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Abstract

In this paper, we explore the hypothesis that eiso
memory is a critical component for cognitive arehttires
that support general intelligence. Episodic menmnrgriaps
with case-based reasoning (CBR) and can be segtaz&-
independent, architectural approach to CBR. Wendetfie
design space for episodic memory systems and tteziar
any implementation must meet to be useful in a itivgn
architecture. We present an implementation and
demonstrate how episodic memory, combined with rothe
components of a cognitive architecture, supportealth of
cognitive capabilities that are difficult to attairthout it.

Introduction

Episodic memory was first described in detail byving
(1983). Episodic memory is what you “remember,” and
includes contextualized information about speodfients,
such as a memory of a vacation or the last time hewl
dinner. In contrast, semantic memory is what yoniotk,”
and consists of isolated facts that are decontbxtgh—
they are not organized in a specific experience aral
useful in reasoning about general properties ofvihdd,
such as knowing that George W. Bush is presideR00v.
Episodic memories allow you to extract informatiand
regularities that where not noticed during the ioag

experience and combine them with current knowledge.

There are only limited examples of computational
implementations of episodic memory for integratgdrds.
The “basic agent” created by Vere and Bickmore ()99
had a primitive episodic memory capability (a liddest of
prior states), that was used only in a limited céggsuch
as to answer questions). Ho et al. (2003) desenibagent
that uses a task-specific implementation of episodi
memory to locate previously encountered resources.

Episodic memory is related to case-based reasoning
(CBR) (Kolodner 1993). In many CBR systems, a case
describes the solution to a previously encounteretdlem
that the system retrieves and adapts to new prahldlo
matter what the exact approach, the structure sééthe
specific fields in the case) are designed by a mufoaa
specific task or set of tasks, limiting their geality. For
example, continuous case-based reasoning (Ram &
Santamaria 1997) relies upon cases that consisheof
agent's sensory experiences, but none of its iatlgrn
generated abstractions.

We extend the CBR paradigm by integrating episodic
memory with a general cognitive architecture and
developing task independent mechanisms for enceding
storing, and retrieving episodes, none of which enak
assumptions about the structure or contents oépisodes.

In this paper, we present the design space foodijais
memory implementations, followed by a descriptidroor
implementation(s) of episodic memory as integrateith

Episodic memories can sometimes be retrieved as athe Soar cognitive architecture. Our hypothesisthist

sequence (like a movie) and commonly contain
approximate or relative temporal information.

Episodic memory is a capability that we take farged
in humans, except when an accident or diseaseléssib
When that happens, the resulting amnesia is deirggta
Oddly enough, the vast majority of integrated iligeht
systems ignore episodic memory, which often dodrest
to what can be achieved by people with amnesiagiwisi
demonstrably limited. Our hypothesis, supportedhbynan
amnesia data, is that episodic memory is criticad f
providing a memory of previous events, but also for
supporting a host of additional cognitive capaieiitthat
greatly enhance the reasoning and learning capebibf
an integrated intelligent agent.
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episodic memory supports multiple cognitive captéd,
which we describe. We confirm our hypothesis with
implementations of three of those capabilities in a
moderately complex task. Previous work on integrati
episodic memory with Soar (Nuxoll & Laird, 2004)sha
studied only a simple task and a single cognitagability.

Episodic Memory Design Space

Learning mechanisms embedded in cognitive architest
have three stageencoding information from the current
situation, storing it, andretrieving it. There is also a final
stage ofusing the information to influence behavior, but
this draws on the general capabilities of the aechire,
independent of the structure of episodic memoryghEaf
these stages has subparts, with design choicetotiether
determine the space of possible episodic memorigues
Thus, one aspect of our research is to searchghrthis
space of possible designs considering the imptioatiof



each choice on episodic memory functionality. Tastion
describes the design space and the choices we foraoler
current implementation. For the most part, we hehvesen
the most general approach to episodic memory.

Encoding

» Encoding initiation: When is an episode encoded? This
can be determined deliberately by the agent ordcbal
automatic at some specific time during the agent's
processing. In our current approach, an episode is
encoded each time the agent takes an action.

» Episode determination: What are the contents of an
episode? In our implementation, an episode consefsts
the agent's current state, which includes percaptio
motor commands, and internal data structures. Vitnen
episode is recorded, only features whose activatioel
(defined later) exceeds a preset threshold araded.

» Feature selection: Is a subset of features in the stored
episodes selected for matching during retrieval®un
current implementation, the entire memory is used.

