
AUTONOMOUS MISSION PLANNING FOR UAVS:
A COGNITIVE APPROACH

A. Stenger, B. Fernando, M. Heni
SILVER ATENA Electronic Systems Engineering GmbH, Munich

Abstract
Autonomous operation is becoming an increasingly important factor for UAVs. It enables a vehicle to decide
on the most appropriate action under consideration of the current vehicle and environment state. We investi-
gated the decision-making process using the cognitive agent-based architecture Soar, which uses tech-
niques adapted from human decision-making. Based on Soar an agent was developed which enables UAVs
to autonomously make decisions and interact with a dynamic environment. One or more UAV agents were
then tested in a simulation environment which has been developed using agent-based modelling. By simulat-
ing a dynamic environment, the capabilities of a UAV agent can be tested under defined conditions and addi-
tionally its behaviour can be visualised. The agent’s abilities were demonstrated using a scenario consisting
of a highly dynamic border-surveillance mission with multiple autonomous UAVs. We can show that the au-
tonomous agents are able to execute the mission successfully and can react adaptively to unforeseen
events. We conclude that using a cognitive architecture is a promising approach for modelling autonomous
behaviour.

1. INTRODUCTION

1.1. From UAVs to Autonomous Agents
During the last century, UAVs have developed from mere
flying bombs to complex systems which can serve a varie-
ty of different purposes. The benefits of these vehicles lie
in the (comparatively) low production and operating costs
and the flexibility to adapt the aircraft to the specific de-
mands of its mission. However, the most obvious ad-
vantage is the absence of an on-board human pilot. This
enables flying long-enduring missions or operations in
hazardous conditions, often described by the term “3D-
missions” (Dull, Dirty and Dangerous).

The desire to reduce human involvement leads to an in-
creased demand for autonomously operating vehicles.
Therefore, the development of such systems is expedited
both for military and civil applications. Although the con-
cept of autonomy is not new, it is hardly used in aeronauti-
cal applications – mainly due to legal and safety issues.
Vehicles like the General Atomics RQ-1 Predator and the
Northrop Grumman RQ-4 Global Hawk for example carry
very advanced sensing systems that collect and transmit
data. However, the aircraft themselves don't use that data
to plan their missions autonomously - at least high-level
decisions have to be made by a human operator. There-
fore the potential of these aircraft is not fully utilised.

Automatic systems are an essential part of modern flight
control systems and have significantly helped to increase
the efficiency, comfort and safety of flight. However, the
terms “automatic” and “autonomous” are often used syn-
onymously, which can be misleading. We distinguish in
the following: an automatic system is designed to fulfil a
pre-programmed task. It cannot place its actions into the
context of its environment and decide between different
options. An autonomous system on the other hand has the
capability to select amongst multiple possible action se-
quences in order to achieve its goals. The decision which
action to choose is based on the current knowledge, that
is, the current internal and external situation together with

internally defined criteria and rules. In a dynamic world,
there are usually many possible ways to achieve complex
goals. The challenge is to find not just any solution to a
problem, but a good or ideally the best one [1, p.1] [3,
pp.141f].

Typically, the grade of control by a human operator as well
as the implemented decision capability is directly related
to the automatic or autonomous level of the system: with
an increasing level of autonomy the decision freedom of
the system rises and the grade of human intervention or
interaction decreases [11, p.2]. For instance, in the area of
flight controls, an automatic autopilot would be capable of
following a predefined route. An autonomous autopilot
however can choose the optimum route under considera-
tion of the current situation of its environment, and then
follow it.

A widely accepted metric on how to classify the grade of
autonomy of an unmanned aerial vehicle is the Autono-
mous Control Levels (ACL) developed by the U.S. Air
Force Research Laboratory (AFRL). The levels range from
simple remotely piloted vehicles (level zero) to fully auton-
omous, human-like vehicles (level ten). In order to deter-
mine the degree of autonomy, several operational areas
are taken into account, such as perception and situational
awareness, analysis and coordination, and decision mak-
ing [1, p.4].

1.2. Decision-making Systems
When talking about autonomous entities the term agent is
frequently used. Stuart Russell and Peter Norvig define an
agent as anything that can perceive and influence its envi-
ronment by using sensors and actuators [10, p.34]. Fol-
lowing this general definition a sensor is any means of
collecting information about the environment in which the
agent acts. For a UAV, sensors can be air data sensors,
position sensors or cameras. Similarly, an actuator is any
means of affecting the environment of the agent.

The systems of an agent can be viewed on different levels
of abstraction, as shown in FIGURE 1. On the lowest level

Deutscher Luft- und Raumfahrtkongress 2012

1

DocumentID: 281398

the physical implementation of the system (i.e. computer,
robot, UAV, etc.) is situated. It includes the hardware and
the low-level software functions needed for basic compu-
tation tasks. The knowledge level, on the other end of the
abstraction hierarchy, incorporates all the facts of the
environment and the behavioural rules the agent needs to
know in order to act according to its design. The
knowledge base consists of both implemented and ac-
quired knowledge. Furthermore, knowledge can be differ-
entiated in categories such as general knowledge (which
is used in general cognitive capabilities, such as language
processing) and task knowledge (which is used in specific
domains).

