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Abstract 
Autonomous operation is becoming an increasingly important factor for UAVs. It enables a vehicle to decide 
on the most appropriate action under consideration of the current vehicle and environment state. We investi-
gated the decision-making process using the cognitive agent-based architecture Soar, which uses tech-
niques adapted from human decision-making. Based on Soar an agent was developed which enables UAVs 
to autonomously make decisions and interact with a dynamic environment. One or more UAV agents were 
then tested in a simulation environment which has been developed using agent-based modelling. By simulat-
ing a dynamic environment, the capabilities of a UAV agent can be tested under defined conditions and addi-
tionally its behaviour can be visualised. The agent’s abilities were demonstrated using a scenario consisting 
of a highly dynamic border-surveillance mission with multiple autonomous UAVs. We can show that the au-
tonomous agents are able to execute the mission successfully and can react adaptively to unforeseen 
events. We conclude that using a cognitive architecture is a promising approach for modelling autonomous 
behaviour. 

1. INTRODUCTION 

1.1. From UAVs to Autonomous Agents 
During the last century, UAVs have developed from mere 
flying bombs to complex systems which can serve a varie-
ty of different purposes. The benefits of these vehicles lie 
in the (comparatively) low production and operating costs 
and the flexibility to adapt the aircraft to the specific de-
mands of its mission. However, the most obvious ad-
vantage is the absence of an on-board human pilot. This 
enables flying long-enduring missions or operations in 
hazardous conditions, often described by the term “3D-
missions” (Dull, Dirty and Dangerous).

The desire to reduce human involvement leads to an in-
creased demand for autonomously operating vehicles. 
Therefore, the development of such systems is expedited 
both for military and civil applications. Although the con-
cept of autonomy is not new, it is hardly used in aeronauti-
cal applications – mainly due to legal and safety issues. 
Vehicles like the General Atomics RQ-1 Predator and the 
Northrop Grumman RQ-4 Global Hawk for example carry 
very advanced sensing systems that collect and transmit 
data. However, the aircraft themselves don't use that data 
to plan their missions autonomously - at least high-level 
decisions have to be made by a human operator. There-
fore the potential of these aircraft is not fully utilised. 

Automatic systems are an essential part of modern flight 
control systems and have significantly helped to increase 
the efficiency, comfort and safety of flight. However, the 
terms “automatic” and “autonomous” are often used syn-
onymously, which can be misleading. We distinguish in 
the following: an automatic system is designed to fulfil a 
pre-programmed task. It cannot place its actions into the 
context of its environment and decide between different 
options. An autonomous system on the other hand has the 
capability to select amongst multiple possible action se-
quences in order to achieve its goals. The decision which 
action to choose is based on the current knowledge, that 
is, the current internal and external situation together with 

internally defined criteria and rules. In a dynamic world, 
there are usually many possible ways to achieve complex 
goals. The challenge is to find not just any solution to a 
problem, but a good or ideally the best one [1, p.1] [3,
pp.141f]. 

Typically, the grade of control by a human operator as well 
as the implemented decision capability is directly related 
to the automatic or autonomous level of the system: with 
an increasing level of autonomy the decision freedom of 
the system rises and the grade of human intervention or 
interaction decreases [11, p.2]. For instance, in the area of 
flight controls, an automatic autopilot would be capable of 
following a predefined route. An autonomous autopilot 
however can choose the optimum route under considera-
tion of the current situation of its environment, and then 
follow it.  

A widely accepted metric on how to classify the grade of 
autonomy of an unmanned aerial vehicle is the Autono-
mous Control Levels (ACL) developed by the U.S. Air 
Force Research Laboratory (AFRL). The levels range from 
simple remotely piloted vehicles (level zero) to fully auton-
omous, human-like vehicles (level ten). In order to deter-
mine the degree of autonomy, several operational areas 
are taken into account, such as perception and situational 
awareness, analysis and coordination, and decision mak-
ing [1, p.4].

1.2. Decision-making Systems 
When talking about autonomous entities the term agent is 
frequently used. Stuart Russell and Peter Norvig define an 
agent as anything that can perceive and influence its envi-
ronment by using sensors and actuators [10, p.34]. Fol-
lowing this general definition a sensor is any means of 
collecting information about the environment in which the 
agent acts. For a UAV, sensors can be air data sensors, 
position sensors or cameras. Similarly, an actuator is any 
means of affecting the environment of the agent.  

The systems of an agent can be viewed on different levels 
of abstraction, as shown in FIGURE 1. On the lowest level 
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the physical implementation of the system (i.e. computer, 
robot, UAV, etc.) is situated. It includes the hardware and 
the low-level software functions needed for basic compu-
tation tasks. The knowledge level, on the other end of the 
abstraction hierarchy, incorporates all the facts of the 
environment and the behavioural rules the agent needs to 
know in order to act according to its design. The 
knowledge base consists of both implemented and ac-
quired knowledge. Furthermore, knowledge can be differ-
entiated in categories such as general knowledge (which 
is used in general cognitive capabilities, such as language 
processing) and task knowledge (which is used in specific 
domains). 

