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Abstract 
Symbolic AI systems typically have difficulty reasoning 
about motion in continuous environments, such as 
determining whether a cornering car will clear a close 
obstacle. Bimodal systems, integrating a qualitative 
symbolic system with a quantitative diagram-like spatial 
representation, are capable of solving this sort of problem, 
but questions remain of how and where knowledge about 
fine-grained motion processes is represented, and how it is 
applied to the problem. In this paper, we argue that forward 
simulation of motion is an appropriate method, and 
introduce continuous motion models to enable this 
simulation. These motion-specific models control behavior 
of objects at the spatial level, while general mechanisms in 
the higher qualitative level control and monitor them. This 
interaction of low- and high-level activity allows for 
problem solving that is both precise in individual problems 
and general across multiple problems. In addition, this 
approach allows perception and action mechanisms to be 
reused in reasoning about hypothetical motion problems and 
abstract non-motion problems, and points to how symbolic 
AI can become more grounded in the real world. We 
demonstrate implemented systems that solve problems in 
diverse domains, and connections to action control are 
discussed.  

Introduction 
As research in cognitive architectures progresses to address 
spatial problems, systems containing both high-level 
qualitative symbolic and low-level diagram-like spatial 
representations have been proposed (Chandrasekaran 2006, 
Wintermute & Laird 2007). These bimodal systems share 
many similarities to psychologically based systems for 
visuospatial imagery, which similarly propose multiple 
levels (Lathrop & Laird 2007, Kosslyn et al. 2006).  
 Problem solving in these systems progresses by the 
symbolic level extracting out qualitative predicates from 
the diagram (through what we will call a query), reasoning 
over these extracted predicates, and creating new objects in 
the diagram, or images, by projecting qualitative predicates 
into it. For example, in Figure 1, the system is attempting 
to place a new object in the diagram such that it does not 
intersect existing objects. By repeatedly querying the 
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diagram, reasoning over the extracted predicates to 
determine new predicates to project back into the diagram 
as images, and extracting further predicates that are the 
implications of those images, the system is able to solve 
the problem. The bimodal approach to spatial reasoning 
has many inherent advantages. Symbolic systems have 
well-established means for using both general and specific 
knowledge to dynamically control behavior, and they can 
easily reason using hypothetical situations and a wide 
variety of existing learning algorithms. Adding a spatial 
level changes none of this, but allows the system to 
leverage perceptual representations and processes in the 
aid of reasoning (Chandrasekaran, 2006). 
  While bimodal reasoning is powerful, it is difficult to 
see how the knowledge to solve spatial problems involving 
non-uniform motion can be encoded. For example, 
consider the problem of predicting if a turning car will hit 
an obstacle. One approach to this problem might be to 
project an image into the diagram that outlines the path that 
the car would follow around the corner, and check if this 
image intersects the obstacle. However, this presupposes 
that the system knows exactly what path the car will follow 
and has the ability to construct an image in that shape. For 
cases where the car is traveling in a straight line, this is 
feasible – the path image is a rectangle connecting the car 
to its destination. In more complex cases, the path image 
may be difficult to construct and represent, such as when a 
car transcribes a path that is partially curved and partially 
straight. Moreover, a car with alignment problems might 
traverse a path that approximates a sine wave. 

Figure 1. Solving a bimodal spatial problem.  
(from Wintermute & Laird, 2007). 