FIGURE 1. Abstraction hierarchy of an agent

Between the physical level and the knowledge level the
agent architecture level is located. It forms the interface to
the physical level and comprises the software structure of
the agent as well as the routines and algorithms to ac-
quire, represent and process knowledge. John E. Laird,
one of the developers of Soar, summarises the working
principle of an agent in the simple equation [8, pp.7f]:

architecture + knowledge = behaviour.

Several architectures have evolved as a result of different
approaches to implement autonomy and from various
operational fields for autonomous systems [9]. However,
they can be summarised in the following basic categories:

� reactive architectures
� deliberate architectures
� layered or hybrid architectures

A reactive architecture uses condition-action rules to gen-
erate behaviour. It selects actions depending on its current
perception, while ignoring the rest of its perception history.
The great advantage of reactive agents is their capability
of quick responses to dynamic changes in the environ-
ment. Additionally, there is no need to have a complete set
of knowledge and data on the environment since the reac-
tion is solely based on the current perception. However, it
lacks the ability to reason about decisions, to reflect on
long-term memory or to follow long-term goals. The be-
haviour of a reactive agent is event-driven. As a matter of
fact, the line between autonomous reactive agents and
purely automatic systems is not clearly distinguishable
[12].

A deliberate architecture on the other hand comprises a

symbolic representation of the world and uses logical
reasoning to make decisions. In contrast to the reactive
agents, the behaviour of the deliberate agent is usually
goal-driven. This ability is advantageous especially with
respect to autonomy. However, in order to make a good
decision an accurate and fairly complete representation of
the environment is required. In a complex world this is
often not possible. Further difficulties arise when the
knowledge base is incomplete or even false.

To combine the advantages of the reactive architectures
(quick responses) with those of deliberate architectures
(goal-driven reasoning), a layered architecture can be
used. Layered architectures comprise at least two layers
(reactive and deliberate) on different levels of abstraction.

Nevertheless, neither of the architectures really addresses
the concept which the agent development originates from,
namely cognitive modelling. When Allen Newell and Her-
bert Simon first formulated their pioneering work on prob-
lem solving in 1956, their intention was to phrase human
problem solving skills [8, p.3]. Inspired by this work many
approaches to simulate cognitive behaviour were devel-
oped. Using the research on psychological experiments
conducted to understand human problem-solving tech-
niques, researchers began to explore ways to solve prob-
lems artificially. However, the development of these delib-
erate architectures split up into planning systems and
cognitive systems. Planning takes a symbolic representa-
tion of both the world and the states to find a set of actions
to move from the present state to a goal state. Cognitive
architectures also include deliberate principles and sym-
bolic representations to make decisions. However, they
also incorporate principles of reactive systems. What
clearly distinguishes them from other architectures is the
origin from human behaviour modelling.

One of the oldest and most developed cognitive architec-
tures is Soar. It was first introduced by Laird and Newell in
1983 and has been continually developed [8, p.10]. The
intended goal of the Soar project is nothing less than to
recreate the full scope of human-like behaviour, from basic
routine actions to complex problem solving tasks. Current
versions comprise several methods and techniques to
enable both reactive and deliberate behaviour.

2. THE AUTONOMOUS AGENT
In the following we will describe the autonomous agent of
a UAV, without going into detail about the physical proper-
ties and the performance of the vehicle itself. We propose
to implement autonomy as a layered agent architecture
that uses a hierarchical structure with a deliberate planner
on the top and the cognitive architecture Soar on the bot-
tom (see FIGURE 2).

In order to generate plans in a fully observable environ-
ment a deliberate planner is used. Such a planner in-
cludes search algorithms that are capable of finding not
only a solution that is accurate and correct, but which is
good or the best in terms of the given state and goal de-
scription [6]. The resulting plan concerns the top-level
decisions that are necessary to generate an overall mis-
sion application. At the bottom level, Soar is responsible
for handling all low-level decisions and in particular for
reacting to unexpected events. At this level, purely delib-
erate behaviour would be disadvantageous due to fre-
quently occurring unexpected events combined with lim-
ited knowledge about every detail on the environment
which will lead to unknown world and system states. Even

Deutscher Luft- und Raumfahrtkongress 2012

2

FIGURE 2. Left: Agent based solely on Soar; Right:
layered agent architecture

when using sophisticated plan monitors and re-planning
capabilities this easily invalidates overly detailed deliber-
ate plans. The consequence is frequent re-planning and
thus a sub-optimal overall goal achievement. The Soar
agent is better suited for making reasonable decisions in a
complex and dynamic environment, such as in a UAV
domain, where sometimes only limited or incomplete
knowledge is available. Since the Soar cognitive architec-
ture itself is a hybrid architecture, it integrates both the
abilities to react to certain situations and to deliberately
reason about a decision. In addition, it integrates the ca-
pability to use its percept history and to learn from im-
passe resolutions that occurred from a lack of knowledge.
Although Soar is well-suited for low-level decisions that
require fast decision-making, it will not necessarily find an
optimal solution.

In the following, we will focus only on the Soar part of the
agent and describe its capabilities in more detail. The
deliberate planner is discussed elsewhere [6].

2.1. Soar System
In order to generate behaviour, an agent requires encoded
knowledge. In Soar, knowledge is encoded using so-called
working memory elements (WMEs), which can hold any
piece of information. For that, a WME has an identifier, an
attribute, and a value. In case a WME contains several
attribute-value pairs that share the same identifier, it is
called an object, as depicted in FIGURE 3.