FIGURE 1. Abstraction hierarchy of an agent 

Between the physical level and the knowledge level the 
agent architecture level is located. It forms the interface to 
the physical level and comprises the software structure of 
the agent as well as the routines and algorithms to ac-
quire, represent and process knowledge. John E. Laird, 
one of the developers of Soar, summarises the working 
principle of an agent in the simple equation [8, pp.7f]:

architecture + knowledge = behaviour. 

Several architectures have evolved as a result of different 
approaches to implement autonomy and from various 
operational fields for autonomous systems [9]. However, 
they can be summarised in the following basic categories: 

� reactive architectures 
� deliberate architectures 
� layered or hybrid architectures 

A reactive architecture uses condition-action rules to gen-
erate behaviour. It selects actions depending on its current 
perception, while ignoring the rest of its perception history. 
The great advantage of reactive agents is their capability 
of quick responses to dynamic changes in the environ-
ment. Additionally, there is no need to have a complete set 
of knowledge and data on the environment since the reac-
tion is solely based on the current perception. However, it 
lacks the ability to reason about decisions, to reflect on 
long-term memory or to follow long-term goals. The be-
haviour of a reactive agent is event-driven. As a matter of 
fact, the line between autonomous reactive agents and 
purely automatic systems is not clearly distinguishable 
[12].

A deliberate architecture on the other hand comprises a 

symbolic representation of the world and uses logical 
reasoning to make decisions. In contrast to the reactive 
agents, the behaviour of the deliberate agent is usually 
goal-driven. This ability is advantageous especially with 
respect to autonomy. However, in order to make a good 
decision an accurate and fairly complete representation of 
the environment is required. In a complex world this is 
often not possible. Further difficulties arise when the 
knowledge base is incomplete or even false. 

To combine the advantages of the reactive architectures 
(quick responses) with those of deliberate architectures 
(goal-driven reasoning), a layered architecture can be 
used. Layered architectures comprise at least two layers 
(reactive and deliberate) on different levels of abstraction. 

Nevertheless, neither of the architectures really addresses
the concept which the agent development originates from, 
namely cognitive modelling. When Allen Newell and Her-
bert Simon first formulated their pioneering work on prob-
lem solving in 1956, their intention was to phrase human
problem solving skills [8, p.3]. Inspired by this work many 
approaches to simulate cognitive behaviour were devel-
oped. Using the research on psychological experiments 
conducted to understand human problem-solving tech-
niques, researchers began to explore ways to solve prob-
lems artificially. However, the development of these delib-
erate architectures split up into planning systems and 
cognitive systems. Planning takes a symbolic representa-
tion of both the world and the states to find a set of actions 
to move from the present state to a goal state. Cognitive 
architectures also include deliberate principles and sym-
bolic representations to make decisions. However, they 
also incorporate principles of reactive systems. What 
clearly distinguishes them from other architectures is the 
origin from human behaviour modelling. 

One of the oldest and most developed cognitive architec-
tures is Soar. It was first introduced by Laird and Newell in 
1983 and has been continually developed [8, p.10]. The 
intended goal of the Soar project is nothing less than to 
recreate the full scope of human-like behaviour, from basic 
routine actions to complex problem solving tasks. Current 
versions comprise several methods and techniques to 
enable both reactive and deliberate behaviour. 

2. THE AUTONOMOUS AGENT 
In the following we will describe the autonomous agent of 
a UAV, without going into detail about the physical proper-
ties and the performance of the vehicle itself. We propose 
to implement autonomy as a layered agent architecture 
that uses a hierarchical structure with a deliberate planner 
on the top and the cognitive architecture Soar on the bot-
tom (see FIGURE 2).  

In order to generate plans in a fully observable environ-
ment a deliberate planner is used. Such a planner in-
cludes search algorithms that are capable of finding not 
only a solution that is accurate and correct, but which is 
good or the best in terms of the given state and goal de-
scription [6]. The resulting plan concerns the top-level 
decisions that are necessary to generate an overall mis-
sion application. At the bottom level, Soar is responsible 
for handling all low-level decisions and in particular for 
reacting to unexpected events. At this level, purely delib-
erate behaviour would be disadvantageous due to fre-
quently occurring unexpected events combined with lim-
ited knowledge about every detail on the environment 
which will lead to unknown world and system states. Even
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FIGURE 2. Left: Agent based solely on Soar; Right:  
layered agent architecture

when using sophisticated plan monitors and re-planning 
capabilities this easily invalidates overly detailed deliber-
ate plans. The consequence is frequent re-planning and 
thus a sub-optimal overall goal achievement. The Soar
agent is better suited for making reasonable decisions in a 
complex and dynamic environment, such as in a UAV 
domain, where sometimes only limited or incomplete 
knowledge is available. Since the Soar cognitive architec-
ture itself is a hybrid architecture, it integrates both the 
abilities to react to certain situations and to deliberately 
reason about a decision. In addition, it integrates the ca-
pability to use its percept history and to learn from im-
passe resolutions that occurred from a lack of knowledge. 
Although Soar is well-suited for low-level decisions that 
require fast decision-making, it will not necessarily find an
optimal solution.  