Spatial Level                      Symbolic Level      



 For a general agent that is capable of the same range of 
behavior as humans, there are many diverse types of 
motion that the system may need to predict. To plan its 
own behavior, a general agent needs to predict the outcome 
of actions it can perform in the environment, both relative 
to its own body (“What would happen if I reached for 
object X?”), and relative to objects it controls indirectly 
(“What would happen if I tried to back my car into this 
parking spot?”). In addition, it is useful for the agent to 
predict the motions of others and objects not under the 
control of any agent, such as the path of a bouncing ball. In 
general, the system should be able to internally reason 
about motions perceived in the environment. 
 However, it is very difficult (if not impossible) for an 
agent to reason about an arbitrary motion by generating an 
equivalent geometric shape, as can be done with a car 
moving in a straight line. This is roughly equivalent to 
requiring the system to have a closed-form definition of the 
result of any movement it might reason about. A more 
straightforward way to solve this sort of problem is 
through continuous simulation: the system executes a 
forward model of the motion of a car, and observes 
whether or not the car hits the obstacle.  
 The general concept of combining qualitative symbolic 
reasoning with continuous simulation is not new (Funt, 
1980 is an early example), but little work has been done to 
examine how, in general, continuous motion can be 
integrated into a bimodal system. We propose to encode 
this information in the form of a continuous motion model, 
within the spatial level of the system. By transforming one 
continuous spatial state to another, these motion models 
provide the fine-grained quantitative resolution needed for 
detecting qualitative interactions between objects that is 
critical for correct reasoning in the symbolic level, which 
can “observe” the simulation through predicate extraction.   
 The advantages of this approach at integration is that the 
detailed quantitative knowledge about how a particular 
motion unfolds in a specific spatial environment is 
contained within the model, independent of knowledge 
about when and how that motion should be invoked, and 
how the results should be interpreted, which is left to the 

symbolic system. This combines strengths of symbolic 
systems, such as dynamic composition, abstraction, and 
generalization, with strengths associated with non-
symbolic AI systems: precise situational behavior.   
 As will be shown, the resulting system leaves most of 
the goal-directed behavior in the symbolic level, resulting 
in simple motion models with standard interfaces. Problem 
solving results from the interaction between the symbolic 
level, which doesn’t need to know the details of the 
motion, and a motion model in the spatial level, which 
doesn’t need to know why it is invoked or how its results 
will be used. 

Motion Models in Soar/SRS 
We have implemented a framework for using continuous 
motion models during spatial reasoning within SRS 
(Spatial Reasoning for Soar; Wintermute & Laird, 2007), 
an extension to the Soar cognitive architecture (Laird 
2008), as shown in Figure 2. Soar is mainly a symbolic 
system, corresponding to the right side of Figure 1. SRS 
lies between Soar’s input and output modules and the 
environment, mediating between the high-level qualitative 
predicates a Soar system uses to reason about space, and 
the lower-level representations provided by the 
environment. SRS consists of a quantitative spatial short-
term memory (henceforth scene), and mechanisms to 
extract and project the predicates a Soar system uses to 
reason about the problem. The scene is represented as a set 
of convex polygons in a plane. Perceptions from the 
environment are treated identically to images created by 
Soar, except for a simple annotation to differentiate them, 
allowing abstract and hypothetical reasoning to be 
accomplished with the same methods used to reason about 
the immediate environment. 

Predicate Extraction and Projection in SRS 
SRS allows for predicate extraction through symbolic 
query structures. These structures consist of a relationship, 
two objects, and a value, such as (intersect A B false). To 
query the scene, the qualitative level creates such a 
structure, possibly leaving some fields unspecified, and the 
quantitative level responds with all true groundings of that 
structure. For example, for the scene at the bottom of 
Figure 1, the query (intersect A ? false) would return 
(intersect A B false) and (intersect A C false). Note that 
some queries might have no valid results, such as (intersect 
A ? true) or (adjacent A B true) in the same figure. A query 
matches if it returns at least one valid result, and does not 
match otherwise. 
 The reverse process of predicate extraction, predicate 
projection, creates new objects in the scene, called images. 
SRS allows for two classes of images to be created, called 
directly- and indirectly-described images. Directly 
described images are unambiguous derivations of existing 
objects, such as “the convex hull of A and B,” or “the line 
connecting the centers of C and D.” Images of this type 

Figure 2. Our bimodal spatial reasoning 
system. Solid arrows show qualitative data, dotted 
arrows show quantitative spatial data, double 
arrows show raw perceptual and motor data. 



may or may not exist (for example “the intersection of A 
and B” does not exist if A and B are discrete), but if they 
do exist, there is only one possible interpretation. In 
contrast, indirectly described images may be 
underdetermined, where multiple images match the 
description, such as “an object shaped like A, located 
entirely inside of B.” These classes are discussed in detail 
in Wintermute & Laird (2007). 