(<aircraft> ^altitude 3000 object <aircraft>
 ^speed 120
 ^position <position>)

(<position> ^latitude 48.0 object <position>
 ^longitude 11.5)

FIGURE 3. Working memory element structures

However, working memory alone generates no behaviour.
The structures that store the WMEs and the operators that
change a state are located in the long-term memory. Simi-
lar to human cognition, there are three types of long-term

memory in Soar: procedural, semantic, and episodic
memory (see FIGURE 4).

Procedural memory contains the information from working
memory, which is stored in productions or rules. In Soar, a
production always contains a condition and an action side.
The conditions are responsible for checking whether they
match the current state, and if the rule can fire.

In order to decide which rule to take, Soar uses a decision
cycle that includes the following four phases:

• elaboration: Explicit mapping of the current state
• proposal: Propose appropriate operators that match

the current state and compare them
• decision: Operators are selected based on their pref-

erences, the results from the comparison, or the result
from sub-goaling due to an impasse resolution

• application: Productions fire to apply the operator,
modifying the current state

While executing the proposed applicable operators, their
conditions have to be matched against the state. Assum-
ing a fairly simple problem space with 10 elements in
working memory (W), 20 available productions (P), with
each holding in average 5 conditions (C), this would al-
ready result in 10^1001 necessary comparisons. In order
to avoid this escalating amount, Soar uses the Rete-
algorithm [8, p.23]. Instead of matching each condition to
the working memory, Rete compares only the changes
and stores partial matches additionally.

Finding an appropriate match and thus a decision right
away depends on the available knowledge. If Soar is una-
ble to make progress during the decision cycle, it reaches
an impasse. Soar recognizes four types of impasses:

• state no-change impasse: no preference in working
memory

• tie impasse: multiple operators with equal preferences
• operator no-change: operator remains selected
• conflict impasse: multiple operators with conflicting

preferences

Soar resolves an impasse by using sub-goaling. The re-
sponse is the creation of a sub-state, which holds the
reason for the impasse and a mapping of the state. As
soon as a solution can be found, a production rule (chunk)
is created that contains the condition that caused the im-
passe and the action that solved it. Consequently, working
memory elements can be transferred to procedural long-
term memory by chunking. To prevent repetitive sub-
goaling, those chunks can be stored when learning is
enabled.

Another method to transfer information is reinforcement
learning [8, pp.181f], which is implemented in recent ver-
sions of Soar. Reinforcement learning differs from the
general learning mechanism in such a way that it also
includes a reward-link. Every time the Soar agent comes
across a numerically indifferent preference, it changes the
numeric value, based on the generated reward. An agent
hence learns to choose those operators that lead to the
most promising reward by trial and error.

Recent versions of Soar also support the capability to use
semantic memory, which can be expanded and retrieved
by using declarative chunks (semantic learning). In con-
trast to procedural memory they hold the general

1 W^(C*P) = 10^(5*20) = 10^100

Deutscher Luft- und Raumfahrtkongress 2012

3

knowledge, which does not need to be acquired by learn-
ing. Semantic memory forms the agent’s knowledge about
the world. Unlike procedural memory, however, it is nei-
ther stored as rules nor just in working memory, but as
simple facts.

FIGURE 4. Soar memory structure

Another recent feature in Soar includes episodic memory,
the third type of long-term memory. Using this, entire
snapshots of working memory (episodes) can be created,
which enable the agent to store specific case-based prob-
lem solutions and to remember critical situations that have
occurred in the past.

3. MISSION SCENARIO
Within this article we describe an autonomous UAV agent
that performs a mission in the context of a border surveil-
lance application. Deploying UAVs for this task is favoura-
ble due to their long endurance and vast area coverage.
This scenario is also of particular interest because on the
one hand it is a potential application for real-life civil UAVs
and on the other hand it is well-suited to evaluate the
reliability of an autonomous agent.

Using an agent-based simulation framework (see section
4), the UAV agent will be exposed first to a nominal mis-
sion, where few unexpected events occur and second to a
stressed mission, where the original planned mission will
be invalid due to frequently occurring unforeseen events.
Especially in the second case, the autonomous agent can
demonstrate its capabilities to make decisions even with
incomplete knowledge.

3.1. Nominal Mission
This scenario requires one or more UAVs to patrol a des-
ignated border region and to detect intruders (see FIG-
URE 5). Additionally it contains a ground-based
(un)manned control station (GCS) that is responsible for
managing the overall mission aspects. The GCS also
acquires planning tasks that are executed by the deliber-

ate architecture like issuing a detailed mission description
or managing the UAV deployment. As such, it has access
to all UAVs which are principally assigned for the mission
and which are in one of the following four states:

• available: The UAV is currently deployed for the mis-
sion. It is airborne and exhibits no system errors.

• stand-by: The UAV is capable of being used for the
mission, but is currently not. It is either airborne or on
ground and exhibits no system errors.

• engaged: The UAV is temporarily not available for the
mission, because it is engaged with another task. It
exhibits no system errors.

• unavailable: The UAV is incapable and cannot be
used for the mission due to failures.

In the event that more UAVs are required to take part in
the mission, one UAV in stand-by will receive the mission
plan. The aircraft state then changes to available and the
UAV starts following the assigned tasks.

