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SOAR is a cognitive architecture named from state, operator and result, which is adopted to
portray the drivers’ guidance compliance behavior on variable message sign (VMS) in this paper.
VMS represents traffic conditions to drivers by three colors: red, yellow, and green. Based on
the multiagent platform, SOAR is introduced to design the agent with the detailed description
of the working memory, long-term memory, decision cycle, and learning mechanism. With the
fixed decision cycle, agent transforms state through four kinds of operators, including choosing
route directly, changing the driving goal, changing the temper of driver, and changing the road
condition of prediction. The agent learns from the process of state transformation by chunking and
reinforcement learning. Finally, computerized simulation program is used to study the guidance
compliance behavior. Experiments are simulated many times under given simulation network and
conditions. The result, including the comparison between guidance and no guidance, the state
transition times, and average chunking times are analyzed to further study the laws of guidance
compliance and learning mechanism.

1. Introduction

Reality indicates that the effects are very limited if one just simply relies on constructing new
roadway, adding new traffic facilities or adopting traditional management methods to solve
the traffic problems [1]. Intelligent traffic systems (ITSs) have been put forward as early as 30
years ago, which is treated as one of the most important measures to solve traffic issues [2].
Among the various means and methods involved in ITS, traffic guidance can help drivers to
makemore efficient route choices and reduce the anxiety and stress of trip, which is one of the
means that can truly improve the performance of systems and ensure traffic safety. Guidance



2 Mathematical Problems in Engineering

compliance behavior is a basic problem in traffic guidance as it represents the perception
of driver to the guidance information, the trust degree in the information, and the regular
pattern of the degree variation. The guidance compliance rate is the external manifestation
of driver’s guidance compliance behavior, and an effective guidance system is established
based on the high compliance rate of its users [3].

In the past, the planning and design of traffic guidance system are normally based
on the assumptions that drivers completely obey the guidance or choose route according to
the compliance rate set by the system, [4–7], or simply think that drivers regard expected
benefit as a goal and they are assigned to the network with the users equilibrium after
system implementation [8–12]; however, the assumptions are not true. First, the guidance
compliance rate is not static but changes as drivers gain further knowledge of the rate
while the guidance system is implemented. Second, the guidance compliance behavior which
treats expected benefit as the only goal cannot reflect drivers’ real decision-making process.
Whether or not the drivers comply with the guidance information is not only related with
the expected travel time and trip cost, but also closely refer to their perception degree to the
guidance information, the familiarity with the road network, the attitude towards risk, the
release modes of guidance information, and the approach of information display. Finally, the
decision-making process of drivers in the previous guidance system planning and design
is viewed as absolutely rational, it is assumed that drivers have full awareness of guidance
information and that they have a clear perception of a good or a bad trip, and they completely
understand the current road network condition. However, many studies have shown that
the behavior of drivers in practice is limited rational [9]. Thus, traditional approaches of
guidance system planning and design are not effectively capable of reflecting the impacts
of release modes and display approaches of guidance information, the position of VMS in
the complex traffic environment on drivers’ thinking and decision-making processes, and the
changes of the trip demand and the spatial and temporal distribution of traffic flow following
the impacts.

Without the accurate estimations of the compliance rate and its evolutionary
process, drivers cannot perform effectively even if the system has provided good guidance
suggestions, so the expected guidance effect cannot be achieved. In fact, according to
investigation and research many researchers have shown that the guidance compliance rate
is far lower than the system expects [13–17]. Thus, Erke et al. [17] have pointed out that
it is not advisable to optimize in the process of system planning and design based on the
set rate which is close to 100% in order to maximize the utility. Because of the above facts,
many scholars have realized the significance of researching into the guidance compliance
behavior on planning and design the guidance system. Koutsopoulos and Xu [18] and Ozbay
and Bartin [19] have stated that the effects of travelers on both guidance compliance rate
and the change process of the rate must be considered if a guidance system wants to be
useful. Adler [20] has indicated that the successful implementation of the advanced traveler
information system (ATIS) and the in-depth research of the traffic flow model under the
guidance information are both very important in studying the traffic guidance compliance
behavior.

2. Literature Review

The traditional guidance theoretical methods and the methods of processing compliance rate
in guidance system design can be approximately divided into two categories. The first is
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based on the presupposition of the guidance compliance rate, such as Thakuriah and Sen [4],
Wang et al. [5] assumed that drivers completely obeyed the guidance when various guidance
strategies had been simulated, Deflorio [6] set the rate as a constant between 0 and 1, and Yin
and Yang [7] set the rate to match the assumption that drivers cost less travel time when
they obey the guidance than they did not. The second method avoids guidance compliance
rate but converses it to the method which is based on the random utility theory and user
equilibrium theory. Based on this method, multinomial probability model (MNP) [8, 9], the
theoretical model based on the generalized extreme value (GEV) [10], and the stochastic user
equilibrium model (SUE) are proposed [11, 12].