Incorporating Motion Models 
Although directly- and indirectly-described images are 
sufficient for a broad class of problems, as discussed 
previously, it isn’t possible to map every motion onto an 
equivalent geometric object. The results of simulating a 
motion are a third class that greatly expands the 
representational and reasoning power of SRS. In Figure 3, 
for example, we might create an image of what would 
happen if block B came under the influence of gravity. The 
desired end result of the simulation might be creating the 
image B’ on the right of the figure: a copy of the original 
image, in the position it is in when it hits the floor.  
 Using this example, we can generate a set of issues that 
must be addressed by a motion representation: 

1. The system must know when to terminate the 
simulation. In this case, when the block hits the 
floor. 

2. The qualitative system must have some access to 
the intermediate states of the simulation so it can 
detect important interactions, such as that B hits 
the corner of A as it falls. 

3. The simulation must have access to the spatial 
scene. In this case, it must know the exact 
coordinates of B and D, since the position of B’ 
depends on both of those. 

Outside of the block example, we can list additional 
desirable properties of a motion representation: 

4. The methods used to invoke and reason about 
motion should be as general as possible. For 
example, the changes needed for a Soar system to 
reason about pathfinding with a car versus a tank 
in the same environment should be minimal.  

5. Motions should be usable in abstract situations. A 
car motion should be usable when the system is 
considering an object it chooses to treat as a car, 
not only when it is considering an actual car. 

6. Invoking and controlling simulated motion should 
be similar to invoking and controlling real motion. 

7. Motion simulations should be learnable from 
perception of motion in the environment. 

We have created a system that addresses the first five of 
these requirements. In our system, motions are represented 
through motion models inside the spatial level of Figure 2. 
Motion models can be applied to any object in the scene, 
satisfying requirement 5, and are invoked with a step size. 
The model then steps forward the state of the object it is 
invoked for (called the primary object) a small amount of 
time. A simulation is then a sequence of motion model 
steps, executed by the qualitative level. Between steps, 

predicates can be extracted from the diagram and reasoned 
over, so the system can detect the collision of B and A in 
Figure 3, by attempting to match (intersect B ? true) 
between steps (requirement 2). Termination can be 
similarly handled. In the example, the symbolic level 
simply steps until (intersect B floor true) matches, 
satisfying requirement 1.  
 Note that this discretization provides a natural 
speed/accuracy tradeoff, with faster simulations using 
bigger step sizes that might miss intermediate states where 
queries temporarily match. Thus, the step size controls the 
effort an agent will expend on a given simulation.1 
 As motion models are in the spatial level, requirement 3 
is met, as low-level scene information is also present there. 
To satisfy requirement 4, however, we should ensure that 
as much of the reasoning process as possible occurs in the 
symbolic level. In addition to the benefits gained from 
representing high-level reasoning symbolically, keeping 
the motion models themselves simple helps to keep their 
interfaces simple, and hence makes them more broadly 
applicable. Action and learning (requirements 6 and 7) are 
discussed later. 

Implemented Examples 
Several motion models have been implemented using SRS 
with motion simulation. Below, we describe these models 
and how they interact with symbolic reasoning in Soar to 
solve spatial problems.  

Block Stability: Falling Block Model 
The first implemented model is the falling block model 
discussed above in Figure 3. In a task inspired by those in 
Funt (1980), the goal of the agent is to report what would 
happen under the influence of gravity for each block in the 
scene. This motion model encodes modes of interaction for 
a primary object (the block that is falling), and a reference 
object, which it may or may not collide with. If the primary 
object is not touching the reference object, it moves in the 
direction of gravity, until the blocks touch (if ever). Once 
the blocks touch, the primary object may remain stationary, 
slide off the reference object, or rotate, depending on the 
configuration of the objects in relation to gravity.  