The primary task will engage the UAV to fly to the search
area. Within the search area the UAV starts scanning the
border region by using an appropriate search strategy
which depends on the sensor coverage and on the proba-
bility that intruders will cross the border at a specific region
(with reference to the landscape and previously encoun-
tered violation occurrences).

As soon as a UAV detects an intruder or a group of intrud-
ers, it transmits its current position, as well as live video
images to the GCS. The GCS then decides whether the
UAV shall further track the intruder or whether it shall
search within surrounding areas for additional violations,
due to a false alarm (detected object is not an intruder).

At the same time, the GCS notifies the local border patrol
of the detected violation by delivering the aircraft’s position
coordinates, its path, as well as real-time imagery. De-
pending on the GCS’s decision of whether the UAV shall
track the object or not, the UAV will change its status to
engaged or will continue searching (state: available). The
surrounding UAVs will then cover the search area of the
preoccupied UAV until manned ground units take over or
the intruder vanishes.

3.2. Stressed Mission
A nominal mission is unlikely to occur in reality. Conse-
quently, the robustness of the agent is tested when con-
fronted which typical stressors such as system failures or
other aerial traffic. A selection of stressors that were ap-
plied to test the reliability of the agent and the suitability to
use the Soar cognitive architecture include the following:

• Moderate System Failure
A moderate system failure is a system failure that
does not interfere with the aircraft maintaining a safe
flight condition, but which hinders the resumption of
the mission (e.g. loss of camera signals).

• Close Traffic
In order to avoid a Traffic Alert and Collision Avoid-
ance System (TCAS) violation or even a mid-air colli-
sion, the agent is temporarily required to interrupt the
mission until it senses no traffic in proximity anymore.

• Adverse Weather
Minor fog, high humidity or clouds, for instance, hin-
der the mission execution because the UAV is una-
ble to detect and follow intruders due to poor camera

Deutscher Luft- und Raumfahrtkongress 2012

4

image quality. Furthermore, strong winds or hail can
affect the safety of flight itself.

• Critical Level of Resources
A critical level of necessary resources such as low
fuel also prevents the agent from continuing the mis-
sion.

• Multiple Intruder Detection
When observing an intruder an additional intruder
appears, this might clobber its goal to follow the pre-
viously detected intruder.

• Unavailable Landing Place
A UAV decides to land at an airport for refuelling.
While approaching the area, it recognizes that the
landing place became unavailable. The level of diffi-
culty to find an appropriate solution rises when the
amount of fuel already reached a critical level.

Besides confronting a UAV with a single one of these
stressors, the level of difficulty for the agent to find a rea-
sonable decision further increase when multiple stressors
are combined at the same time. The autonomous agent is
then analysed by its capability to find a solution, especially
when more than one option is available.

3.3. Mission Complexity
Mission complexity is a key factor with respect to a poten-
tial scenario. It is classified into three categories: mission,
team, and communication management. Mission man-
agement describes the ability for a given mission to have a
high amount of diverse capabilities and goals. This gives
the agent the opportunity to act upon a broad number of
possibilities. Hence, the mission puts no or few constraints
on the UAV’s capabilities. Team management, on the
other hand, describes to which extent members or agents

of the team are able to cooperate and to maintain them-
selves. The capability for them to communicate and per-
haps start a formation within the mission is specified in
communication management.

Based on those definitions, the prevailing mission fulfils
the following requirements and thus results in a mission
that is complex enough to test the agent’s capabilities:

• Mission Management: high amount of goals and mis-
sion specifications

• Team Management: need for cooperation given
• Communication Management: need for formation

control and/or ATC given

In order to classify the degree of autonomy required by
this mission within the Autonomous Control Levels (ACL),
we need to consider the following aspects. The chosen
scenario allows for a moderate level of communication
and cooperation between the UAVs, thus increasing the
independence from human intervention significantly. Con-
sidering the scope and complexity of the mission an ade-
quate prediction capability as well as real-time analysis
and decision-making are required. The mission environ-
ment can be considered challenging and thus demands an
advanced level of perception and situational awareness.
Therefore, the ACL ranges between four (communication,
cooperation, and decision-making) and five (perception
and situational awareness).

4. SIMULATION ENVIRONMENT
Simulation is a significant aspect in every modern devel-
opment process. It allows optimising the developed sys-
tem with regard to its future task area in an early stage of

FIGURE 5. Stressed sample mission, where the numbers indicate the mission sequence.

Deutscher Luft- und Raumfahrtkongress 2012

5

the project and helps to cut project costs. Therefore, de-
veloping a comprehensive simulation framework was
considered a substantiate part within the development of
the autonomous agent. In order to validate the behaviour
of the developed autonomous system, the simulation envi-
ronment provides the decision-finding system with all
relevant data and simulates the execution of the generat-
ed action plans.

A promising approach in modern software development is
the concept of agent-based modelling and simulation.
Since software agents have a lot in common with autono-
mously operating UAVs, it seems plausible to realise the
simulation environment in the context of an agent-based
simulation platform. For this purpose, the agent-based
modelling toolkit A-Globe was used. It was developed by
the Agent Technology Group at the Czech Technical Uni-
versity in Prague under sponsorship of the U.S. Air Force.
[1, p.1]

FIGURE 6. Simulation environment architecture

One of the main design considerations in the development
of the simulation environment was modularity. In view of
this, the architecture is divided into the functional areas of
Resources, Activity, Exchange and Presentation, as de-
picted in FIGURE 6. The area of Resources consists of
data which form the basis of the physical world and which
are contained in external files. The field of Activity is made
up of the autonomous agents who possess the ability to
perceive the current state of the world and their fellow
agents and plan their actions accordingly. Every agent’s
state is simulated independently, thus the simulation oper-
ates on a rather decentralised level. FIGURE 7 depicts the
simulation loop as well as the sensor and effector chains
within the agent.