Many surveys show that the real guidance compliance rate deviates from the expected
rate severely after the guidance system is implemented [13–17], it challenges the traditional
methods of processing the compliance rate. Hence, many scholars realize that researching
the guidance compliance rate of the groups demands the study of guidance compliance
behavior from the individual point [18–20]. Themain threemethods of studying the guidance
compliance behavior are survey, experiment, and simulation models.

2.1. The Method Based on Survey

The most direct way to study the compliance behavior under a specific guidance system is
to survey the service groups and extract the factors affecting the actual compliance rate to be
analyzed for guiding the planning and design of the guidance system. The two main survey
methods are questionnaire and network monitoring. Bonsall and Joint [13] have investigated
100 drivers with vehicle-mounted guidance systems and found that 30% of the drivers did
not comply with the guidance information when they are familiar with the road network,
and 90% complied when they are unfamiliar. Cummings [14] discovered that only 4–7%
of the drivers obey the guidance in normal conditions and only 13% in special conditions
after investigating 20 variable message systems in Europe; in addition, 5% of the drivers
did not understand the information shown on the VMS, and over 10% misunderstood the
information. Tarry and Graham [15] monitored the VMS near Birmingham through the
network and found out that 27–40% of the drivers obeyed the guidance when the VMS
showed that an accident happened in front, but only 2–5% when the VMS just displayed
traffic jams without reporting the reasons. Swann et al. [16] investigated the VMS near
the estuary district in Forth of Scotland and found that 16% of the drivers routed to the
recommended path when VMS showed traffic congestions in the front. Erke et al. [17] found
that about 20% of the drivers followed the recommendation and almost 100% when the VMS
showed that the road ahead was closed through a spot field investigation on two sites of
motorways. Zhou and Wu [21] analyzed 497 valid questionnaires in Beijing and found that
proportions of drivers who would change the route, maybe change, would not change, and
did not know what to do were 16.9%, 65.4%, 11.5%, and 6.2%, respectively. Chen et al. [22]
and Mo and Yan [23] studied the parking guidance system in Nanjing and Shanghai and
concluded that the behavior of the driver in discovering, understanding, and complying
with the guidance information varied very much when drivers’ personal properties, travel
characteristics, and parking lot selection changed.

The above investigation results show that the compliance rate is normally lowwhether
for the vehicle-mounted guidance system or VMS. The main reasons of low rate have been
analyzed as follows: (1) there is no need for the guidance information because drivers are
familiar with the roads; (2) drivers do not notice the guidance information; (3) drivers do not
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understand the guidance information; (4) drivers do not believe the guidance information;
(5) the information is received too late that the drivers have chosen the route; (6) the readable
distance of VMS is too short, drivers have no time to read, and thus miss the guidance
information [13–17].

2.2. The Method Based on Experiment

The method based on experiment is to find out the laws of behavior occurrence and
some measures to affect the behavior by setting different guidance environments in the
road network to analyze the response of the drivers. Allen et al. [24] observed drivers
experiment with different OD and different roads congestion conditions, and the results
showed that their compliance rate is high (more than 70%) when using route suggestion
strategy. However, they did not consider that the recommended route would be congested
and then influenced the guidance compliance behavior, which actually was very common and
practical. Srinivasan and Jovanis [25] adopted the DesignerWorkbenchmodel of Corypheaus
Corporation to create a software to develop experimental environments, in which different
display approaches of guidance information were used to test the effectiveness for 10
participants; they found that the display approach with the highest compliance rate was the
one using the countdown progress bar to show the distance between the current location and
the front crossing. Chen and Paul [26] allowed 99 participants to join a continuous 20-day
experiment in computerized simulation road network and found that the factors affecting
drivers’ guidance compliance rate were characteristics of guidance information (e.g., whether
the information had shown the recommended path or not, whether the road connected or
closed to highway or not), the characteristics of drivers (e.g., age, gender, and educational
level), and whether the information provided the reasons of accidents or congestion or not.
Wachinger and Boehm-Davis [27] found that drivers preferred different display modes and
seemed to be more willing to comply with the favorite one. Adler [20] divided 80 participants
into 4 groups, and two-factor measurement experiments with 20 persons per group, 15 times
per person were repeated successfully in a simulated road network. The result showed that
the compliance rates of drivers unfamiliar with the road network were higher than the
familiar ones because the familiar drivers benefited slightly from the guidance information.