                                                
1 Event-based simulation, where the notion of time and step sizes is not 
present, would be extremely difficult to implement because SRS would 
need to perform exact calculations for every type of motion 
represented, determining the final location of the object for any 
arbitrary termination condition the agent might use.  

Figure 3: Falling Block Motion. Block B’ on the 
right is the result of simulating the effect of gravity 
on block B. (similar to an example in Funt, 1980) 



 It is the responsibility of the symbolic level to choose an 
appropriate reference object for the simulation. As 
implemented, the system simply takes a scene as in Figure 
3, and, for each block, extracts the closest object below it. 
It then runs the falling block motion model with this as the 
reference object, and reports whether it results in the block 
remaining stationary, falling to the floor, or colliding with 
another block.  As a result of running simulations, Soar can  
gain qualitative information it did not have before: the 
stability of each block. 

Car Path Planning: Car Model 
Path planning for a car-like vehicle is a particularly hard 
problem, especially for symbolic AI systems like Soar, as 
non-holonomic properties of cars prevent the problem from 
being easily reduced to a graph search. Introducing a 
motion model for cars is then a particularly useful 
application of this system. As implemented, this motion 
model uses standard “simple car” equations (LaValle, 
2006). Given a body angle, position, steering angle, and 
time step size, the next body angle and position can be 
easily calculated. As the body angle and position are 
present in the scene, the motion model must only 
determine the steering angle to use at each step, and feed it 
to the simple car equations to determine the next state. 
 A simple way for the qualitative level to provide the 
needed steering angle input to the model is to do it 
indirectly, by providing the object that is the target of the 
motion. The motion model can then determine the angle 
between the front of the car and the target, and steer in that 
direction, proportional to that difference, saturating at 
some maximum steering angle. 
 With this model, the qualitative system has the raw tools 
needed to plan a path: it determines what happens when a 
car tries to drive from one location to another. Then, as in 
Wintermute & Laird (2007) (and as will be elaborated 
soon), simple path planning is accomplished by 
decomposing the problem into a series of attempts to reach 
qualitatively specified waypoint images. A simple 
implemented example problem, and the resulting waypoint 
and path, is shown in Figure 4. 

RTS Base Layout: Translation Models 
In the computer game genre of Real-Time Strategy, one of 
the many sub-problems requiring spatial reasoning is 

laying out a clustered group of buildings with different 
functions, collectively called a “base.” During the game, 
the player must strategically determine the locations of 
new buildings as they are added to a base. The world is 
viewed from the top down, so a player might describe the 
most desirable location for a new building with weak 
defensive capabilities as “near my base, but behind it in 
relation to the enemy’s base.” In Wintermute & Laird 
(2007), this problem was solved in SRS by creating 
indirect images: the system encodes an equivalent 
projection command to the sentence “create an image of 
the building, located outside of my base, near my base, and 
as far from the enemy’s base as possible”, and the location 
of the image is used as the location for the new building. 
 Internally, as it does with all indirect images, SRS 
determines the location by gradually ruling out potential 
locations for the new building. The fact that the new 
building is “outside of the base” means that all locations 
inside the polygon representing the base can be ruled out, 
for example. The property of being “near the base” rules 
out remaining locations that are not directly adjacent to the 
base, and “far from the enemy,” when applied next, rules 
out all locations but those maximally far from the enemy. 
 While this system works well for this problem, it 
requires the construction of complex indirect images, so it 
is worthwhile to see if the problem can be solved more 
simply using motion models. In order to do this, two new 
motion models were added to SRS: the translation model 
and the translation-around model. The translation model is 
simple: given a target object, it translates the primary 
object towards that object. The translation-around motion 
model is only a bit more complicated: given a reference 
object adjacent to the primary object, it translates the 
primary object around the perimeter of the reference 
object, in either the clockwise or counter-clockwise 
direction (as specified by Soar). 
 With these models in place, it is possible to solve the 
base-layout problem using simulation instead of indirect 
images (Figure 5). The new building can initially be placed 
at some arbitrary location in the scene outside of the base 
(B1 in the figure). Then, the translation model can be 
applied to it, to move it toward the base, until (adjacent B1 

Figure 4. Using a Car Model. The system 
must determine a waypoint such that the car can 
drive to the goal without hitting any obstacles. 