The central component of the simulation framework is the
World Model, which forms the area of Exchange. By gen-
erating an internal representation of the physical world, a
mission environment is created in which autonomous
entities can exist and operate. The World Model consists
of a database which stores information about terrain,
weather and objects in the world, such as airports or ob-
stacles. It also holds the states of all simulated agents, in
order to allow interaction between them.

The connection to the decision-finding system is estab-
lished via a generic bus simulation. The sensor data is
abstracted by using a universal message catalogue which
has an xml-based standardised format defining the name,

range and accuracy of the transmitted data and the posi-
tion of the signal on the bus. The decision-finding system
uses the same message catalogue to decode the bus
signals and convert the data into physical values. This
interface assures that several autonomous systems can
be easily linked with the rest of the agent simulation and
can be compared to each other.

FIGURE 7. The agent’s inner simulation loop

The simulated autonomous agents can be equipped with
different levels of autonomy, which may range from pure
reactive bearing, following simple rules to highly deliberate
behaviour as a sequence of complex actions. The gener-
ated action plan of the decision-finding system is carried
out and the activities of all simulation participants are
visualised and recorded. This gives the developer the
opportunity to monitor, validate and further optimise the
functionalities of the autonomous system. For the simula-
tion of the UAV's motion, a linear four DOF flight dynamics
model is employed. This is derived from a six DOF flight
dynamics model by restricting pitching and rolling motion
as well as neglecting any sideslip. This simplification was
made to receive a flight dynamics model with sufficient
accuracy to simulate autonomous agents while at the
same time avoiding the effort to develop a comprehensive
flight dynamics model. Consequently, the focus lies on the
accurate simulation of autonomous behaviour rather than
detailed motion.

FIGURE 8. The GUI of the simulation environment

Deutscher Luft- und Raumfahrtkongress 2012

6

Finally, the aspect of Presentation includes a graphical
user interface (GUI, see FIGURE 8) which fulfils two im-
portant functions. On the one hand, it serves as the prima-
ry means for illustrating the simulation activity and thus
gaining insight into the mode of action of the autonomous
decision-making system. On the other hand, it offers the
operator the possibility to interact with the simulation by
controlling the simulation speed, making live modifications
to the mission environment or creating new agents. Mis-
sion simulations can be automated by scripting a course of
events. Further functions allow the analysis of internal
procedures of the planner and the creation of arbitrary
mission scenarios using an interactive mission designer as
well as recording and replaying all events into/from a da-
tabase or file.

5. IMPLEMENTATION
Most agent architectures are well-suited to perform a cer-
tain type of task, such as route planning or task decompo-
sition, whereas they fail on tasks which they are not in-
tended for. Even the Soar cognitive architecture is rather
meant for modelling human cognition than for providing a
complete architecture for unmanned vehicles. Due to its
cognition model it is suitable for a wide range of applica-
tions such as simulating aircraft pilots in combat [5], simu-
lating opponents in a video game [7], or learning from
instructions [4]. For the application in a real UAV scenario
however, using solely a cognitive agent architecture is
difficult. Therefore, the proposed UAV agent has a two-
level layered architecture where the Soar module’s task is
to handle the en-route short-term decisions.

The following sections provide an overview of the Soar
component of the UAV agent and the results from the
mission application. The deliberate planner is discussed in
a different work [6].

5.1. Soar Module
The Soar cognitive architecture already provides general
knowledge that is necessary for processing information,
selecting suitable operators, resolving impasses, and for
storing the experience from the interaction with the envi-
ronment. We further define three types of productions that
are stored as production rules in procedural memory and
that integrate the knowledge to generate the behaviour in
the UAV domain:

• system-specific knowledge (UAV)
• flight-specific knowledge (general manoeuvres)
• mission-specific knowledge (border surveillance)

System-specific knowledge concerns those productions
that are explicit for the use in a UAV. Those rules are
mainly pre-defined and include systems such as the
UAV’s sensors and actuators, containing, for instance, the
rules that detect an unintended engine shut-down.

One solution for an engine failure could be to perform an
emergency landing. The rules to accomplish this kind of
task are defined within the flight-specific productions. They
concern the aircraft’s movement and flight-specific ma-
noeuvres, including aerial refuelling and collision avoid-
ance. It is important to note that none of these productions
replace an existing aircraft system such as the Traffic Alert
and Collision Avoidance System (TCAS), the Flight Man-
agement System (FMS) or the weather radar. Instead,
they extend the scope of these systems by, for instance,
enabling collision avoidance even with objects that are not

equipped with a transponder (such as gliders or terrain).
Furthermore, the obstacle recognition need not be limited
to the TCAS range.

The productions that are necessary to accomplish a mis-
sion, however, are defined using mission-specific
knowledge. In contrast to the other production types, those
rules are only pre-defined to a certain extent. Consequent-
ly, they will develop further while interacting with the envi-
ronment to improve the agent’s decision-making.