In the following, we will focus only on the Soar part of the 
agent and describe its capabilities in more detail. The 
deliberate planner is discussed elsewhere [6].

2.1. Soar System 
In order to generate behaviour, an agent requires encoded 
knowledge. In Soar, knowledge is encoded using so-called 
working memory elements (WMEs), which can hold any 
piece of information. For that, a WME has an identifier, an 
attribute, and a value. In case a WME contains several 
attribute-value pairs that share the same identifier, it is 
called an object, as depicted in FIGURE 3. 

 
(<aircraft> ^altitude 3000            object <aircraft> 
     ^speed 120 
     ^position <position>) 
 
(<position> ^latitude 48.0             object <position> 
     ^longitude 11.5)  
 

FIGURE 3. Working memory element structures 

However, working memory alone generates no behaviour. 
The structures that store the WMEs and the operators that 
change a state are located in the long-term memory. Simi-
lar to human cognition, there are three types of long-term 

memory in Soar: procedural, semantic, and episodic 
memory (see FIGURE 4).

Procedural memory contains the information from working 
memory, which is stored in productions or rules. In Soar, a 
production always contains a condition and an action side.
The conditions are responsible for checking whether they 
match the current state, and if the rule can fire.

In order to decide which rule to take, Soar uses a decision 
cycle that includes the following four phases: 

• elaboration: Explicit mapping of the current state 
• proposal: Propose appropriate operators that match 

the current state and compare them 
• decision: Operators are selected based on their pref-

erences, the results from the comparison, or the result 
from sub-goaling due to an impasse resolution 

• application: Productions fire to apply the operator, 
modifying the current state 

While executing the proposed applicable operators, their 
conditions have to be matched against the state. Assum-
ing a fairly simple problem space with 10 elements in 
working memory (W), 20 available productions (P), with 
each holding in average 5 conditions (C), this would al-
ready result in 10^1001 necessary comparisons. In order 
to avoid this escalating amount, Soar uses the Rete-
algorithm [8, p.23]. Instead of matching each condition to 
the working memory, Rete compares only the changes 
and stores partial matches additionally.  

Finding an appropriate match and thus a decision right 
away depends on the available knowledge. If Soar is una-
ble to make progress during the decision cycle, it reaches 
an impasse. Soar recognizes four types of impasses: 

• state no-change impasse: no preference in working 
memory  

• tie impasse: multiple operators with equal preferences 
• operator no-change: operator remains selected 
• conflict impasse: multiple operators with conflicting 

preferences 

Soar resolves an impasse by using sub-goaling. The re-
sponse is the creation of a sub-state, which holds the 
reason for the impasse and a mapping of the state. As 
soon as a solution can be found, a production rule (chunk)
is created that contains the condition that caused the im-
passe and the action that solved it. Consequently, working 
memory elements can be transferred to procedural long-
term memory by chunking. To prevent repetitive sub-
goaling, those chunks can be stored when learning is 
enabled. 

Another method to transfer information is reinforcement 
learning [8, pp.181f], which is implemented in recent ver-
sions of Soar. Reinforcement learning differs from the 
general learning mechanism in such a way that it also 
includes a reward-link. Every time the Soar agent comes 
across a numerically indifferent preference, it changes the 
numeric value, based on the generated reward. An agent 
hence learns to choose those operators that lead to the 
most promising reward by trial and error. 

Recent versions of Soar also support the capability to use 
semantic memory, which can be expanded and retrieved 
by using declarative chunks (semantic learning). In con-
trast to procedural memory they hold the general 

                                                          
1 W^(C*P) = 10^(5*20) = 10^100
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knowledge, which does not need to be acquired by learn-
ing. Semantic memory forms the agent’s knowledge about 
the world. Unlike procedural memory, however, it is nei-
ther stored as rules nor just in working memory, but as 
simple facts. 

FIGURE 4. Soar memory structure 

Another recent feature in Soar includes episodic memory, 
the third type of long-term memory. Using this, entire 
snapshots of working memory (episodes) can be created, 
which enable the agent to store specific case-based prob-
lem solutions and to remember critical situations that have 
occurred in the past. 

3. MISSION SCENARIO 
Within this article we describe an autonomous UAV agent 
that performs a mission in the context of a border surveil-
lance application. Deploying UAVs for this task is favoura-
ble due to their long endurance and vast area coverage. 
This scenario is also of particular interest because on the 
one hand it is a potential application for real-life civil UAVs 
and on the other hand it is well-suited to evaluate the 
reliability of an autonomous agent. 