2.3. The Method Based on Simulation Model

Due to the rapid development of computer technology, people have begun using simulation
model to study the guidance compliance behavior of drivers and have attained certain
achievements. Lu and Tan [28] proposed a complexity model of guidance compliance rate
based on Logit traffic assignment model and analyzed the changing properties of the rate
based on the simulation. Huang et al. [29] proposed a stochastic user equilibrium model
to study the changing process of the compliance rate in ATIS. In recent years, people have
paid increasing attention to the multiagent simulation techniques to study the guidance
compliance behavior of drivers. Adler and Blue [30] studied drivers’ guidance compliance
behavior from the perspective of cooperative game by simulating the interaction of various
agents in the traffic system. Wahle et al. [31] proposed a two-layer agent framework to
study the guidance compliance behavior of drivers; the first layer showed their perception
and reaction to guidance information, and the second layer described their decision-making
process. Dia [32] added beliefs and capacities of drivers and various rules of behavior into
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agents when the reactions of drivers to different traffic information had been studied, and
they proposed a agent framework with cognitive function. Based on this architecture, they
studied the changing process of the guidance compliance behavior.

3. Research Motivation

The current research results of guidance compliance behavior provide many methods and
basis to design, implement, and evaluate the traffic guidance system, the results also promote
the development of intelligent traffic system, but certain shortcomings still remain. First,
it is obviously unfeasible to presuppose the guidance compliance rate without scientific
analysis as there are so many factors influencing the rate. The way which converses the rate
leads to problem solving difficulty or deviation from the actual situation because of model
complexity and too many assumptions (e.g., travelers are assumed to be fully rational), and
there are still much work to do to apply it into practice. Second, it can only roughly reflect
drivers’ perception of guidance information with the method based on survey; moreover,
their guidance compliance behavior will change as time passes, so relying solely on survey to
analyze the internal causes of guidance compliance behavior scientifically and accurately is
not an easywork. Third, simulation is a goodway to study the guidance compliance behavior,
but the development of the realistic guidance simulator costs too much. It is also difficult
to recruit volunteers to participate into the experiment for as long as several months, so the
simulation can only be done in a relatively short period. It is also worth studying whether the
memory, thinking, and decision-making reflected by this intensive simulation are consistent
with real conditions or not. Fourth, the current simulation models cannot reflect the actual
process of guidance compliance behavior because the studies on the process of perceiving,
recognizing and remembering information, the decision-making, feedback, and the impact of
these activities on the behavior are all insufficient.

As one of the three cognitive architectures, SOAR is based on chunks theory. It uses
rule-based memory to access search control knowledge and operators and finally achieves
common problem solving. This paper will adopt SOAR to build the cognitive process model
of guidance compliance behavior. This is mainly based on the following reasons. First,
as mentioned above, guidance compliance behavior is a dynamic learning process, which
changes as time passes. SOAR can learn from experience, which means it can remember how
it solves a previous problem and then uses the experiment and knowledge for subsequent
problem solving tasks. It can dynamically organize the accessible knowledge to decide and
also set subgoals dynamically if the knowledge is incomplete or inconsistent with decision
[33]. This is very similar with the thinking and decision-making of the guidance compliance
behavior of drivers. For example, a driver organizes and analyzes the received knowledge
according to his own judgment of the current road conditions and the past accuracy of the
guidance information to decide if he complies with the guidance or not under his certain
goal. If the driver receives the guidance information, he is not sure if it is correct, and he
is unfamiliar with the road network, he cannot make a decision to minimize the travel
time with the accessible knowledge, then, he is likely to set a subgoal to test the guidance
information. Drivers pay more attention to the accuracy of the guidance information and are
often more sensitive to the delay of the recommended path under this condition. Second,
as a mature cognitive theory, the content and framework of SOAR have been sufficiently
described, including the depth description of perception, memory, decision making process,
and learning mechanism; thus, SOAR portrays the guidance compliance behavior with a
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more actual architecture. Third, SOAR has been used to simulate different aspects of human
behavior successfully, such as team behavior, decision-making of people in virtual games,
and decision-making behavior of pilot, empirical supports are provided by many scholars
[34, 35]. Thus, SOAR provides a good idea to study traffic guidance compliance behavior.

Today, studying traffic guidance compliance behavior has received more and more
attention with the growing development of traffic guidance system. People have gradually
become conscious of the fact that more detailed simulations about traffic behavior are needed.
It is a hot topic of the emerging field to study guidance compliance behavior based on a
multiagent framework with the integration of multidisciplinary as the platform. In this paper,
based on the multiagent platform, SOAR architecture is added to describe the driver agent,
and the empirical method is combined to the computer simulation to study the guidance
compliance of drivers.