Storage

» Episode structure: What is the structure of the episodic
memory store? This is important because the streictu
influences the efficiency of storage and retriewale
describe two alternatives in subsequent sections.

» Episode dynamics: Does the content or organization of
the episodic store change over time, such as throug
forgetting or generalization? In our system, thisagtic
store is static without forgetting or reorganizatio

Retrieval

» Retrieval initiation: When is an episode retrieved? Is
retrieval initiated deliberately or is spontaneoesieval
possible using the complete current situation age® In
our implementation, deliberation retrieval is iaigd
when the agent creates a cue.

» Cue determination: How is the cue specified? In our
implementation, a cue is created in a reservedquoadf
the agent’s temporary memory and the cue can ieclud
not only specifications of what exists in the mad
episode, but also what cannot exist.

» Retrieval: Given a cue, which episode is retrieved? Our
system uses activation and recency biased partitdhm
Details of our matching algorithm are in the neadt®n.

» Retrieved episode representation: When an episode is
retrieved, how is it represented in the agent? Our
implementation represents the episode in its entiseh
an annotation that it is a retrieved episode.

» Retrieval meta-data: Is there additional meta-data about
the episode and its match to the cue? Our systeeia-
data includes: data about the strength of the match
the relative time that the episode was recorded.

Outside of the mechanics of the episodic memory
system is the question, “How is the retrieved memor

used?” Addressing this question leads directly he t
cognitive capabilities described later in this pape

One final concern is that an episodic memory system
must meet practical resource requirements — thé aos
using it should not outweigh its benefit. Thus,oalgs that
the growing need for computational resources camee
at reasonable cost for the predicted existenckechgent.

Episodic Memory I mplementation in Soar

Our implementation of episodic memory is embedded i
Soar (Newell 1990) as shown in Figure 1. Soar s

it procedural long-term knowledge as productioresullt
represents short-term declarative knowledge imisking
memory, which includes internally generated strresu
motor commands, and structures created by pereceptio
When conditions of rules match working memory, sule
“fire” and create new structures in working memory.
Deliberate action in Soar is generated by rulep@sing,
comparing, and evaluating, and applying operaiiisile,
rules fire in parallel as soon as they match, anlsingle
operator is selected and fired during Soar’s deuisiycle.

Long-Term Memories
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Figure 1: The Soar Architecturewith Episodic Memory
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To provide a task-independent method of identdyin
important working memory elements (WMES), a working
memory activation system was added to Soar (Nuoll,
al. 2004) that was based on the activation scheme i
ACT-R (Anderson and Labiere 1998). The activation
levels of WMESs are increased whenever it is tested
rule, indicating it is important to the current pessing.
The activation of a WME decays exponentially oweet

Episodic Memory Integration

In our implementation, snapshots of working memarry
captured and automatically stored in episodic memor
Everything in working memory is stored in the episo
except for WMEs with very low activation (indicagithey
were not recently created or tested).

Episodic memory is queried by an operator creating
structure in the cue area of working memory. Thiscte
that is the best match to the cue is found and sitgabin
the retrieved area of working memory.



Episodic Memory Matching Algorithms

An effective and efficient episodic memory systé&m
dependent on the data structures for storing epsaahd
the algorithms for retrieving episodes, which must
minimize storage and computational expense, while
providing an expressive language for retrievingseges
using partial match. (Early experiments using exaatch,
while efficient proved inadequate for flexible ietral.)
Thus we developed and experimented with two allgort
and associated data structures, which we labehriost
based (where each episode instance is explicidyed)
and interval-based (where episodes are represémytea
record of the intervals when individual WMEs exite
Both partial matching algorithms rely upon a dadtacture
called the working memory tree. The tree retaimscord
of each unique WME that has ever existed.

The instance-based approach uses a data strubtatre t
holds instances of each episode. Instead of statieg
actual WMEs, it stores pointers to nodes in thekingy
memory tree (seeFigure 2). A memory cue is a
conjunction of WMESs. In response to a cue, theaims-
based algorithm retrieves a matching episode &sAfsi

1. For each element in the cue, the corresponding entr
in the working memory tree is found, which
includes a list of all episodes it appeared in.

2. The set of episodes that contain at least one rieatu
of the cue are collected.

3. The “best matching” episode is then selected. én th

simple case, this means selecting the episode that
includes the most cue elements (biased by recency).

