
 Bimodal Spatial Reasoning with Continuous Motion

Samuel Wintermute and John E. Laird

University of Michigan
2260 Hayward St.

Ann Arbor, MI 48109-2121
{swinterm, laird}@umich.edu

Abstract
Symbolic AI systems typically have difficulty reasoning
about motion in continuous environments, such as
determining whether a cornering car will clear a close
obstacle. Bimodal systems, integrating a qualitative
symbolic system with a quantitative diagram-like spatial
representation, are capable of solving this sort of problem,
but questions remain of how and where knowledge about
fine-grained motion processes is represented, and how it is
applied to the problem. In this paper, we argue that forward
simulation of motion is an appropriate method, and
introduce continuous motion models to enable this
simulation. These motion-specific models control behavior
of objects at the spatial level, while general mechanisms in
the higher qualitative level control and monitor them. This
interaction of low- and high-level activity allows for
problem solving that is both precise in individual problems
and general across multiple problems. In addition, this
approach allows perception and action mechanisms to be
reused in reasoning about hypothetical motion problems and
abstract non-motion problems, and points to how symbolic
AI can become more grounded in the real world. We
demonstrate implemented systems that solve problems in
diverse domains, and connections to action control are
discussed.

Introduction
As research in cognitive architectures progresses to address
spatial problems, systems containing both high-level
qualitative symbolic and low-level diagram-like spatial
representations have been proposed (Chandrasekaran 2006,
Wintermute & Laird 2007). These bimodal systems share
many similarities to psychologically based systems for
visuospatial imagery, which similarly propose multiple
levels (Lathrop & Laird 2007, Kosslyn et al. 2006).
 Problem solving in these systems progresses by the
symbolic level extracting out qualitative predicates from
the diagram (through what we will call a query), reasoning
over these extracted predicates, and creating new objects in
the diagram, or images, by projecting qualitative predicates
into it. For example, in Figure 1, the system is attempting
to place a new object in the diagram such that it does not
intersect existing objects. By repeatedly querying the

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

diagram, reasoning over the extracted predicates to
determine new predicates to project back into the diagram
as images, and extracting further predicates that are the
implications of those images, the system is able to solve
the problem. The bimodal approach to spatial reasoning
has many inherent advantages. Symbolic systems have
well-established means for using both general and specific
knowledge to dynamically control behavior, and they can
easily reason using hypothetical situations and a wide
variety of existing learning algorithms. Adding a spatial
level changes none of this, but allows the system to
leverage perceptual representations and processes in the
aid of reasoning (Chandrasekaran, 2006).
 While bimodal reasoning is powerful, it is difficult to
see how the knowledge to solve spatial problems involving
non-uniform motion can be encoded. For example,
consider the problem of predicting if a turning car will hit
an obstacle. One approach to this problem might be to
project an image into the diagram that outlines the path that
the car would follow around the corner, and check if this
image intersects the obstacle. However, this presupposes
that the system knows exactly what path the car will follow
and has the ability to construct an image in that shape. For
cases where the car is traveling in a straight line, this is
feasible – the path image is a rectangle connecting the car
to its destination. In more complex cases, the path image
may be difficult to construct and represent, such as when a
car transcribes a path that is partially curved and partially
straight. Moreover, a car with alignment problems might
traverse a path that approximates a sine wave.

Figure 1. Solving a bimodal spatial problem.
(from Wintermute & Laird, 2007).