Figure 5. Placing a new building behind the 
player’s base, relative to the enemy. Bases are the 
convex hulls of sets of buildings. Initially, the 
building is placed arbitrarily outside the player’s 
base (B1), then it is translated toward the base (B2), 
then around the base to B3, where the new building 
is built. 



base true) matches, resulting in B2. Then, the translation-
around model can be applied, until the image is located at 
B3, where the building is placed. 
 How does the system know to stop the simulation at B3? 
The reason B3 is the appropriate location is that it is the 
furthest location from the enemy base along the perimeter 
of the player’s base. This location can be derived in the 
qualitative level by monitoring the distance from the 
building in motion to the enemy while translating it around 
the base. The appropriate place to stop is where this 
distance reaches a local maximum, a property that can be 
easily detected by the symbolic system. This result is a 
clear-cut example of the synergy gained by using 
continuous models with a qualitative system. The motion 
model itself knows nothing about location of enemies, or 
the goal of its action relative to them, just how to move 
from one position to the next. Likewise, the qualitative 
level knows nothing about the specific details of the shapes 
it is reasoning about, which the result of the simulation 
critically depends upon. Between the two, though, it is easy 
to solve the overall problem. 

Motion Models and Indirect Images 
In the above example, a sequence of motions was used to 
create an image (the location of a new building), where 
previously a more complicated indirect image was needed. 
In general, it is possible to get much of the functionality of 
indirect imagery by using motion models.  
 Other situations also demonstrate this. In car path 
planning, we can decompose the problem into a sequence 
of generating waypoints, and attempting to reach them.2 
Attempting to reach a waypoint was discussed above, but 
generating a waypoint, previously accomplished through 
indirect imagery, can also be addressed with simulation. In 
Figure 6, the two approaches to waypoint generation are 

                                                
2 This methodology is roughly similar to sampling-based motion planning 
(LaValle, 2006), where running the car simulation corresponds to 
sampling a small part of its configuration space. However, in our 
approach, the system controlling where to sample is a cognitive 
architecture, versus a specialized system as is normally used. 

shown. A waypoint is simply a location on the edge of an 
obstacle that will help the moving object avoid it. In this 
case, the task is to move the object at A to B, but obstacle 
O blocks the direct path. Waypoint C must be generated, so 
a path from A to C to B avoids the obstacle.3 One approach 
to generating waypoints is to first construct a line from the 
object to its destination (line AB), then a line perpendicular 
to AB, passing through the center of the obstacle (line P in 
the figure). An indirect image can then be used to create 
the actual waypoint. It is an object outside of the obstacle, 
near P, and near AB. This is object C on the left of the 
figure. 
 This problem can also be addressed using simulations 
instead of indirect images (Figure 6, right). As in the base 
layout problem, the potential waypoint can first be placed 
arbitrarily then moved towards the obstacle until (adjacent 
waypoint obstacle true) matches. At this point, two 
simulations must be run: one to translate the waypoint 
around the obstacle clockwise, the other counter-
clockwise. Both of these should be stopped when the 
distance from the waypoint to the line AB reaches a local 
maximum. In the figure, the two end conditions for these 
simulations are marked C and C’. Soar can then query for 
which of C and C’ is closest to AB, which is the 
appropriate waypoint (C, in this case). 
 As seen in the figure, these techniques produce different 
final waypoints. In practice, performance from using either 
scheme is roughly equivalent, since they are both on the 
correct side of the obstacle. The chief functional difference 
between them is how much of the process of creating the 
waypoint is accessible to the symbolic level of the system. 
In the first approach (the indirect image), the waypoint is 
created all at once: the projection command for it is sent to 
the spatial level, and in the next cycle of Soar, the image is 
present. The process inside the spatial level to interpret this 
indirect command takes multiple steps as it rules out 
locations (as discussed in the previous section), but Soar 
has no access to the intermediate states of indirect imagery. 
 In the motion model case, the process is more explicit, 
and intermediate states are accessible. This is potentially 
advantageous, since, for example, Soar can weigh the 
advantages of C and second-best waypoint C’ before 
making its decisions (maybe C’ is actually closer to a 
location that will be moved to later, for example). In 
addition, with motion models, the intermediate 
perpendicular line is unnecessary. The conditions for 
indirectly constructing the waypoint are equivalent to 
“adjacent to O, near P, and near AB.” The perpendicular is 
used to restrict the final condition (near AB) to choose 
between alternatives on the extreme left and right of the 
obstacle. The simulation case needs no such complication 
– it can reason about the extreme left and right waypoints 
directly, without invoking intermediate structures.  