Episodic
Working Memory Tree Memories
2
z .
s =
Q | —
H =
) =
£ ]
£ =
s IEY
S —1
£
2
2
c
t
g nsta
Q
w
ful

Figure2: Data structuresfor instance-based matching
The instance-based algorithm requires O(hm) time to
complete (where ‘n’ is the size of the cue and imthe
number of episodic memories that include at least cue
element). The cue is usually small and does nat greer
time. In the worst case, the size of ‘m’ is equattte size
of the episodic memory store, but its expected isizauch
smaller, especially as different tasks are pursketpirical
measurements of existing systems show that the time
grows linearly with the size of the episodic store.

Our second matching algorithm was inspired by the
observation that two sequential episodes are \viemilas.
In this approach, we eliminate the explicit repreagon of
the episodic memories. To compensate, we modified t

working memory tree so that each node containsteofi
the intervals in which the WME existed (see FigBlre
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Figure 3: Data structuresfor interval-based matching

When a memory cue is created, the interval-based
algorithm retrieves a matching episode as follows:

1. For each entry in the memory cue, the system finds
the corresponding node in the working memory tree,
and extracts its interval list.

All extracted intervals are merged together into a
larger set of intervals where each interval
corresponds to a unique combination of matching
cue elements at a specific time.

The merged list is traversed to locate the randk wi
the highest match score.

The episode is recreated by traversing the working
memory tree and locating each node that includes
the selected interval.

The complexity of this algorithm is O where ‘n’ is the
size of the cue and ‘I is the average size of lie of
intervals in each node of the working memory tras.
with the instance-based algorithm, these two véemhbre
not independent. If the size of the cue is smaltl an
relatively constant, we observe linear growth ingassing
time. In our research domains, the interval-basgarithm
was approximately 15% faster than the instanceebase
algorithm and required roughly on quarter of themogy

to store the same number of episodes.

Both of these methods fail the computation bound

requirements. There are three responses to thidggmo
1.Develop new algorithms that meet these
requirements. Given the inherent need for more and
more memory to store episodes, this is unlikelyngisi
standard von Neumann architectures, but may be
possible with alternative computational architeeg,r
such as content-addressable memories.
2.Modify the dynamics of episodic memory so that the
number of episodes is bounded. This could be
achieved via forgetting. Although this has
possibilities, any fixed bound will ultimately hawe
negative impact on a general intelligent agent.
3.Determine the bound on the number of episodes that
can be efficiently processed and restrict our use o
episodic memory to problems that meet that limit.
We have adopted approach #3. We use and experiment
with episodic memory in agents we develop, but we a

3.

4.



limited to the length of our system’s experiencgstive
computational
correspond to roughly four hours of human expeggnin
the end, option #1 is probably the only viable apgh, but
that requires development of special purpose haejwa
which is beyond our current resources.

Selection Bias

As episodic memory grows, usually there will be enand
more episodes that have some relationship to tke ©fi
all these episodes, which one should be selectdd? T
simplest approach it to choose the episode thaides the
largest number of elements from the cue, giving all
elements of the cue equal weight. This puts thes @muthe
agent to create a selective cue, which can becditfiThe
agent might not know which features are importéatrly
work on episodic memory in Soar demonstrated thatgu
activation level for biasing episodic retrieval mificantly
improved the quality of performance (Nuxoll & Laird
2004). Activation provides a simple but powerfulltistic
for selecting which elements of the cue are impurta
within the current problem-solving context.

Our research has extended that work by enrichieg th
cue description so that the agent can also spspigific
WMEs thatcannot be in the cue. This extension improves
performance by eliminating the retrieval of episodeat
the agent knows it will not use. In addition, when
requesting a retrieval, the agent can signal thspexific
episode should not be retrieved (such as when eodp
has been retrieved and found to be inadequate).

Episodic Memory Cognitive Capabilities

Once we have an episodic memory system, what good i

it? In this section, we list cognitive capabilitighat

episodic memory helps support. We do not claim thist
list is complete, or that episodic memorynicessary to
achieve these capabilities (which would require @acin
more extensive analysis of the cognitive capabditand
alternative implementations). We are prepareddorchnd
demonstrate that a single implementation of epésodi
memory is sufficient for supporting some of these
capabilities.

Sensing:

* Noticing Novel Situations: By failing to retriev@isodic
memory similar to the current situation, the agean
detect when it is in a novel situation. “I've nevszen
here before.”