4. SOAR Cognitive Architecture

SOAR is a general intelligent architecture developed in 1987 by Laird et al. [36]. It is a
cognitive architecture with a wide range of applications, and it mainly focuses on knowledge,
thinking, intelligence, and memory. SOAR is constructed with the assumption that all
goal-oriented behavior can be likened to choosing an operator from a state. A state is
a representation of the current problem-solving situation; an operator transforms a state
(makes changes to the representation) and produces a new state. A goal is a desired outcome
of the problem-solving activity. As SOAR runs, it is continually trying to apply the current
operator and select the next operator (a state can have only one operator at a time), until the
goal has been achieved.

As shown in Figure 1 [35], SOAR architecture has the following main parts: input and
output interface, long-term memory, and working memory. There are also some underlying
mechanisms, such as decision-making and learning.

SOAR interacts with the environment through the perception and action interface
The environment is mapped into working memory through perception, and the inner
representations are returned to the exterior, after which actions are generated to act on the
environment through action interface. SOAR has two kinds of memories with different forms
of representation: a working memory that describes the current problem solving situations
and a long-term memory that stores long-term knowledge. In SOAR, the current situation,
including data from sensors, results of intermediate inferences, active goals, and active
operators, is held in working memory represented as a hierarchical graph of states or goals.
Long-term memory contains production memory, semantic memory, and episode memory.
SOAR achieves choosing and applying operators through decision-making cycle, which is a
fixed processing mechanism. Along with the decision cycle, SOAR has four different types
of learning mechanism, namely, reinforcement learning, chunking, episode learning, and
semantic learning [37].

5. Agent Design of Traffic Guidance Compliance Behavior

Vehicle and driver are integrated as a whole because their behaviors are inseparable in the
study of traffic guidance compliance behavior: the driver operates by observing the external
environment, and the vehicle interacts with the external environment by carrying out the
operation of the driver. Thus, the driver-vehicle unit is regarded as an agent in our study.
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Figure 1: SOAR architecture.

As Figure 2 shows, VMS uses three colors to represent the traffic condition of front
roads: red for traffic congestion, yellow for a little crowded, and green for smoothness. Here,
we will analyze how SOAR describes the specific guidance compliance behavior under VMS.
It is assumed that a driver A drives to his destination B. On his way, he passes a VMS which
shows he can reach B through any of the downstream roads (left road, forward road, and
right road) of crossing ahead. Driver A finally will choose one of the three roads according
to the combination of many factors, such as his familiarity with the road network, the
current guidance information on VMS, the traffic congestion situation in sight, the external
environment, and the former experience about the accuracy of the information shown on
VMS. The SOAR cognitive model is adopted to describe the guidance compliance behavior of
the driver when he passes the VMS repeatedly, including the process of perception, memory,
decision, and learning.

5.1. Problem Space, State, and Operator

Problem space is the internal representation of the problem. It contains three types of states:
initial state, intermediate state, and goal state. A state involves all the information of the
current situation in the problem solving process, as the results of perception, the description
of the current goal, and the problem space. An operator transforms a state to a new state. The
problem solving is to find out a sequence of operators to transform the initial state to a goal
state. Figure 3 is the problem space comprised by states and operators.

In Figure 3, squares represent states containing features and values, which reflect the
internal and external situations. Goal states, states in which features have values that indicate
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the goal has been achieved, are shaded. Arrows represent operators that change or transform
states.

In the guidance compliance scene, the initial state is the information, including
guidance information shown on VMS, the perception of the external traffic environment,
the judgment of the information accuracy, and the experience about the downstream road
conditions, when A drives into the visual range of VMS. Goal state is when A has chosen the
downstream route. The psychological process between initial state and goal state is described
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by intermediate states. Operators transform the initial state to immediate state and finally to
goal state through several immediate states. Four kinds of operators are considered in this
study, which are listed as follows.

(1) The first operator is choosing route, including the driver choosing to forward, left
or right.

(2) The second is changing road condition, according to the external environment and
his travel experience, the driver infers the downstream roads conditions which they
think are most consistent with the truth.

(3) The third is changing the driving goal from savingmoney (or saving time) to saving
time (saving money). Saving money requires the driver to choose the shortest path
to the destination, and saving time requires the driver to choose the path which
costs the least time to arrive at the destination.

(4) The fourth is changing mood. The driver may feel easy when the accuracy of
matching is high, while he may be impatient when the accuracy is low.

5.2. Working Memory

Dynamic information about the world and internal reasoning, including data from sensors,
results of intermediate inferences, hierarchy states, active goals and active operators, is all
held in the working memory.