Spatial Level Symbolic Level

 For a general agent that is capable of the same range of
behavior as humans, there are many diverse types of
motion that the system may need to predict. To plan its
own behavior, a general agent needs to predict the outcome
of actions it can perform in the environment, both relative
to its own body (“What would happen if I reached for
object X?”), and relative to objects it controls indirectly
(“What would happen if I tried to back my car into this
parking spot?”). In addition, it is useful for the agent to
predict the motions of others and objects not under the
control of any agent, such as the path of a bouncing ball. In
general, the system should be able to internally reason
about motions perceived in the environment.
 However, it is very difficult (if not impossible) for an
agent to reason about an arbitrary motion by generating an
equivalent geometric shape, as can be done with a car
moving in a straight line. This is roughly equivalent to
requiring the system to have a closed-form definition of the
result of any movement it might reason about. A more
straightforward way to solve this sort of problem is
through continuous simulation: the system executes a
forward model of the motion of a car, and observes
whether or not the car hits the obstacle.
 The general concept of combining qualitative symbolic
reasoning with continuous simulation is not new (Funt,
1980 is an early example), but little work has been done to
examine how, in general, continuous motion can be
integrated into a bimodal system. We propose to encode
this information in the form of a continuous motion model,
within the spatial level of the system. By transforming one
continuous spatial state to another, these motion models
provide the fine-grained quantitative resolution needed for
detecting qualitative interactions between objects that is
critical for correct reasoning in the symbolic level, which
can “observe” the simulation through predicate extraction.
 The advantages of this approach at integration is that the
detailed quantitative knowledge about how a particular
motion unfolds in a specific spatial environment is
contained within the model, independent of knowledge
about when and how that motion should be invoked, and
how the results should be interpreted, which is left to the

symbolic system. This combines strengths of symbolic
systems, such as dynamic composition, abstraction, and
generalization, with strengths associated with non-
symbolic AI systems: precise situational behavior.
 As will be shown, the resulting system leaves most of
the goal-directed behavior in the symbolic level, resulting
in simple motion models with standard interfaces. Problem
solving results from the interaction between the symbolic
level, which doesn’t need to know the details of the
motion, and a motion model in the spatial level, which
doesn’t need to know why it is invoked or how its results
will be used.

Motion Models in Soar/SRS
We have implemented a framework for using continuous
motion models during spatial reasoning within SRS
(Spatial Reasoning for Soar; Wintermute & Laird, 2007),
an extension to the Soar cognitive architecture (Laird
2008), as shown in Figure 2. Soar is mainly a symbolic
system, corresponding to the right side of Figure 1. SRS
lies between Soar’s input and output modules and the
environment, mediating between the high-level qualitative
predicates a Soar system uses to reason about space, and
the lower-level representations provided by the
environment. SRS consists of a quantitative spatial short-
term memory (henceforth scene), and mechanisms to
extract and project the predicates a Soar system uses to
reason about the problem. The scene is represented as a set
of convex polygons in a plane. Perceptions from the
environment are treated identically to images created by
Soar, except for a simple annotation to differentiate them,
allowing abstract and hypothetical reasoning to be
accomplished with the same methods used to reason about
the immediate environment.

Predicate Extraction and Projection in SRS
SRS allows for predicate extraction through symbolic
query structures. These structures consist of a relationship,
two objects, and a value, such as (intersect A B false). To
query the scene, the qualitative level creates such a
structure, possibly leaving some fields unspecified, and the
quantitative level responds with all true groundings of that
structure. For example, for the scene at the bottom of
Figure 1, the query (intersect A ? false) would return
(intersect A B false) and (intersect A C false). Note that
some queries might have no valid results, such as (intersect
A ? true) or (adjacent A B true) in the same figure. A query
matches if it returns at least one valid result, and does not
match otherwise.
 The reverse process of predicate extraction, predicate
projection, creates new objects in the scene, called images.
SRS allows for two classes of images to be created, called
directly- and indirectly-described images. Directly
described images are unambiguous derivations of existing
objects, such as “the convex hull of A and B,” or “the line
connecting the centers of C and D.” Images of this type

Figure 2. Our bimodal spatial reasoning
system. Solid arrows show qualitative data, dotted
arrows show quantitative spatial data, double
arrows show raw perceptual and motor data.

may or may not exist (for example “the intersection of A
and B” does not exist if A and B are discrete), but if they
do exist, there is only one possible interpretation. In
contrast, indirectly described images may be
underdetermined, where multiple images match the
description, such as “an object shaped like A, located
entirely inside of B.” These classes are discussed in detail
in Wintermute & Laird (2007).