» Detecting Repetition: Retrieval of episodes that ar
identical (or close to identical) can inform an iaigthat
it is repeating situations and possibly not makany
progress toward its goald.ve was just here. | must be
going in circles.”

* Virtual Sensing: An agent can retrieve past episdbat
include sensory information relevant to the currask
that are beyond its current perceptual range.rfle@ber
seeing a coffee shop just around the corner fram.he

demands of episodic memory (these

Reasoning:

» Action Modeling: An agent can retrieve an episofi@ o
similar situation where it has performed an actibgan
then compare that episode to what came next to
determine how the action affects the world.

« Environment Modeling: This is similar to action
modeling, except the agent is using sequences of
episodes to predict how the world will change
(independent of its own actions).

 Predicting Successes/Failures: This extends thaque
two by using episodic memory to recall the expected
value of an action and the ensuing changes in trdw
that eventually lead to some feedback for the agent
terms of success or failure.

e Managing Long Term Goals: Episodic memory
remembers whether or not goals have been achieved,
eliminating the need to maintain goals in working
memory, which for long-term goals can be difficult.

Learning:

* Retroactive Learning: An agent might acquire
experiences when performing under time pressurter]la
when sufficient time becomes available, the agemt c
analyze the experience.

« Reanalysis of Knowledge: As new information becomes
available, episodes can be retrieved and reanalyzied
the new information. “Now that | know he was lying,
everything that happened makes sense.”

« Explaining Behavior: An agent can use episodic
memory to replay earlier behavior to explain ithdéor
to others, tell stories or relate prior experiences

« “Boost” other Learning Mechanisms: Episodic memory
can provide the “grist” for the “mill” of other leaing
mechanisms such as explanation-based learning and
reinforcement learning.

These capabilities could be realized by individual

architectural modules. However, many, if not alltbém

require the recording and retrieval of the agent's
experiences. A single general-purpose episodic mgmo
simplifies the implementation of the cognitive chitities
and eliminates redundant functionality.

Experimental Environment

For the experiments described in this paper, we aise
single environment called TankSoar. In TankSoag th
agent controls a tank moving in a two dimensioiéé-(
based) maze. It has three resources: missilesgynand
health, which are expended by the tank’s actionsha
world. Without energy, a tank cannot see or shitddlf
against attach. Without missiles, a tank cannoachtt
another tank, and without health, a tank is destioy

The agent’s goal is to destroy other tanks inntlage by
firing missiles while avoiding enemy missiles. Figu4
depicts a portion of a TankSoar map. While the huma
observer can see the entire map, the tank hasetimit
sensors, with radar being the most important. Aelpatand
health charger recharge the agent’s energy anthheal



Figure 4: A subset of the TankSoar environment

For each of the cognitive capabilities we impletadn
we focused on a specific task that a TankSoar agégiit
undertake. For these experiments, we used thentesta
based algorithm (biased by activation and recebegpuse
even though it is less efficient, it is easier todify.

Cognitive Capability: Action Modeling

An agent with episodic memory can predict the imiaed
effects of its actions by examining similar sitoas in its
past wherein it took the same actions. Our actiaaleting
experiment in TankSoar focuses on the problem efgn
management. A tank uses its radar to sense
environment immediately in front of it. The radancbe
set to different distances with further distanceguiring
more energy. Energy is wasted if the radar is dddky an
obstacle (e.g., a wall or another tank).

Our agent uses its episodic memory to predict vithat
will see when it turns on its radar, and uses that
information to set the radar distance. In this taskis
essential that the episodic memory is effectiveetiteving
a relevant memory. The agent performed best when an
exact match (even with lower activation) was pnefdr
over the best activation-biased match (and thisepgace
was used in all of the remaining experiments).

Figure 5 depicts the agent’s performance over one
hundred radar settings while the agent exploresya. ffihe
y axis is the fraction of the last ten settingst thaere
correct (the first nine settings are not shown)clEdata
point is the average of five runs. The dashed &hehe
bottom of the graph indicates the performance chgent
that selects its radar setting randomly. As th@lgrshows,
the agent quickly learns to make effective rad#irggs as
it navigates the maze.

the

Radar Tank Performance

Fraction Correct
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Figure5: Agent performancein the action modeling task.

Cognitive Capability: Virtual Sensors

When an agent senses something at one moment,yit ma
seem irrelevant to its task. Then, at some futwiatpthat
past sensing may become important. An agent with
episodic memory can retrieve details of its sensifigs
capability is most useful in environments with kdgodies

of data that are irrelevant to the current task, rbay be
relevant to future tasks.