In our guidance compliance scene, an agent is the unit of driver and vehicle, and the
agent achieves the goal state by transforming among several states in one decision-making
process. The attributes of any state involve the attributes of the driver, vehicle, and the
external traffic environment. The attributes of driver include gender, age, character, driving
years, monthly income, mood, his/her familiarity with the road network, the understanding
of the guidance signal, destination, driving goal, and the current location. The attributes of
the vehicle include the usage, size, and the speed, and the attributes of roads and surrounding
environment include the congestion situation of the current road in sight, the predicted
congestion situation of the downstream roads through perception, the true congestion of the
downstream roads by feedback, the current control signal of different directions, and the
guidance information shown on VMS. The state has some other attributes, such as the name
and the super state of the state. Parts of the attributes, such as the mood, driving goal, and
the predicted congestion situation, change with the transformation of states while the others
are static. The agents with the same static attributes are classified into one category. The value
range of each attribute is shown in Tables 1, 2, and 3.

5.3. Long-Term Memory

Long-term memory is the area where achievements are stored. Although all types of long-
term knowledge (procedural, semantic, and episodic) are useful, procedural knowledge is
primarily responsible for controlling behavior and maps directly onto operator knowledge.
Semantic and episodic knowledge usually come into play only when procedural knowledge
is somewhat incomplete or inadequate for the current situation. In our study of the traffic
behavior, procedural memory and episodic memory are involved.

The procedural knowledge is represented by production rules. The rules combine the
procedural knowledge with the operations to things. When some specific conditions are
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Table 1: The value ranges of the attributes of the driver.

Attribute (unit) Value 1 Value 2 Value 3 Value 4
Character Risky Steady Reserved /
Mood Easy Impatient / /
Gender Male Female / /
Driving years (year) 0-1 1–5 >5 /
Age (year) <25 25–40 >40 /
Incomings (yuan) <2000 2000–5000 5000–10000 >10000
Destination Area 1 Area 2 Area 3 /
Location 0 1 2 3
Driving goal Saving money Saving time / /
Familiarity Familiar Normal Strange /
Understanding level Do not notice Do not see Notice but misunderstand Understand

Table 2: The value ranges of the attributes of the vehicle.

Attribute (unit) Value 1 Value 2 Value 3
Speed (k/s) >60 40–60 <40
Size Small Normal Big
Type (according to usage) Private car Taxi Official car

Table 3: The value ranges of the attributes of the traffic environment.

Attribute (unit) Value 1 Value 2 Value 3
Current density 2 1 0
Predicted density 2 1 0
True density 2 1 0
Control signal G Y R
VMS sign G Y R

satisfied, a set of actions in the matched rule are triggered. When the associations between
goals and subgoals are triggered, production system is transformed from one to another, that
is, once a production system is triggered and implemented, the control of action or behavior
will be transformed to the other production system which meets the conditions. Production
is represented by an if-then rule. The “if” portion of each rule contains the conditions, while
the “then” portion contains action or behavior. Partial initial rules of an agent in the above
guidance compliance behavior are shown in Table 4.

In Table 4, [I] is for “if”, [T] is for “then”, and C-D, V-S, C-S, P-D, Des, Loc, Moo, and
M-A are short for current-density, VMS-sign, control-signal, predicted-density, destination,
location, mood, and match-accuracy, respectively. Take r8 as an example, which means that
if the current road is severely crowded, the VMS shows that all the roads are congested,
and the traffic light allows vehicles to turn right, then the driver becomes impatient, and the
matchaccuracy decreases by 10%. The meanings of other rules are expressed in the same way.
The above rules are just partial initial rules of the driver agent, the others are not given in
detail because of the limited space.

The episode knowledge is the specific experience and memories of a agent, and it is
the source of episodic learning. Episodic memory records the events and history that are
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Table 4: Partial initial rules of a driver agent.

Number If/then If/then If/then If/then If/then If/then If/then

r1 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(220) [I]Des(1) [I]Goal(T-S) [T]Loc
(3)

r2 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(221) [T]P-D(200) — —

r3 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(220) [I]Des(1) [I]Goal(M-S) [T]Goal
(T-S)

r4 [I]C-D(2) [I]V-S(RRG) [I]C-S(RRG) [I]P-D(200) [I]Goal(T-S) [T]Loc(2) —
r5 [I]Goal(M-S) [I]Des(1) [T]Loc(1) — — — —
r6 [I]Goal(M-S) [I]Des(2) [T]Loc(2) — — — —
r7 [I]Goal(M-S) [I]Des(3) [T]Loc(3) — — — —
r8 [I]C-D(2) [I]V-S(RRR) [I]C-S(RRG) [T]Moo (I) [T]M-A(↓0.1) — —
r9 [I]C-D(2) [I]V-S(RRR) [I]C-S(GGR) [I]Des(1) [T]Loc(1) — —
r10 [I]C-D(2) [I]V-S(RRR) [I]Goal(T-S) [T]Goal(M-S) — — —