Incorporating Motion Models
Although directly- and indirectly-described images are
sufficient for a broad class of problems, as discussed
previously, it isn’t possible to map every motion onto an
equivalent geometric object. The results of simulating a
motion are a third class that greatly expands the
representational and reasoning power of SRS. In Figure 3,
for example, we might create an image of what would
happen if block B came under the influence of gravity. The
desired end result of the simulation might be creating the
image B’ on the right of the figure: a copy of the original
image, in the position it is in when it hits the floor.
 Using this example, we can generate a set of issues that
must be addressed by a motion representation:

1. The system must know when to terminate the
simulation. In this case, when the block hits the
floor.

2. The qualitative system must have some access to
the intermediate states of the simulation so it can
detect important interactions, such as that B hits
the corner of A as it falls.

3. The simulation must have access to the spatial
scene. In this case, it must know the exact
coordinates of B and D, since the position of B’
depends on both of those.

Outside of the block example, we can list additional
desirable properties of a motion representation:

4. The methods used to invoke and reason about
motion should be as general as possible. For
example, the changes needed for a Soar system to
reason about pathfinding with a car versus a tank
in the same environment should be minimal.

5. Motions should be usable in abstract situations. A
car motion should be usable when the system is
considering an object it chooses to treat as a car,
not only when it is considering an actual car.

6. Invoking and controlling simulated motion should
be similar to invoking and controlling real motion.

7. Motion simulations should be learnable from
perception of motion in the environment.

We have created a system that addresses the first five of
these requirements. In our system, motions are represented
through motion models inside the spatial level of Figure 2.
Motion models can be applied to any object in the scene,
satisfying requirement 5, and are invoked with a step size.
The model then steps forward the state of the object it is
invoked for (called the primary object) a small amount of
time. A simulation is then a sequence of motion model
steps, executed by the qualitative level. Between steps,

predicates can be extracted from the diagram and reasoned
over, so the system can detect the collision of B and A in
Figure 3, by attempting to match (intersect B ? true)
between steps (requirement 2). Termination can be
similarly handled. In the example, the symbolic level
simply steps until (intersect B floor true) matches,
satisfying requirement 1.
 Note that this discretization provides a natural
speed/accuracy tradeoff, with faster simulations using
bigger step sizes that might miss intermediate states where
queries temporarily match. Thus, the step size controls the
effort an agent will expend on a given simulation.1
 As motion models are in the spatial level, requirement 3
is met, as low-level scene information is also present there.
To satisfy requirement 4, however, we should ensure that
as much of the reasoning process as possible occurs in the
symbolic level. In addition to the benefits gained from
representing high-level reasoning symbolically, keeping
the motion models themselves simple helps to keep their
interfaces simple, and hence makes them more broadly
applicable. Action and learning (requirements 6 and 7) are
discussed later.

Implemented Examples
Several motion models have been implemented using SRS
with motion simulation. Below, we describe these models
and how they interact with symbolic reasoning in Soar to
solve spatial problems.

Block Stability: Falling Block Model
The first implemented model is the falling block model
discussed above in Figure 3. In a task inspired by those in
Funt (1980), the goal of the agent is to report what would
happen under the influence of gravity for each block in the
scene. This motion model encodes modes of interaction for
a primary object (the block that is falling), and a reference
object, which it may or may not collide with. If the primary
object is not touching the reference object, it moves in the
direction of gravity, until the blocks touch (if ever). Once
the blocks touch, the primary object may remain stationary,
slide off the reference object, or rotate, depending on the
configuration of the objects in relation to gravity.

1 Event-based simulation, where the notion of time and step sizes is not
present, would be extremely difficult to implement because SRS would
need to perform exact calculations for every type of motion
represented, determining the final location of the object for any
arbitrary termination condition the agent might use.