As outlined in FIGURE 9, each type of knowledge can be
further sub-divided into problem spaces. A problem space
contains those productions that belong together such as
Communication, Team, or Mission. However, there are
also productions that are not tied to a problem space like
Flying, Searching, and Intercepting. Those productions are
necessary to provide tasks that can be performed at any
time.

FIGURE 9. Selection of problem spaces

In order to decide which problem space has a higher prior-
ity, a top problem space (ps-top) is defined which con-
tains the rules to prioritise. For instance, in general it is
more appropriate to terminate the mission execution, if
refuelling is necessary. Therefore, the problem space for
refuelling (ps-refuel) has a higher priority than the one
for searching (ps-search). In another occasion, however,
this decision is rather inappropriate. If, for instance, there
are only few or no UAVs available that can cover the
search area and the aircraft has still sufficient fuel to reach
more than one refuel place, ps-search would have a
higher priority than ps-refuel.

5.2. Mission Application
To test the reliability of the agent it was exposed to several
scenarios in the simulation framework including different
levels of stressors. First, the decision-making capabilities
are analysed when detecting an intruder in a simulation
that contains two available UAVs. The difficulty here does
not concern the confrontation with multiple stressors, but
rather the reliability of the decision itself. As depicted in
FIGURE 10 there is more than one appropriate rule avail-
able. In order to find the most suitable one (based on its
current knowledge), the agent uses sub-goaling. Conse-
quently, the UAV agent (uav-1) decides to follow the in-
truder, which results in the second UAV expanding its
search area. While following the intruder, uav-1 recognis-

Deutscher Luft- und Raumfahrtkongress 2012

7

es after five2 additional decision cycles that it is incapable
of just following the intruder without changing its pursuit
strategy.

FIGURE 10. Multi-option reliability

The decision tree in FIGURE 10 also outlines that the UAV
decides to follow the intruder by making circles and starts
reflecting the decisions whether it is appropriate. For ana-
lysing the strategy the agent uses reinforcement learning,
which enables it to become more accurate with every time
that it is confronted to use a pursuit strategy for following a
certain intruder.

FIGURE 11. Multi-stressor reliability

In a second simulation, the reliability of the agent is tested
when being confronted with multiple stressors. Again, the
simulation starts with two UAVs, which search for intruders
in a given area. Three stressors are now applied at the
same time for uav-1: first, an intruder appears, second,
another airborne object forces the UAV to avoid a colli-
sion, and third, the fuel amount drops below the safe level.
Each of those stressors alone obliges the agent to make

2 The number of time steps to track an object (such as an intruder
or a manned aircraft) is set to five, in order to achieve a probable
path extrapolation outcome.

several decisions. Combining them increases the stress
level, especially as this case is not pre-programmed.

An overview of the sequence of problem spaces which are
entered in order to satisfy the top-level goal (avoiding a
collision with any object at any time) is shown in FIGURE
11. In the scenario simulation, the agent decides to avoid
the collision immediately, even though it was not yet immi-
nent, and subsequently loses track of the intruder. This
behaviour is not optimal and driven by the primary goal to
avoid any collision. An improved behaviour can therefore
be achieved by choosing a more indirect primary goal,
namely for the agent to survive. Exposing the agent with
the new primary goal survive, instead of avoiding-
collision, the simulation with three stressors results in
the desired behaviour: the agent first requests support
from the second UAV and later on avoids the collision
before it finally returns to the base for refuelling.

Applied to the mission as described in section 3 these
aspects can be summarised in the following conclusions.
Since the autonomous agent was designed for the nomi-
nal mission, this scenario is always resolved correctly. The
application of stressors reveals the strengths and weak-
nesses of the Soar agent. If the mission contains only one
or few stressors, this does generally not pose a problem to
the system. However, if more stressors are applied, the
performance deteriorates, leading to decisions which are
feasible, but sometimes unreasonable. This behaviour
depends not only on the number of stressors, but rather
on their complexity and the temporal density of their occur-
rences. While adverse weather and a critical level of re-
sources are comparatively simple stressors, multiple in-
truder detection and close traffic require a great number of
inner decision and elaboration cycles. Furthermore, the
correct choice of the top problem space is crucial to yield a
good decision due to the changed processing order. For
instance, the selection of the top problem space survive
leads to a significantly more favourable result. Therefore,
by choosing a proper primary goal which in particular is
not too explicit, it is possible to address all stressors cor-
rectly.

5.3. Simulation results
Situations that require fast deliberate decision-making
such as avoiding a collision are well-qualified for learning.
Using look-ahead learning, for instance, the agent will
always find the correct solution within a single decision
cycle. After being confronted with the situation and solving
it for the first time, the agent stores the decision in a chunk
(as long as learning is enabled). This relationship is de-
picted in FIGURE 12. However, assuming that the situa-
tion changes partly (as simulated in the seventh run), the
agent enters an increased amount of elaboration cycles,
which results in an increased amount of production firings
as well. The diagram also outlines that once a decision
was stored in a chunk and the situation reoccurs, the
agent will find the best decision right away again.

Storing each decision and analysing each path that leads
to the desired state results in the best solution, but also in
a performance decrease. Thus, using look-ahead planning
is only appropriate when the situation necessitates optimal
behaviour and if limitations regarding the hardware and
the performance are acceptable.