Using an agent-based simulation framework (see section 
4), the UAV agent will be exposed first to a nominal mis-
sion, where few unexpected events occur and second to a 
stressed mission, where the original planned mission will 
be invalid due to frequently occurring unforeseen events. 
Especially in the second case, the autonomous agent can 
demonstrate its capabilities to make decisions even with 
incomplete knowledge. 

3.1. Nominal Mission 
This scenario requires one or more UAVs to patrol a des-
ignated border region and to detect intruders (see FIG-
URE 5). Additionally it contains a ground-based 
(un)manned control station (GCS) that is responsible for 
managing the overall mission aspects. The GCS also 
acquires planning tasks that are executed by the deliber-

ate architecture like issuing a detailed mission description 
or managing the UAV deployment. As such, it has access 
to all UAVs which are principally assigned for the mission 
and which are in one of the following four states:  

• available: The UAV is currently deployed for the mis-
sion. It is airborne and exhibits no system errors. 

• stand-by: The UAV is capable of being used for the 
mission, but is currently not. It is either airborne or on 
ground and exhibits no system errors.

• engaged: The UAV is temporarily not available for the 
mission, because it is engaged with another task. It 
exhibits no system errors.

• unavailable: The UAV is incapable and cannot be
used for the mission due to failures.

In the event that more UAVs are required to take part in 
the mission, one UAV in stand-by will receive the mission 
plan. The aircraft state then changes to available and the 
UAV starts following the assigned tasks.  

The primary task will engage the UAV to fly to the search 
area. Within the search area the UAV starts scanning the 
border region by using an appropriate search strategy 
which depends on the sensor coverage and on the proba-
bility that intruders will cross the border at a specific region 
(with reference to the landscape and previously encoun-
tered violation occurrences). 

As soon as a UAV detects an intruder or a group of intrud-
ers, it transmits its current position, as well as live video 
images to the GCS. The GCS then decides whether the 
UAV shall further track the intruder or whether it shall 
search within surrounding areas for additional violations, 
due to a false alarm (detected object is not an intruder). 

At the same time, the GCS notifies the local border patrol 
of the detected violation by delivering the aircraft’s position 
coordinates, its path, as well as real-time imagery. De-
pending on the GCS’s decision of whether the UAV shall 
track the object or not, the UAV will change its status to 
engaged or will continue searching (state: available). The 
surrounding UAVs will then cover the search area of the 
preoccupied UAV until manned ground units take over or 
the intruder vanishes. 

3.2.  Stressed Mission 
A nominal mission is unlikely to occur in reality. Conse-
quently, the robustness of the agent is tested when con-
fronted which typical stressors such as system failures or 
other aerial traffic. A selection of stressors that were ap-
plied to test the reliability of the agent and the suitability to 
use the Soar cognitive architecture include the following: 

• Moderate System Failure  
A moderate system failure is a system failure that 
does not interfere with the aircraft maintaining a safe 
flight condition, but which hinders the resumption of 
the mission (e.g. loss of camera signals). 

• Close Traffic 
In order to avoid a Traffic Alert and Collision Avoid-
ance System (TCAS) violation or even a mid-air colli-
sion, the agent is temporarily required to interrupt the 
mission until it senses no traffic in proximity anymore. 

• Adverse Weather 
Minor fog, high humidity or clouds, for instance, hin-
der the mission execution because the UAV is una-
ble to detect and follow intruders due to poor camera 
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image quality. Furthermore, strong winds or hail can 
affect the safety of flight itself.    

• Critical Level of Resources 
A critical level of necessary resources such as low 
fuel also prevents the agent from continuing the mis-
sion. 

• Multiple Intruder Detection 
When observing an intruder an additional intruder 
appears, this might clobber its goal to follow the pre-
viously detected intruder. 

• Unavailable Landing Place 
A UAV decides to land at an airport for refuelling. 
While approaching the area, it recognizes that the 
landing place became unavailable. The level of diffi-
culty to find an appropriate solution rises when the 
amount of fuel already reached a critical level. 

Besides confronting a UAV with a single one of these 
stressors, the level of difficulty for the agent to find a rea-
sonable decision further increase when multiple stressors 
are combined at the same time. The autonomous agent is 
then analysed by its capability to find a solution, especially 
when more than one option is available. 

3.3. Mission Complexity 
Mission complexity is a key factor with respect to a poten-
tial scenario. It is classified into three categories: mission,
team, and communication management. Mission man-
agement describes the ability for a given mission to have a 
high amount of diverse capabilities and goals. This gives 
the agent the opportunity to act upon a broad number of 
possibilities. Hence, the mission puts no or few constraints 
on the UAV’s capabilities. Team management, on the 
other hand, describes to which extent members or agents 

of the team are able to cooperate and to maintain them-
selves. The capability for them to communicate and per-
haps start a formation within the mission is specified in 
communication management. 