Figure 3: Falling Block Motion. Block B’ on the
right is the result of simulating the effect of gravity
on block B. (similar to an example in Funt, 1980)

 It is the responsibility of the symbolic level to choose an
appropriate reference object for the simulation. As
implemented, the system simply takes a scene as in Figure
3, and, for each block, extracts the closest object below it.
It then runs the falling block motion model with this as the
reference object, and reports whether it results in the block
remaining stationary, falling to the floor, or colliding with
another block. As a result of running simulations, Soar can
gain qualitative information it did not have before: the
stability of each block.

Car Path Planning: Car Model
Path planning for a car-like vehicle is a particularly hard
problem, especially for symbolic AI systems like Soar, as
non-holonomic properties of cars prevent the problem from
being easily reduced to a graph search. Introducing a
motion model for cars is then a particularly useful
application of this system. As implemented, this motion
model uses standard “simple car” equations (LaValle,
2006). Given a body angle, position, steering angle, and
time step size, the next body angle and position can be
easily calculated. As the body angle and position are
present in the scene, the motion model must only
determine the steering angle to use at each step, and feed it
to the simple car equations to determine the next state.
 A simple way for the qualitative level to provide the
needed steering angle input to the model is to do it
indirectly, by providing the object that is the target of the
motion. The motion model can then determine the angle
between the front of the car and the target, and steer in that
direction, proportional to that difference, saturating at
some maximum steering angle.
 With this model, the qualitative system has the raw tools
needed to plan a path: it determines what happens when a
car tries to drive from one location to another. Then, as in
Wintermute & Laird (2007) (and as will be elaborated
soon), simple path planning is accomplished by
decomposing the problem into a series of attempts to reach
qualitatively specified waypoint images. A simple
implemented example problem, and the resulting waypoint
and path, is shown in Figure 4.

RTS Base Layout: Translation Models
In the computer game genre of Real-Time Strategy, one of
the many sub-problems requiring spatial reasoning is

laying out a clustered group of buildings with different
functions, collectively called a “base.” During the game,
the player must strategically determine the locations of
new buildings as they are added to a base. The world is
viewed from the top down, so a player might describe the
most desirable location for a new building with weak
defensive capabilities as “near my base, but behind it in
relation to the enemy’s base.” In Wintermute & Laird
(2007), this problem was solved in SRS by creating
indirect images: the system encodes an equivalent
projection command to the sentence “create an image of
the building, located outside of my base, near my base, and
as far from the enemy’s base as possible”, and the location
of the image is used as the location for the new building.
 Internally, as it does with all indirect images, SRS
determines the location by gradually ruling out potential
locations for the new building. The fact that the new
building is “outside of the base” means that all locations
inside the polygon representing the base can be ruled out,
for example. The property of being “near the base” rules
out remaining locations that are not directly adjacent to the
base, and “far from the enemy,” when applied next, rules
out all locations but those maximally far from the enemy.
 While this system works well for this problem, it
requires the construction of complex indirect images, so it
is worthwhile to see if the problem can be solved more
simply using motion models. In order to do this, two new
motion models were added to SRS: the translation model
and the translation-around model. The translation model is
simple: given a target object, it translates the primary
object towards that object. The translation-around motion
model is only a bit more complicated: given a reference
object adjacent to the primary object, it translates the
primary object around the perimeter of the reference
object, in either the clockwise or counter-clockwise
direction (as specified by Soar).
 With these models in place, it is possible to solve the
base-layout problem using simulation instead of indirect
images (Figure 5). The new building can initially be placed
at some arbitrary location in the scene outside of the base
(B1 in the figure). Then, the translation model can be
applied to it, to move it toward the base, until (adjacent B1

Figure 4. Using a Car Model. The system
must determine a waypoint such that the car can
drive to the goal without hitting any obstacles.