Apart from look-ahead planning, another suitable way of
learning during a collision avoidance scenario is rein-

Deutscher Luft- und Raumfahrtkongress 2012

8

forcement learning (RL). In RL, an agent learns the best
policy (in this case the best sequence of actions), based
on reward returned from the environment. The advantage
of reinforcement learning compared to look-ahead plan-
ning is that in order to find the best policy, the agent uses
a cumulated reward. This means that the agent considers
that even if a present decision results in a positive reward
due to its former experience, the decision will not always
be the best one, because the situation might differ. FIG-
URE 13 illustrates that within the same situation, the num-
ber of decisions reaches its final low after four runs. The
same is true for production firings and elaboration cycles,
since they correlate. In this case, the partly changed initial
conditions result only in a slight increase in elaboration
cycles and production firings. Compared to look-ahead
planning, RL is well-integrated in Soar, having nearly no
impact on the performance. Consequently, RL is a good
measure for increasing an agent’s overall performance,
especially in situations that do not necessitate optimal
behaviour, but which require fast deliberate decision-
making.

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

runs [-]

nu
m

be
r o

f p
ro

du
ct

io
n

fir
in

gs
, d

ec
is

io
ns

, e
la

bo
ra

tio
n

cy
cl

es
 [-

]

production firings [-]
decisions [-]
elaboration cycles [-]

FIGURE 12. Number of production firings, decisions,
and elaboration cycles with look-ahead
learning

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

runs [-]

nu
m

be
r o

f p
ro

du
ct

io
n

fir
in

gs
, d

ec
is

io
ns

, e
la

bo
ra

tio
n

cy
cl

es

production firings [-]
decisions [-]
elaboration cycles [-]

FIGURE 13. Number of production firings, decisions,
and elaboration cycles with reinforcement
learning

5.4. Suitability of Soar
Using the border surveillance mission, it could be shown
that Soar is capable of making detailed decisions even
during unforeseen events. Its main strength is that on the

one side it differs from pure reactive systems which simply
react to the present situation without further consideration
of the environment or the future. On the other side, it is
also better suited than a pure deliberate system because it
is more flexible when confronted with unforeseen events.

The main advantage of Soar, however, is its ability to form
complex behaviour from the interaction with the environ-
ment and not by following pre-programmed action se-
quences. Instead, it finds solutions by forming new opera-
tors.

Still, Soar is not a planning system and therefore not as
well-suited as a pure planner [6] for finding an optimal
solution for an overall mission plan. When the learning
components of Soar are enabled, the Soar agent adapts
and improves over time by using its experience. There-
fore, it offers various methods for deducing a learning
strategy and for learning solutions (reinforcement learning,
semantic learning, episodic learning, chunking). Although
each of these strategies aims at storing experience in
long-term memory, they differ in the time of their appear-
ance and the type of their implementation. Whilst episodic
learning and chunking will serve to reduce the search
time, reinforcement learning aims at improving the solu-
tion.

6. SUMMARY
Unmanned aircraft are deployed in domains that humans
are not active in due to safety issues or an adverse mis-
sion environment. However, UAVs are not supposed to
work completely autonomously without any human in-
volvement, be it spontaneous intervention, remote control
or simply provision of the mission objectives. It is thus not
desired or required for a UAV to be completely autono-
mous in terms of its overall deployment. Nevertheless, a
higher degree of autonomy allows a lower workload for
human operators or enables a human operator to control
several UAVs at the same time. More autonomy is also
useful in the event of limited or lost communication as it
allows the UAV to continue its mission alone instead of
requiring a premature return to base.

Flight safety is a critical aspect for UAV usage as aviation
is more focused on low accident rates and consequently
on a high safety rate than any other means of transporta-
tion. Consequently, increased autonomy especially with
systems such as Soar, where the outcome of a decision is
not always easily predictable, are difficult to use in avia-
tion. There are two possible scenarios how to benefit from
a cognitive architecture but at the same time maintain safe
flight. First, the cognitive architecture is clearly separated
from any safety critical aspects of the system. No decision
of the Soar agent may interfere with a flight-critical aspect
of the system. Second, safety-critical monitors are imple-
mented which verify any decision made by the cognitive
architecture. Decisions are rejected if they contradict a
safe flight. For example control commands outside the
flight envelope or commands violating TCAS orders are
rejected. The system then falls back to the pre-
programmed mode which handles such a situation as any
system without autonomy would.

The agent-based simulation environment has proven to be
a valuable tool for evaluating the function of the autono-
mous agents during the development process. All motion
and behaviour of the agents and the world can be simulat-
ed and test missions can be designed rather freely. Thus,
any of the required traffic situations, intruders or obstacles

Deutscher Luft- und Raumfahrtkongress 2012

9

can be simulated, including the reaction of the agent. A
defined mission setup and a scripted course of events
help recreating identical situations to compare different
versions of the autonomous agent. Additionally, an intui-
tively operable graphical user interface facilitates analys-
ing and understanding the behaviour of the simulated
agent. The modular design of the simulation environment
supports easy maintenance and makes it possible to ex-
pand it as the need arises.

The proposed UAV agent uses the advantages of a lay-
ered architecture where a high-level planner generates an
overall mission plan and the cognitive architecture Soar is
used for en-route decisions and reactions to unforeseen
events. High-level planners perform very well on complex
route and mission planning problems in a well-known
environment. However, one major aspect when deploying
UAVs for patrolling a border region is the concern of a
limited situational awareness and a constantly changing
environment. In this case the Soar architecture can show
its strength by handling unexpected events and coping
with a just partially known environment.