Based on those definitions, the prevailing mission fulfils 
the following requirements and thus results in a mission 
that is complex enough to test the agent’s capabilities:

• Mission Management: high amount of goals and mis-
sion specifications

• Team Management: need for cooperation given
• Communication Management: need for formation 

control and/or ATC given

In order to classify the degree of autonomy required by 
this mission within the Autonomous Control Levels (ACL), 
we need to consider the following aspects. The chosen 
scenario allows for a moderate level of communication 
and cooperation between the UAVs, thus increasing the 
independence from human intervention significantly. Con-
sidering the scope and complexity of the mission an ade-
quate prediction capability as well as real-time analysis 
and decision-making are required. The mission environ-
ment can be considered challenging and thus demands an 
advanced level of perception and situational awareness. 
Therefore, the ACL ranges between four (communication, 
cooperation, and decision-making) and five (perception 
and situational awareness).  

4. SIMULATION ENVIRONMENT
Simulation is a significant aspect in every modern devel-
opment process. It allows optimising the developed sys-
tem with regard to its future task area in an early stage of 

FIGURE 5. Stressed sample mission, where the numbers indicate the mission sequence. 
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the project and helps to cut project costs. Therefore, de-
veloping a comprehensive simulation framework was 
considered a substantiate part within the development of 
the autonomous agent. In order to validate the behaviour 
of the developed autonomous system, the simulation envi-
ronment provides the decision-finding system with all 
relevant data and simulates the execution of the generat-
ed action plans. 

A promising approach in modern software development is 
the concept of agent-based modelling and simulation. 
Since software agents have a lot in common with autono-
mously operating UAVs, it seems plausible to realise the 
simulation environment in the context of an agent-based 
simulation platform. For this purpose, the agent-based 
modelling toolkit A-Globe was used. It was developed by 
the Agent Technology Group at the Czech Technical Uni-
versity in Prague under sponsorship of the U.S. Air Force. 
[1, p.1] 

FIGURE 6. Simulation environment architecture 

One of the main design considerations in the development 
of the simulation environment was modularity. In view of 
this, the architecture is divided into the functional areas of 
Resources, Activity, Exchange and Presentation, as de-
picted in FIGURE 6. The area of Resources consists of 
data which form the basis of the physical world and which 
are contained in external files. The field of Activity is made 
up of the autonomous agents who possess the ability to 
perceive the current state of the world and their fellow 
agents and plan their actions accordingly. Every agent’s 
state is simulated independently, thus the simulation oper-
ates on a rather decentralised level. FIGURE 7 depicts the 
simulation loop as well as the sensor and effector chains 
within the agent. 

The central component of the simulation framework is the 
World Model, which forms the area of Exchange. By gen-
erating an internal representation of the physical world, a 
mission environment is created in which autonomous 
entities can exist and operate. The World Model consists 
of a database which stores information about terrain, 
weather and objects in the world, such as airports or ob-
stacles. It also holds the states of all simulated agents, in 
order to allow interaction between them. 

The connection to the decision-finding system is estab-
lished via a generic bus simulation. The sensor data is 
abstracted by using a universal message catalogue which 
has an xml-based standardised format defining the name, 

range and accuracy of the transmitted data and the posi-
tion of the signal on the bus. The decision-finding system 
uses the same message catalogue to decode the bus 
signals and convert the data into physical values. This 
interface assures that several autonomous systems can 
be easily linked with the rest of the agent simulation and 
can be compared to each other. 

FIGURE 7. The agent’s inner simulation loop

The simulated autonomous agents can be equipped with 
different levels of autonomy, which may range from pure 
reactive bearing, following simple rules to highly deliberate 
behaviour as a sequence of complex actions. The gener-
ated action plan of the decision-finding system is carried 
out and the activities of all simulation participants are 
visualised and recorded. This gives the developer the 
opportunity to monitor, validate and further optimise the 
functionalities of the autonomous system. For the simula-
tion of the UAV's motion, a linear four DOF flight dynamics 
model is employed. This is derived from a six DOF flight 
dynamics model by restricting pitching and rolling motion 
as well as neglecting any sideslip. This simplification was 
made to receive a flight dynamics model with sufficient 
accuracy to simulate autonomous agents while at the 
same time avoiding the effort to develop a comprehensive 
flight dynamics model. Consequently, the focus lies on the 
accurate simulation of autonomous behaviour rather than 
detailed motion. 

FIGURE 8. The GUI of the simulation environment 
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Finally, the aspect of Presentation includes a graphical 
user interface (GUI, see FIGURE 8) which fulfils two im-
portant functions. On the one hand, it serves as the prima-
ry means for illustrating the simulation activity and thus 
gaining insight into the mode of action of the autonomous 
decision-making system. On the other hand, it offers the 
operator the possibility to interact with the simulation by 
controlling the simulation speed, making live modifications 
to the mission environment or creating new agents. Mis-
sion simulations can be automated by scripting a course of 
events. Further functions allow the analysis of internal 
procedures of the planner and the creation of arbitrary 
mission scenarios using an interactive mission designer as 
well as recording and replaying all events into/from a da-
tabase or file. 