Figure 5. Placing a new building behind the
player’s base, relative to the enemy. Bases are the
convex hulls of sets of buildings. Initially, the
building is placed arbitrarily outside the player’s
base (B1), then it is translated toward the base (B2),
then around the base to B3, where the new building
is built.

base true) matches, resulting in B2. Then, the translation-
around model can be applied, until the image is located at
B3, where the building is placed.
 How does the system know to stop the simulation at B3?
The reason B3 is the appropriate location is that it is the
furthest location from the enemy base along the perimeter
of the player’s base. This location can be derived in the
qualitative level by monitoring the distance from the
building in motion to the enemy while translating it around
the base. The appropriate place to stop is where this
distance reaches a local maximum, a property that can be
easily detected by the symbolic system. This result is a
clear-cut example of the synergy gained by using
continuous models with a qualitative system. The motion
model itself knows nothing about location of enemies, or
the goal of its action relative to them, just how to move
from one position to the next. Likewise, the qualitative
level knows nothing about the specific details of the shapes
it is reasoning about, which the result of the simulation
critically depends upon. Between the two, though, it is easy
to solve the overall problem.

Motion Models and Indirect Images
In the above example, a sequence of motions was used to
create an image (the location of a new building), where
previously a more complicated indirect image was needed.
In general, it is possible to get much of the functionality of
indirect imagery by using motion models.
 Other situations also demonstrate this. In car path
planning, we can decompose the problem into a sequence
of generating waypoints, and attempting to reach them.2
Attempting to reach a waypoint was discussed above, but
generating a waypoint, previously accomplished through
indirect imagery, can also be addressed with simulation. In
Figure 6, the two approaches to waypoint generation are

2 This methodology is roughly similar to sampling-based motion planning
(LaValle, 2006), where running the car simulation corresponds to
sampling a small part of its configuration space. However, in our
approach, the system controlling where to sample is a cognitive
architecture, versus a specialized system as is normally used.

shown. A waypoint is simply a location on the edge of an
obstacle that will help the moving object avoid it. In this
case, the task is to move the object at A to B, but obstacle
O blocks the direct path. Waypoint C must be generated, so
a path from A to C to B avoids the obstacle.3 One approach
to generating waypoints is to first construct a line from the
object to its destination (line AB), then a line perpendicular
to AB, passing through the center of the obstacle (line P in
the figure). An indirect image can then be used to create
the actual waypoint. It is an object outside of the obstacle,
near P, and near AB. This is object C on the left of the
figure.
 This problem can also be addressed using simulations
instead of indirect images (Figure 6, right). As in the base
layout problem, the potential waypoint can first be placed
arbitrarily then moved towards the obstacle until (adjacent
waypoint obstacle true) matches. At this point, two
simulations must be run: one to translate the waypoint
around the obstacle clockwise, the other counter-
clockwise. Both of these should be stopped when the
distance from the waypoint to the line AB reaches a local
maximum. In the figure, the two end conditions for these
simulations are marked C and C’. Soar can then query for
which of C and C’ is closest to AB, which is the
appropriate waypoint (C, in this case).
 As seen in the figure, these techniques produce different
final waypoints. In practice, performance from using either
scheme is roughly equivalent, since they are both on the
correct side of the obstacle. The chief functional difference
between them is how much of the process of creating the
waypoint is accessible to the symbolic level of the system.
In the first approach (the indirect image), the waypoint is
created all at once: the projection command for it is sent to
the spatial level, and in the next cycle of Soar, the image is
present. The process inside the spatial level to interpret this
indirect command takes multiple steps as it rules out
locations (as discussed in the previous section), but Soar
has no access to the intermediate states of indirect imagery.
 In the motion model case, the process is more explicit,
and intermediate states are accessible. This is potentially
advantageous, since, for example, Soar can weigh the
advantages of C and second-best waypoint C’ before
making its decisions (maybe C’ is actually closer to a
location that will be moved to later, for example). In
addition, with motion models, the intermediate
perpendicular line is unnecessary. The conditions for
indirectly constructing the waypoint are equivalent to
“adjacent to O, near P, and near AB.” The perpendicular is
used to restrict the final condition (near AB) to choose
between alternatives on the extreme left and right of the
obstacle. The simulation case needs no such complication
– it can reason about the extreme left and right waypoints
directly, without invoking intermediate structures.

3 C is actually placed adjacent to an image of a slightly larger obstacle
so that it has room to clear the corner, as opposed to directly adjacent to
it.