embedded into experience. An episode can be used to answer questions about the past to
predict the outcome of possible courses of action or to help keep track of progress on long-
term goals. In SOAR, episodes are recorded automatically when a problem is solved [38].
An episode consists of a subset of the working memory elements that exist at the time of
recording. SOAR then selects those working memory elements that have been used recently.
The episode that best matches the cue is found and recreated in working memory. Once
the episode is retrieved, it can trigger rule firings, or even serve as the basis for creating
new cues for further searches of episodic memory. In the guidance compliance scene, once
a decision cycle is finished, episodic memory records the chosen operator and its preference
in the current state which contains the specific guidance information, control signal, current
density, predicted density, driving goal, destination and location, and preparing for the next
impasse coming.

Long-term memory changes dynamically, more episodes are added to the episodic
memory and new production rules are added to the procedural memory through the different
learning mechanisms in the process of decision-making.

5.4. Decision Cycle

The decision cycle is the most basic processing mechanism in SOAR. The core functions
of SOAR are selecting the operator and then applying it, but only a single operator can be
selected for a state at a given time.

The decision cycle starts with input, during which working memory elements are
created to reflect changes in perception. In our simulation, the initial state, including the
current location, the guidance information shown on VMS and the road conditions in sight,
of the guidance compliance problem, is created by the initial operator. The state elaboration
is not the knowledge directed toward selecting and applying the operator, but the knowledge
to create a new description of the state to affect the operator selection and application, after
which a new description can evoke the operator to be selected and applied. The stages of state
elaboration, operator proposal, operator selection, and operator application in the decision
cycle retrieve the rules in the long-term memory; however, comparison among operations is
achieved by preference.
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If the preferences can be compared successfully, such as there is only a single candidate
operator to be proposed or an operator is obviously better than the others, and then the
best selected operator of the current state will be added to the working memory. When the
collision among the operators occurs, as two operators have the best preference at the same
time, or operator A is better than B and B is better than A are both put forward, an impasse
requiring the chunking learning mechanism to solve is created.

In the simulation of the guidance scene, each rule in the long-term memory contains
conditions, the operator which matches the conditions, and the numeric preference of the
proposed operator. Once a new rule is added to long-term memory, the initial numeric
preference of the operator in the rule is judged, and its value can be updated along the
decision-making process according to the feedback from the external environment in order
to make it closer to reality and provide more precise information to drivers for decision.

5.5. Learning Mechanism

The SOAR agent of the guidance compliance behavior has four different learning
mechanisms. They generate the representation forms of knowledge in SOAR together, but
each of them has a different source of knowledge. The source of knowledge, learning time,
and learning outcome of different learning mechanisms are shown in Table 5. In this paper,
chunking and reinforcement learning are mainly introduced and adopted according to the
characteristics of the traffic guidance compliance behavior.

5.5.1. Chunking

Chunking occurs to learn when the impasse is solved, and the chunking rules are learned in
the process of solving a substate. An impasse is how an architect defines a lack of available
operators in the working memory of the systemwhich make movement through the problem
space, and a new rule is automatically created to solve the current impasse. The establishment
of the chunking rule needs to analyze the production rules in the long-term memory and the
episodic cues relating to the results.

Taking the SOAR agent of guidance compliance behavior as an example, it is assumed
that the preferences of operator O1 which will change the predicted road condition and
operator O2 which will change the driving goal cannot be compared successfully (i.e., the
two operators are just as good or as bad with each other); thus, the decision cycle cannot
decide, and an impasse occurs. At the same time, a substate which is meant to solve the
impasse is produced. If S1 is the state producing an impasse, and S2 is the substate, we say
S1 is the super state of S2. An impasse can be solved by inputting new rules from outside,
recalling the episodic knowledge in long-term memory, or randomly selecting an operator
from several operators. The steps of solving an impasse in this paper are as follows.

(1) Conditions which bring impasse: O(si) = Φ or |O(si)| > 1 and p[omax(si)] −
p[osec(si)] < τ(s), where si is the current state transformed from the initial state
by i times state transition, and O(si) is the set of candidate operators under the
current state, its base number is |O(si)|. p[omax(s)] and p[osec(s)] are the best and
the second best operator of s, respectively, and τ(s) is the domain range for selecting
the operator of state s directly.
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Table 5: The comparison of the different learning mechanisms.