                                                
3 C is actually placed adjacent to an image of a slightly larger obstacle 
so that it has room to clear the corner, as opposed to directly adjacent to 
it. 

Figure 6. Two approaches for getting from A to B, 
around obstacle O. On the left, an indirect image is 
used, creating waypoint C via a temporary 
perpendicular line. On the right, simulation is used, 
where the waypoint is first placed arbitrarily, then 
translated towards O, then translated around O in both 
directions, resulting in potential waypoints C and C’. 



Discussion 
The above examples show how continuous motion models 
can be integrated into a bimodal spatial reasoning system. 
The models exist in the spatial level and are controlled by 
the symbolic level issuing qualitative commands. Each 
model combines its qualitative command with quantitative 
information in the scene to transform an object in the scene 
to a new state. These motion models correspond to the 
movements of objects that the agent could have observed 
(in theory) in the environment, despite the fact that the 
system has the capability to use them in abstract situations.  
 This is proposed in the context of SRS, an extension to 
Soar. SRS shares many commonalities with SVI (Lathrop 
& Laird, 2007), a theory of visual imagery for Soar. SVI, 
in addition to supporting a quantitative spatial 
representation, focuses on a depictive pixel-based visual 
representation. This supports low-level visual operations 
(such as detection of visual features, and pixel-level 
manipulation), providing functionality not possible in a 
spatial representation. SRS can be considered an 
elaboration of the spatial level of SVI. 

Motion Models and Action 
The agent’s own effectors are an important class of moving 
objects in the environment. None of the previous examples 
had realistic effectors, but the system could be extended to 
support them. In a system incorporating realistic effectors, 
motion models would be intimately tied to their control. 
Recall that objects created in the scene as images are 
perceived by Soar (via predicate extraction) identically to 
objects fed into the scene from the environment, outside of 
an annotation to differentiate them. This allows 
hypothetical reasoning to occur identically to reasoning 
about the actual environment. Accordingly, hypothetical 
actions in the scene (simulations) and real actions can have 
the same representation in Soar, outside of an annotation. 
 This observation can help direct us toward how realistic 
actions should be integrated into a bimodal cognitive 
architecture. Mainly, at a high level, the actions should be 
controlled in the same way motion models are. The 
examples above have shown that only relatively simple 
continuous models are needed to solve complex problems, 
since the qualitative system can easily take on the higher-
level aspects of the problem that would be difficult to 
reason about in a continuous system. For example, in the 
car driving problem, the motion model itself needs only to 
know how to seek towards a location, not how to do a 
backtracking search for a path, which objects in the scene 
are obstacles and which are not, etc. An equivalent car 
controller, while still faced with the difficult task of 
reducing movement to actuator signals, would similarly not 
have to be concerned with those higher-level concepts. 
 The idea of tightly binding motor control and imagery 
was explored in detail by Grush (2004), in his emulation 
theory of representation. He points out that maintaining a 
prediction of the outcome of motor commands (as a 
Kalman filter) can aid the controller itself, shortening the 

feedback loop through the environment. If this predictor is 
present for the controller, it can be used “offline” by itself 
to drive imagery – as a motion model.  
 Although motion models correspond to movements of 
environmental objects, it is important to note that they can 
be re-used for reasoning about problems not directly 
involving motion. In the above RTS base layout example, 
the motion models were not directly simulating objects that 
move in the environment, as the car and block models do. 
The system was manipulating a potential placement 
position, an entity that has no direct counterpart in the 
actual game – buildings are not placed by sliding them 
around in the environment, but by issuing a command 
specifying the building’s location. 