Soar performs very well on such an intermediate level,
located between a reactive or pre-programmed system
and a deliberate planner. In particular, it provides more
autonomy than a purely reactive system. Still, Soar is not
a deliberate planner which would yield an optimal plan
(although such an implementation is in principle possible),
therefore it is not used for high-level mission plans.

To increase flexibility, the cognitive part of the proposed
agent includes only a small amount of pre-programmed
task sequences. The majority of complex actions evolve
from both interaction with the environment and innate
learning mechanisms. The simulation demonstrates that
the use of learning mechanisms can be advantageous as
long as it is reduced to individual problem spaces or sub-
tasks and the agent is given the ability to unlearn behav-
iour as well. Parts of the learning process are problematic
in real UAV applications where decisions should be right
the very first time. However, it is possible to expose the
agent to typical scenarios in a simulation environment
where part of the learning process can already be under-
gone. Other parts of the learning (e.g. chunking) are not
critical as they only serve to improve performance and can
be done at any time during a mission.

With a growing demand for the deployment of UAVs in all
types of civil and military applications the necessity for
more autonomy will also increase. In both the nominal as
well as the stressed mission the Soar agent was able to
handle all applied stressors successfully. We conclude
that the proposed concept for using Soar as one part of a
layered architecture of an autonomous UAV agent is a
promising approach for equipping the vehicle with more
autonomy.

ACKNOWLEDGEMENTS
This work was supported by SILVER ATENA Electronic
Systems Engineering GmbH in Munich, Germany. The
authors would also like to thank FH-Prof. Dipl.-Ing. Dr.
Holger Flühr and Dipl.-Ing. Dr. Bernd Messnarz of the
Department of Aviation at the FH JOANNEUM University
of Applied Sciences in Graz, Austria, for their valuable
contributions and comments.

REFERENCES
1 Agent Technology Center, “A-Globe Manual," [online

paper], URL: http://agents.felk.cvut.cz/download/
aglobe/aglobe-manual.pdf [cited 23 Jun 2010].

2 Clough, B. T., “Metrics, Schmetrics! How the Heck
Do You Determine A UAV's Autonomy Anyway?" in
Proceedings of the 1st AIAA Conference on Un-
manned Air Systems, No. 990, Gaithersburg, Mary-
land, 2002, pp. 313-319, URL:
http://www.cs.uml.edu/~holly/91.549/readings/clough
-permis02.pdf [cited 7 June 2011].

3 Gunderson, J. P. and Gunderson, L. F., “Autonomy
(What's it Good for?)," PerMIS '07: Proceedings of
the 2007 Workshop on Performance Metrics for Intel-
ligent Systems, ACM, New York, NY, 2007, pp. 141-
147.

4 Huffman, S. B. and Laird, J. E., “Learning from in-
struction: A knowledge-level capability within a uni-
fied theory of cognition,” Proceedings of the Fifteenth
annual Conference of the Cognitive Science Society,
1993.

5 Jones, R. M., Tambe, M., Laird, J. E., and Rosen-
bloom, “Intelligent automated agents for flight training
simulators,” Proceedings of the Third Conference on
Computer Generated Forces and Behavioral Repre-
sentation, P.S., Orlando, FL, 1993.

6 Kreinbucher, B., “Autonome Entscheidungsfindung
für unbemannte Luftfahrzeuge unter Verwendung
von hierarchischer Aktionsplanung,” Diploma thesis,
FH Joanneum University of Applied Sciences, Graz,
2010.

7 Laird, J. E., “It Knows What You’re Going To Do:
Adding Anticipation to a Quakebot,” [online paper],
Ann Arbor, Michigan, 2001, URL:
http://ai.eecs.umich.edu/people/laird/papers/Agents0
1.pdf [cited 29 June 2012]

8 Laird, J. E., The Soar Cognitive Architecture, MIT
Press, Cambridge, Massachusetts, London, England,
2012.

9 Müller, J. P., “The Right Agent (Architecture) to Do
the Right Thing,” in Intelligent Agents V: Agent Theo-
ries, Architectures, and Languages, edited by J. P.
Müller, A. S. Rao, and M. P. Singh, Vol. 1555 of Lec-
ture Notes in Computer Science, Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Heidel-
berg, New York, July 1999, pp. 211-242.

10 Russell, S. J. and Norvig, P., Artificial intelligence: A
modern approach, 3rd ed., Prentice Hall Series in Ar-
tificial Intelligence, Prentice Hall, Upper Saddle River,
New Jersey, 2010.

11 The Royal Academy of Engineering, „Autonomous
Systems: Social, Legal and Ethical Issues“ [online
paper], The Royal Academy of Engineering, London,
2009, URL:
http://www.raeng.org.uk/societygov/engineeringethic
s/pdf/Autonomous_Systems_Report_09.pdf [cited 29
June 2012].

12 Wooldridge, M. J. and Jennings, N. R., „Agent Theo-
ries, Architectures, and Languages: A Survey," in
Intelligent Agents III, edited by J. P. Müller, Vol. 1193
of Lecture Notes in Computer Science, Lecture
Notes in Computer Science, Springer-Verlag, Berlin,
Heidelberg, 1997.

Deutscher Luft- und Raumfahrtkongress 2012

10