Learning mechanism Source of knowledge Learning time Learning outcome
Chunking The process of substates When the impasse is solved Chunking
Reinforcement learning Feedback or reward When reward happens New rule
Episodic learning Experience When a problem is solved Episodic memory

(2) The approach of solving an impasse: when the conditions of an impasse are
matched, the episodic memories containing the current state si are retrieved first
in order to find out the best operator to solve the impasse. If the episodic memories
do not contain the cue of state si, then the match accuracy of si decreases by step
λ, and all the long-term memories are to be searched for the matched operator to
move the problem to the goal state.

(3) The creation of the chunking rule: if T(se) − Te(se) ≤ ηz after agent exits out the
downstream road, the operators of solving the impasse are to be updated to create
chunking rules. T(se) is the true travel time, Te(se) is the expected travel time, and
ηz is the domain range of chunking rules. If the same rule is updated for continuous
ηg times, the operator in the rule is to be added to the state under which the impasse
happens in the decision cycle and chunking is achieved.

5.5.2. Reinforcement Learning

The source of reinforcement learning is the feedback of external environment, or what is often
called a “reward.” The reward can come from the “body,” in which a model is embedded (to
the model, this can be considered an external environment), or it can be generated internally
when the goal is achieved. Based on experience, reinforcement learning adjusts predictions of
future rewards which are then used to select actions that maximize future expected rewards.
In the SOAR agent of guidance compliance behavior, the driving time is associated with the
total feedback of the operator. pr(se) = [T(se) − Te(se)]

α is the total feedback under final
state se, the parameter α in this paper is set as 0.5, T(se) is the true travel time the agent
costs to get to the destination under state se, Te(se) = Td(t, l) + Tv[v(l)] is the expected travel
time, and Td is the mean driving time on road l at time t, and it indicates driver’s experience.
Tv[v(l)] = T(v, l)−Tr(l) represents the affection of road condition information shown on VMS
on travel time, T(v, l) is the mean travle time on road l when the guidance information is v,
and T(v, l) is the reference travel time on road l. The reference travel time adopted in this
paper is figured with the assumption that the percentage occupancy is 0.5.

Given that many states and operators are involved in one decision cycle of guidance
compliance behavior, the feedback is allocated to a state according to the distance between
the state and the goal state. The feedback of o(sk), which is the operator corresponding to
the kth state of the state transition path on cycle t, is λ[d(sk, se)]pr(se). pr(se) = [T(se) −
Te(se)]

α is the total feedback when the goal state se is reached, and α is 0.5. λ[d(sk, se), r(sk)]
is the weighting factor of pr(se)which are allocated to o(sk), and it is the function of d(sk, se)
and r(sk). d(sk, se) is the distance between sk and se, and r(sk) is the transition path. In
this paper, λ[d(sk, se), r(sk)] = (1/d(sk, se))/

∑|r(sk)|
i=1 (1/d(si, se)), where |r(sk)| is the state

number involving in state transition path which contains sk.
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6. Simulation Experiment and Analysis

6.1. Simulation Environment

The adopted simulation road network contains 6 nodes and 7 one-way three-lane (left-
turning, forward-going, and right-turning) roads, the structure and the length of roads are
shown in Figure 4. VMS is set about 100 meters far away crossing 2 on road s1. The guidance
information shown on VMS is the real-time traffic flow situation, which is represented by
different colors. The corresponding occupancy percentages of green, yellow, and red colors
are [0, 0.5], [0.5, 0.7], and [0.7, 1], respectively. Traffic flow is generated in crossing 1 and
passes the VMS on s1 to select one of the three downstream roads, including left (s2–s5),
forward (s3), and right (s4–s6), with the guidance of VMS to get to crossing 5, before finally
to crossing 6 in sequence. Crossing 2 and crossing 5 are equipped with two-phase fixed-time
controllers, while the others are not. The microscopic traffic flow simulation platform based
on the cellular automaton theory is adopted, and the free flow speed of each road is 60 km/h.
The departure frequency of crossing 1 is set to simulate for 30 continuous days from 5 am–
10 am (i.e., 540,000 seconds). In order to simulate the change law of guidance compliance
behavior during a long period after the VMS is newly set on road s1, the vehicle is required
to pass VMS repeatedly. Thus, a vehicle comes into s1 again after it exits out from crossing 6
if the departure frequency of crossing 1 is matched.

Based on the basic structure of road network, the lengths of entry and exit roads, the
position of VMS, and the traffic flow are adjusted accordingly. We find that the simulation
results are basically identical when the adjustments are not too large. Hence, the simulation
results and analysis for the basic structure mentioned above are only presented.