5. IMPLEMENTATION 
Most agent architectures are well-suited to perform a cer-
tain type of task, such as route planning or task decompo-
sition, whereas they fail on tasks which they are not in-
tended for. Even the Soar cognitive architecture is rather 
meant for modelling human cognition than for providing a 
complete architecture for unmanned vehicles. Due to its 
cognition model it is suitable for a wide range of applica-
tions such as simulating aircraft pilots in combat [5], simu-
lating opponents in a video game [7], or learning from 
instructions [4]. For the application in a real UAV scenario 
however, using solely a cognitive agent architecture is 
difficult. Therefore, the proposed UAV agent has a two-
level layered architecture where the Soar module’s task is 
to handle the en-route short-term decisions. 

The following sections provide an overview of the Soar
component of the UAV agent and the results from the 
mission application. The deliberate planner is discussed in 
a different work [6].

5.1. Soar Module 
The Soar cognitive architecture already provides general 
knowledge that is necessary for processing information, 
selecting suitable operators, resolving impasses, and for 
storing the experience from the interaction with the envi-
ronment. We further define three types of productions that 
are stored as production rules in procedural memory and 
that integrate the knowledge to generate the behaviour in 
the UAV domain: 

• system-specific knowledge (UAV) 
• flight-specific knowledge (general manoeuvres) 
• mission-specific knowledge (border surveillance) 

System-specific knowledge concerns those productions 
that are explicit for the use in a UAV. Those rules are 
mainly pre-defined and include systems such as the 
UAV’s sensors and actuators, containing, for instance, the 
rules that detect an unintended engine shut-down. 

One solution for an engine failure could be to perform an 
emergency landing. The rules to accomplish this kind of 
task are defined within the flight-specific productions. They 
concern the aircraft’s movement and flight-specific ma-
noeuvres, including aerial refuelling and collision avoid-
ance. It is important to note that none of these productions 
replace an existing aircraft system such as the Traffic Alert 
and Collision Avoidance System (TCAS), the Flight Man-
agement System (FMS) or the weather radar. Instead, 
they extend the scope of these systems by, for instance, 
enabling collision avoidance even with objects that are not 

equipped with a transponder (such as gliders or terrain). 
Furthermore, the obstacle recognition need not be limited 
to the TCAS range. 

The productions that are necessary to accomplish a mis-
sion, however, are defined using mission-specific 
knowledge. In contrast to the other production types, those 
rules are only pre-defined to a certain extent. Consequent-
ly, they will develop further while interacting with the envi-
ronment to improve the agent’s decision-making. 

As outlined in FIGURE 9, each type of knowledge can be 
further sub-divided into problem spaces. A problem space 
contains those productions that belong together such as 
Communication, Team, or Mission. However, there are 
also productions that are not tied to a problem space like 
Flying, Searching, and Intercepting. Those productions are 
necessary to provide tasks that can be performed at any 
time. 

FIGURE 9. Selection of problem spaces 

In order to decide which problem space has a higher prior-
ity, a top problem space (ps-top) is defined which con-
tains the rules to prioritise. For instance, in general it is 
more appropriate to terminate the mission execution, if 
refuelling is necessary. Therefore, the problem space for 
refuelling (ps-refuel) has a higher priority than the one 
for searching (ps-search). In another occasion, however, 
this decision is rather inappropriate. If, for instance, there 
are only few or no UAVs available that can cover the 
search area and the aircraft has still sufficient fuel to reach 
more than one refuel place, ps-search would have a 
higher priority than ps-refuel. 

5.2. Mission Application 
To test the reliability of the agent it was exposed to several 
scenarios in the simulation framework including different 
levels of stressors. First, the decision-making capabilities 
are analysed when detecting an intruder in a simulation 
that contains two available UAVs. The difficulty here does 
not concern the confrontation with multiple stressors, but 
rather the reliability of the decision itself. As depicted in 
FIGURE 10 there is more than one appropriate rule avail-
able. In order to find the most suitable one (based on its 
current knowledge), the agent uses sub-goaling. Conse-
quently, the UAV agent (uav-1) decides to follow the in-
truder, which results in the second UAV expanding its 
search area. While following the intruder, uav-1 recognis-
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es after five2 additional decision cycles that it is incapable 
of just following the intruder without changing its pursuit 
strategy.  

FIGURE 10. Multi-option reliability 

The decision tree in FIGURE 10 also outlines that the UAV 
decides to follow the intruder by making circles and starts 
reflecting the decisions whether it is appropriate. For ana-
lysing the strategy the agent uses reinforcement learning, 
which enables it to become more accurate with every time 
that it is confronted to use a pursuit strategy for following a 
certain intruder. 