Figure 6. Two approaches for getting from A to B,
around obstacle O. On the left, an indirect image is
used, creating waypoint C via a temporary
perpendicular line. On the right, simulation is used,
where the waypoint is first placed arbitrarily, then
translated towards O, then translated around O in both
directions, resulting in potential waypoints C and C’.

Discussion
The above examples show how continuous motion models
can be integrated into a bimodal spatial reasoning system.
The models exist in the spatial level and are controlled by
the symbolic level issuing qualitative commands. Each
model combines its qualitative command with quantitative
information in the scene to transform an object in the scene
to a new state. These motion models correspond to the
movements of objects that the agent could have observed
(in theory) in the environment, despite the fact that the
system has the capability to use them in abstract situations.
 This is proposed in the context of SRS, an extension to
Soar. SRS shares many commonalities with SVI (Lathrop
& Laird, 2007), a theory of visual imagery for Soar. SVI,
in addition to supporting a quantitative spatial
representation, focuses on a depictive pixel-based visual
representation. This supports low-level visual operations
(such as detection of visual features, and pixel-level
manipulation), providing functionality not possible in a
spatial representation. SRS can be considered an
elaboration of the spatial level of SVI.

Motion Models and Action
The agent’s own effectors are an important class of moving
objects in the environment. None of the previous examples
had realistic effectors, but the system could be extended to
support them. In a system incorporating realistic effectors,
motion models would be intimately tied to their control.
Recall that objects created in the scene as images are
perceived by Soar (via predicate extraction) identically to
objects fed into the scene from the environment, outside of
an annotation to differentiate them. This allows
hypothetical reasoning to occur identically to reasoning
about the actual environment. Accordingly, hypothetical
actions in the scene (simulations) and real actions can have
the same representation in Soar, outside of an annotation.
 This observation can help direct us toward how realistic
actions should be integrated into a bimodal cognitive
architecture. Mainly, at a high level, the actions should be
controlled in the same way motion models are. The
examples above have shown that only relatively simple
continuous models are needed to solve complex problems,
since the qualitative system can easily take on the higher-
level aspects of the problem that would be difficult to
reason about in a continuous system. For example, in the
car driving problem, the motion model itself needs only to
know how to seek towards a location, not how to do a
backtracking search for a path, which objects in the scene
are obstacles and which are not, etc. An equivalent car
controller, while still faced with the difficult task of
reducing movement to actuator signals, would similarly not
have to be concerned with those higher-level concepts.
 The idea of tightly binding motor control and imagery
was explored in detail by Grush (2004), in his emulation
theory of representation. He points out that maintaining a
prediction of the outcome of motor commands (as a
Kalman filter) can aid the controller itself, shortening the

feedback loop through the environment. If this predictor is
present for the controller, it can be used “offline” by itself
to drive imagery – as a motion model.
 Although motion models correspond to movements of
environmental objects, it is important to note that they can
be re-used for reasoning about problems not directly
involving motion. In the above RTS base layout example,
the motion models were not directly simulating objects that
move in the environment, as the car and block models do.
The system was manipulating a potential placement
position, an entity that has no direct counterpart in the
actual game – buildings are not placed by sliding them
around in the environment, but by issuing a command
specifying the building’s location.