Completeness and Correctness 
Viewed from the symbolic level, SRS can be considered to 
be an inference mechanism for determining the qualitative 
implications (extracted predicates) of a given sequence of 
qualitative commands (predicate projections). There is a 
fundamental issue here, in that any given command might 
have multiple valid, but qualitatively distinct results. For 
example, in Figure 1, based on how the system interprets 
the first command, the resulting situation could be 
qualitatively different: the new shape might or might not 
intersect shape B, based on how the system chooses to 
interpret “to the right of A.” Qualitative simulation systems 
(e.g., Kuipers, 1986, Forbus et. al., 1991) encounter similar 
issues, which are typically resolved by allowing states to 
have multiple successor states. In our case, though, it is 
difficult to see how those multiple successors could be 
efficiently inferred and represented. Since multiple 
successors are not generated by SRS, as an inference 
mechanism, SRS is inherently incomplete. In the example 
in Figure 1, the system deals with this problem by refining 
its commands until the interpretation returned by SRS 
meets its requirements, but this strategy might not be 
possible in all cases. The problem is particularly evident 
when motion simulation is used. Simulations are very 
sensitive to the initial quantitative state of the diagram and 
the continuous properties of the motion model: a minor 
change in either can change the qualitative result of the 
simulation. 
 In many cases, qualitative descriptions given to SRS 
have only one possible quantitative interpretation, so in 
these cases, incompleteness is not a problem. It would be 
simple for the system to report to Soar when it must choose 
arbitrarily amongst multiple interpretations of a projection 
command (when the command is under-constrained). The 
agent could then adjust its reasoning process accordingly. 
However, consider the base layout algorithm described 
above (Figure 5). No matter where the initial building is 
placed by the first, under-constrained command (to place 
the building “outside the base”), the final result of the 
algorithm will always converge to the same region: the 
place adjacent to the base, far from the enemy. So it is not 
always desirable to avoid reasoning processes that are 
based on under-constrained situations. Further study of this 



completeness problem is an area for future work. 
 Note that this issue is a different problem from cases 
where a simulation might result in incorrect qualitative 
inferences due to inaccuracies in the model itself. Since 
models are learned from the environment (at least 
conceptually), it is expected that results of simulations will 
vary based on how well the model matches reality, and the 
results can be incorrect if the match to reality is not good. 

Learning Motion Models 
Learning motion models from the environment has yet to 
be addressed. However, studying how models are used 
allows us to say precisely what they do and do not do, 
which is a first step in determining how they can be 
learned. All of the models used so far have involved a 
primary object that moves in some way in relation to a 
stationary reference object. The model, given a time step, 
maps the spatial configuration of these objects to a new 
spatial configuration. The motions are represented as the 
agent perceives them (i.e., not necessarily in terms of 
underlying physics). The models should not perform any 
reasoning that could be done at the qualitative level. The 
examples above have shown some of the range of 
reasoning this can encompass.  

Conclusion 
Spatial reasoning is a problem with aspects that are both 
precise and grounded, and abstract and qualitative. 
Bimodal systems attempt to unify all of these aspects into a 
common framework, a qualitative symbolic system 
interacting with a continuous spatial system. 
 One important type of spatial reasoning is reasoning 
about motion. We have shown how a bimodal system can 
incorporate motion, by using simple forward models in the 
spatial level. The interaction between these models and 
qualitative symbolic reasoning can solve complex 
problems involving motion that were previously very 
difficult for general purpose cognitive architectures. In 
addition to allowing new problems to be solved, this work 
sets the stage for learning and using realistic action in a 
cognitive architecture. The approach is also very 
economical, as it allows perception and action systems to 
be reused during problem solving, even for problems that 
aren’t directly about motion. 
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