FIGURE 11. Multi-stressor reliability 

In a second simulation, the reliability of the agent is tested 
when being confronted with multiple stressors. Again, the 
simulation starts with two UAVs, which search for intruders 
in a given area. Three stressors are now applied at the 
same time for uav-1: first, an intruder appears, second, 
another airborne object forces the UAV to avoid a colli-
sion, and third, the fuel amount drops below the safe level. 
Each of those stressors alone obliges the agent to make 

                                                          
2 The number of time steps to track an object (such as an intruder 
or a manned aircraft) is set to five, in order to achieve a probable 
path extrapolation outcome.

several decisions. Combining them increases the stress 
level, especially as this case is not pre-programmed. 

An overview of the sequence of problem spaces which are 
entered in order to satisfy the top-level goal (avoiding a 
collision with any object at any time) is shown in FIGURE 
11. In the scenario simulation, the agent decides to avoid 
the collision immediately, even though it was not yet immi-
nent, and subsequently loses track of the intruder. This 
behaviour is not optimal and driven by the primary goal to 
avoid any collision. An improved behaviour can therefore 
be achieved by choosing a more indirect primary goal, 
namely for the agent to survive. Exposing the agent with 
the new primary goal survive, instead of avoiding-
collision, the simulation with three stressors results in 
the desired behaviour: the agent first requests support 
from the second UAV and later on avoids the collision 
before it finally returns to the base for refuelling.  

Applied to the mission as described in section 3 these 
aspects can be summarised in the following conclusions. 
Since the autonomous agent was designed for the nomi-
nal mission, this scenario is always resolved correctly. The 
application of stressors reveals the strengths and weak-
nesses of the Soar agent. If the mission contains only one 
or few stressors, this does generally not pose a problem to 
the system. However, if more stressors are applied, the 
performance deteriorates, leading to decisions which are 
feasible, but sometimes unreasonable. This behaviour 
depends not only on the number of stressors, but rather 
on their complexity and the temporal density of their occur-
rences. While adverse weather and a critical level of re-
sources are comparatively simple stressors, multiple in-
truder detection and close traffic require a great number of 
inner decision and elaboration cycles. Furthermore, the 
correct choice of the top problem space is crucial to yield a 
good decision due to the changed processing order. For 
instance, the selection of the top problem space survive
leads to a significantly more favourable result. Therefore, 
by choosing a proper primary goal which in particular is 
not too explicit, it is possible to address all stressors cor-
rectly.  

5.3. Simulation results 
Situations that require fast deliberate decision-making 
such as avoiding a collision are well-qualified for learning. 
Using look-ahead learning, for instance, the agent will 
always find the correct solution within a single decision 
cycle. After being confronted with the situation and solving 
it for the first time, the agent stores the decision in a chunk 
(as long as learning is enabled). This relationship is de-
picted in FIGURE 12. However, assuming that the situa-
tion changes partly (as simulated in the seventh run), the 
agent enters an increased amount of elaboration cycles, 
which results in an increased amount of production firings 
as well. The diagram also outlines that once a decision 
was stored in a chunk and the situation reoccurs, the 
agent will find the best decision right away again. 

Storing each decision and analysing each path that leads 
to the desired state results in the best solution, but also in 
a performance decrease. Thus, using look-ahead planning 
is only appropriate when the situation necessitates optimal 
behaviour and if limitations regarding the hardware and 
the performance are acceptable.  

Apart from look-ahead planning, another suitable way of 
learning during a collision avoidance scenario is rein-
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forcement learning (RL). In RL, an agent learns the best 
policy (in this case the best sequence of actions), based 
on reward returned from the environment. The advantage 
of reinforcement learning compared to look-ahead plan-
ning is that in order to find the best policy, the agent uses 
a cumulated reward. This means that the agent considers 
that even if a present decision results in a positive reward 
due to its former experience, the decision will not always 
be the best one, because the situation might differ. FIG-
URE 13 illustrates that within the same situation, the num-
ber of decisions reaches its final low after four runs. The 
same is true for production firings and elaboration cycles, 
since they correlate. In this case, the partly changed initial 
conditions result only in a slight increase in elaboration 
cycles and production firings. Compared to look-ahead 
planning, RL is well-integrated in Soar, having nearly no 
impact on the performance. Consequently, RL is a good 
measure for increasing an agent’s overall performance, 
especially in situations that do not necessitate optimal 
behaviour, but which require fast deliberate decision-
making. 
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FIGURE 12. Number of production firings, decisions, 
and elaboration cycles with look-ahead 
learning
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FIGURE 13. Number of production firings, decisions, 
and elaboration cycles with reinforcement 
learning

5.4. Suitability of Soar
Using the border surveillance mission, it could be shown 
that Soar is capable of making detailed decisions even 
during unforeseen events. Its main strength is that on the 

one side it differs from pure reactive systems which simply 
react to the present situation without further consideration 
of the environment or the future. On the other side, it is 
also better suited than a pure deliberate system because it 
is more flexible when confronted with unforeseen events.  