Completeness and Correctness
Viewed from the symbolic level, SRS can be considered to
be an inference mechanism for determining the qualitative
implications (extracted predicates) of a given sequence of
qualitative commands (predicate projections). There is a
fundamental issue here, in that any given command might
have multiple valid, but qualitatively distinct results. For
example, in Figure 1, based on how the system interprets
the first command, the resulting situation could be
qualitatively different: the new shape might or might not
intersect shape B, based on how the system chooses to
interpret “to the right of A.” Qualitative simulation systems
(e.g., Kuipers, 1986, Forbus et. al., 1991) encounter similar
issues, which are typically resolved by allowing states to
have multiple successor states. In our case, though, it is
difficult to see how those multiple successors could be
efficiently inferred and represented. Since multiple
successors are not generated by SRS, as an inference
mechanism, SRS is inherently incomplete. In the example
in Figure 1, the system deals with this problem by refining
its commands until the interpretation returned by SRS
meets its requirements, but this strategy might not be
possible in all cases. The problem is particularly evident
when motion simulation is used. Simulations are very
sensitive to the initial quantitative state of the diagram and
the continuous properties of the motion model: a minor
change in either can change the qualitative result of the
simulation.
 In many cases, qualitative descriptions given to SRS
have only one possible quantitative interpretation, so in
these cases, incompleteness is not a problem. It would be
simple for the system to report to Soar when it must choose
arbitrarily amongst multiple interpretations of a projection
command (when the command is under-constrained). The
agent could then adjust its reasoning process accordingly.
However, consider the base layout algorithm described
above (Figure 5). No matter where the initial building is
placed by the first, under-constrained command (to place
the building “outside the base”), the final result of the
algorithm will always converge to the same region: the
place adjacent to the base, far from the enemy. So it is not
always desirable to avoid reasoning processes that are
based on under-constrained situations. Further study of this

completeness problem is an area for future work.
 Note that this issue is a different problem from cases
where a simulation might result in incorrect qualitative
inferences due to inaccuracies in the model itself. Since
models are learned from the environment (at least
conceptually), it is expected that results of simulations will
vary based on how well the model matches reality, and the
results can be incorrect if the match to reality is not good.

Learning Motion Models
Learning motion models from the environment has yet to
be addressed. However, studying how models are used
allows us to say precisely what they do and do not do,
which is a first step in determining how they can be
learned. All of the models used so far have involved a
primary object that moves in some way in relation to a
stationary reference object. The model, given a time step,
maps the spatial configuration of these objects to a new
spatial configuration. The motions are represented as the
agent perceives them (i.e., not necessarily in terms of
underlying physics). The models should not perform any
reasoning that could be done at the qualitative level. The
examples above have shown some of the range of
reasoning this can encompass.

Conclusion
Spatial reasoning is a problem with aspects that are both
precise and grounded, and abstract and qualitative.
Bimodal systems attempt to unify all of these aspects into a
common framework, a qualitative symbolic system
interacting with a continuous spatial system.
 One important type of spatial reasoning is reasoning
about motion. We have shown how a bimodal system can
incorporate motion, by using simple forward models in the
spatial level. The interaction between these models and
qualitative symbolic reasoning can solve complex
problems involving motion that were previously very
difficult for general purpose cognitive architectures. In
addition to allowing new problems to be solved, this work
sets the stage for learning and using realistic action in a
cognitive architecture. The approach is also very
economical, as it allows perception and action systems to
be reused during problem solving, even for problems that
aren’t directly about motion.

References
Chandrasekaran, B., Multimodal Cognitive Architecture:
Making Perception More Central to Intelligent Behavior,
AAAI Conference on Artificial Intelligence, 2006.

Forbus, K.D., Nielsen, P., Faltings, B. Qualitative Spatial
Reasoning: the CLOCK Project. Artificial Intelligence 51,
1991.

Funt, B., Problem-solving with diagrammatic
representations. Artificial Intelligence 13, 1980.

Grush, R., The emulation theory of representation: Motor
control, imagery, and perception. Behavioral and Brain
Sciences 27, 2004

Kosslyn, S.., Thompson, W., Ganis, G., The Case for
Mental Imagery. Oxford University Press, 2006.

Kuipers, B. Qualitative Simulation. Artificial Intelligence
29, 1986.

Laird, J. E., Extending the Soar Cognitive Architecture,
Artificial General Intelligence Conference, 2008.

Lathrop, S. D., and Laird, J.E., Towards Incorporating
Visual Imagery into a Cognitive Architecture,
International Conference on Cognitive Modeling, 2007.

LaValle, S. M., Planning Algorithms, Cambridge
University Press, 2006.

Wintermute, S., and Laird, J.E., Predicate Projection in a
Bimodal Spatial Reasoning System, AAAI Conference on
Artificial Intelligence, 2007.

