Deterministic Relational Action Models. Proceedings of the 24th AAAI 
Conference on Artificial Intelligence. Atlanta, GA. 

Xu, J. Z., Laird, J. E. (2011). Combining Learned Discrete and 
Continuous Action Models. Proceedings of the 25th AAAI Conference 
on Artificial Intelligence. San Francisco, CA. 