The main advantage of Soar, however, is its ability to form 
complex behaviour from the interaction with the environ-
ment and not by following pre-programmed action se-
quences. Instead, it finds solutions by forming new opera-
tors. 

Still, Soar is not a planning system and therefore not as 
well-suited as a pure planner [6] for finding an optimal 
solution for an overall mission plan. When the learning 
components of Soar are enabled, the Soar agent adapts 
and improves over time by using its experience. There-
fore, it offers various methods for deducing a learning 
strategy and for learning solutions (reinforcement learning, 
semantic learning, episodic learning, chunking).  Although 
each of these strategies aims at storing experience in 
long-term memory, they differ in the time of their appear-
ance and the type of their implementation. Whilst episodic 
learning and chunking will serve to reduce the search
time, reinforcement learning aims at improving the solu-
tion.  

6. SUMMARY  
Unmanned aircraft are deployed in domains that humans 
are not active in due to safety issues or an adverse mis-
sion environment. However, UAVs are not supposed to 
work completely autonomously without any human in-
volvement, be it spontaneous intervention, remote control 
or simply provision of the mission objectives. It is thus not 
desired or required for a UAV to be completely autono-
mous in terms of its overall deployment. Nevertheless, a
higher degree of autonomy allows a lower workload for 
human operators or enables a human operator to control 
several UAVs at the same time. More autonomy is also 
useful in the event of limited or lost communication as it 
allows the UAV to continue its mission alone instead of 
requiring a premature return to base. 

Flight safety is a critical aspect for UAV usage as aviation 
is more focused on low accident rates and consequently 
on a high safety rate than any other means of transporta-
tion. Consequently, increased autonomy especially with 
systems such as Soar, where the outcome of a decision is 
not always easily predictable, are difficult to use in avia-
tion. There are two possible scenarios how to benefit from 
a cognitive architecture but at the same time maintain safe 
flight. First, the cognitive architecture is clearly separated 
from any safety critical aspects of the system. No decision 
of the Soar agent may interfere with a flight-critical aspect 
of the system. Second, safety-critical monitors are imple-
mented which verify any decision made by the cognitive 
architecture. Decisions are rejected if they contradict a 
safe flight. For example control commands outside the 
flight envelope or commands violating TCAS orders are 
rejected. The system then falls back to the pre-
programmed mode which handles such a situation as any 
system without autonomy would. 

The agent-based simulation environment has proven to be 
a valuable tool for evaluating the function of the autono-
mous agents during the development process. All motion 
and behaviour of the agents and the world can be simulat-
ed and test missions can be designed rather freely. Thus, 
any of the required traffic situations, intruders or obstacles 
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can be simulated, including the reaction of the agent. A 
defined mission setup and a scripted course of events 
help recreating identical situations to compare different 
versions of the autonomous agent. Additionally, an intui-
tively operable graphical user interface facilitates analys-
ing and understanding the behaviour of the simulated 
agent. The modular design of the simulation environment 
supports easy maintenance and makes it possible to ex-
pand it as the need arises.  

The proposed UAV agent uses the advantages of a lay-
ered architecture where a high-level planner generates an
overall mission plan and the cognitive architecture Soar is 
used for en-route decisions and reactions to unforeseen 
events. High-level planners perform very well on complex 
route and mission planning problems in a well-known 
environment. However, one major aspect when deploying 
UAVs for patrolling a border region is the concern of a 
limited situational awareness and a constantly changing 
environment. In this case the Soar architecture can show 
its strength by handling unexpected events and coping 
with a just partially known environment.  

Soar performs very well on such an intermediate level,
located between a reactive or pre-programmed system 
and a deliberate planner. In particular, it provides more 
autonomy than a purely reactive system. Still, Soar is not 
a deliberate planner which would yield an optimal plan 
(although such an implementation is in principle possible), 
therefore it is not used for high-level mission plans.  

To increase flexibility, the cognitive part of the proposed 
agent includes only a small amount of pre-programmed 
task sequences. The majority of complex actions evolve 
from both interaction with the environment and innate 
learning mechanisms. The simulation demonstrates that 
the use of learning mechanisms can be advantageous as 
long as it is reduced to individual problem spaces or sub-
tasks and the agent is given the ability to unlearn behav-
iour as well. Parts of the learning process are problematic 
in real UAV applications where decisions should be right 
the very first time. However, it is possible to expose the 
agent to typical scenarios in a simulation environment 
where part of the learning process can already be under-
gone. Other parts of the learning (e.g. chunking) are not 
critical as they only serve to improve performance and can 
be done at any time during a mission. 

With a growing demand for the deployment of UAVs in all 
types of civil and military applications the necessity for 
more autonomy will also increase. In both the nominal as 
well as the stressed mission the Soar agent was able to 
handle all applied stressors successfully. We conclude 
that the proposed concept for using Soar as one part of a 
layered architecture of an autonomous UAV agent is a 
promising approach for equipping the vehicle with more 
autonomy. 
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