To demonstrate this cognitive capability, we chtse
task of locating the battery used to recharge #mk's
energy supply, where we assume the tank does rmt kn
the importance of the battery until it is low oneegy.
When the tank’s energy supply runs low the tank
remembers where it has last seen the battery asglthat
information to direct its search for the battery.

Figure 6 depicts the number of moves requiredirtd f
the battery for two agents over twelve subsequesitches.
The first agent searches randomly for the battditye
second agent uses its episodic memory to attemfibdo
the battery before resorting to random search.

As the graph shows, the virtual sensor agent éactte
battery an order of magnitude faster than the randgent.

In addition, the episodic memory agent’s perfornganc
continued to improve as it gained more memories.

Energy Search Time

1000

100

—e— Random
—a—Ep. Mem.

Number of Moves

10

1 2 3 4 5 6 7 8 9 10 11 12
Searches

Figure 6: Agent performancein the virtual sensorstask
(Note: theordinal isin logarithmic scale)

Cognitive Capability: Learning from Past
Successes and Failures

Action modeling allows an agent to predict the
immediate outcome of an action. However, success in
many tasks requires a coherent strategy with nialtip
actions taken in concert. To demonstrate this itivgn
capability, we took an existing hand-coded agenttlfi@
TankSoar domain, removed its tactical knowledge and
modified it to use episodic memory to make tactical
decisions. When considering a particular actione th
episodic memory tank would query episodic memory to
find an episode in which it took the same actionain
similar, but possibly not identical, situation.wbuld then
evaluate the overall effectiveness of each of traag®ns
by doing repeated retrievals of subsequent episadéb
there was a clear outcome or a maximum depth was
reached. To account for the delay between the &gent



action and success or failure, we added a discaator.
The agent did some tracking of the effectivenesstof
episodes. If a memory consistently led to poor sieos,
the agent would avoid using that memory in the riitu
Each episode contained ~120 WMEs.

We pitted the episodic memory tank against thgioai
tank. Figure 7 shows how the episodic agent's aeer
margin of victory changes as more games are playad
game ends when one tank achieves 50 points. At firs
episodic memory tank loses most games (negativgimar
of victory) but after 20 matches it wins consishgnt

Average Margin of Victory (3 runs)

W 31 41 51 61 71 81 91 101111 121131 141 151 161 17.
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Figure 7: Agent performance lear ning from past successes
and failures

Two learned tactics had a significant impact on
performance. First, the agent learned to predignsn
actions and thus dodge short-range enemy misgaekat
before they occurred. Second, the agent learneoai
away from an enemy while firing its missiles. Thisened
up future opportunities to dodge (moved to the )siithe
agent was currently blocked on both sides.

Conclusion

This work defines the design space for episodic argm
and provides an implementation of episodic memory
within a cognitive architecture. We have also desti@ted
that episodic memory is a useful architectural congmt
and can support many important cognitive capabdgiti
Each of these capabilities could be implemented
individually using various techniques but, inevilialihese
implementations must include redundant functiogpatiat

is captured singularly in episodic memory.

Episodic memory and similar case-based learning
methods are “lazy” while methods such as reinforem
learning are ‘“eager.” Lazy mechanisms do minimal
generalization so nothing is lost. Generalizationd a
combination with new knowledge is possible at estal,

but at some computational expense. Eager methods

generalize immediately, trading some of the knogtetbr
efficient application. Thus, lazy methods providaximal
flexibility and are useful when the agent does kibw
how it will use what it has learned. Eager methadsbest
when the agent knows how it will use the knowled®jgth

1. Demonstrate the usefulness of episodic memory for
additional cognitive capabilities. An important par
of these demonstrations is developing general
procedural knowledge so that a given capability can
be used across many tasks without starting from
scratch. The implementations of the current
capabilities approach this, but we need to test the
generality across a range of tasks. For us, the mos
interesting capability is the interaction of episod
memory with other learning mechanisms.

2. Explore algorithms and data structures for effitien
implementations of episodic memory, including
hardware solutions.

3. Explore the design space of episodic memory
systems. The current design has been successful, bu
we have not investigated dynamic storage
(forgetting and generalization), spontaneous
retrieval, and meta-data.
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approaches are important and an agent should have a

combination of these approaches available.
There are many challenges ahead. Our plans include