6.2. Simulation Results and Analysis

6.2.1. Guidance Effects

Two simulation experiments are conducted with the same road network and conditions
which are described in Section 6.1 except no VMS is set on s1 in one experiment, so that the
differences of traffic flow operation between guidance and without guidance can be studied.
Road s1 is divided into 10 sections represented by I1 to I10 from crossing 1 to crossing 2,
and the length of each section is 120 meters. Figures 5 and 6 are the spatial and temporal
distributions of vehicles with and without guidance in the 30th day.

When there is no guidance information shown on VMS, the average number of
vehicles on section I10 in peak period approaches 30 and its lasting time is long, the road
occupancy is more than 0.8, and the average amout of vehicles on I9 in peak time is also
over 20 (Figure 5). These indicate that the vehicle begins to decelerate at the place which
is a bit far from the downstream crossing, resulting in the decrease of traffic capacity on s1
in morning peak. On the other hand, when there is guidance information shown on VMS,
the mean number of vehicles on I10 and I9 decrease by 22.7% and 17.6%, respectively, from
7-8 am of the morning peak (Figure 6). These show that the guidance information alleviate
the congestion situation of morning peak on s1 effectively. In addition, comparing Figure 5
with Figure 6, the vehicle numbers of each section on s1 in off-peak time are pretty much
the same, which means that the guidance information does not bring an obvious effect when
traffic flow is small.
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Figure 4: The basic structure of road network in simulation.
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Figure 5: The spatial and temporal distribution of vehicles in each section on s1 without guidance.
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Figure 6: The spatial and temporal distribution of vehicles in each section on s1 with guidance.
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Figure 7 shows the effect of the guidance information on traffic flow in peak and off-
peak period from the perspective of vehicle speed on downstream roads. Whether there
is guidance information or not, vehicles on the downstream roads behind VMS remain at
high speed, especially in the morning between 5-6 am when they almost travel by free speed
entirely; thus, their travel time is almost the same no matter which route the drivers choose.
In this case, whether there is guidance or not has no obvious meaning to drivers. During
peak hours, the differences between guidance and without guidance are well represented
by speed. When there is no guidance information shown on VMS, s3 is congested severely
at 8 am, the average speed is just 24.87 km/s, but s2 keeps smooth with its average speed
being 36.35 km/s, and the speeds of s2 and s3 differ nearly by 50%. When there is guidance
information, the speeds of the downstream roads behind VMS are almost the same, and the
highest difference is just about 9.25%, which indicate that the capacities of the downstream
roads are maximized as VMS can allocate the traffic flow well in peak time. It also represents
the effectiveness of VMS in alleviating the traffic congestion.

6.2.2. The Guidance Compliance Regular Pattern and Learning Law

Figure 8 shows the route switching times of drivers in peak and off-peak time when there is
guidance information shown on VMS as well as the average switching time in all periods.
Simulation is used to investigate the guidance effects and its change regular pattern after
VMS is newly added on s1. Given that all agents are newly added in the initial stage of the
simulation, it takes some time for drivers to be acquainted with the guidance of VMS. The
initial route switching rate is close to 0.5, indicating that 50% of the drivers have chosen
different downstream roads when the same guidance information is encountered every two
times in this period, as the time goes by, the average route switching rate becomes 0.15 in the
10th day (Figure 8). In this process, drivers becomemore andmore familiar with the guidance
performance of VMS. Whether the individual driver complies with the guidance or not, the
guidance compliance behavior of the driver groups represented by guidance compliance rate
has basically reached a stable state after drivers gradually adapt to the guidance function of
VMS.

Although the average guidance compliance rate is stable, the guidance compliance
behaviors of peak time and off-peak time are inconsistent. The route switching rate of peak
period is very low after being steady, which is about 0.07 (Figure 8). Thus, once the drivers
adapt to the VMS in the peak time, their guidance compliance habit will rarely change. This
also proves that the costs of changing behavior in the peak time are very high. The route
switching rate of off-peak period is twice that in peak time, indicating that drivers’ guidance
compliance behavior in off-peak time is with a certain degree of arbitrariness. This is because
the average vehicle speeds of the downstream roads are all high, and the differences of
choosing different routes are not obvious. This is also a reason for the ineffectiveness of the
guidance system in off-peak time.

The number of state transition is a significant indicator which reflects the degree
of difficulty involved in the process of decision-making. Figure 9 shows the average state
transition times of 800 agents on cycles 0–300, all the agents are chosen randomly from the
drivers whose decision cycles are over 300. At first, the average state transition number of
agents is 7, indicating that the route from initial state to goal state is a little complicated in
the beginning of the simulation, and several times of state transition and operator selection
are needed. With the increase of decision-making number, after several rounds of feedbacks
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Figure 7: The driving speed of vehicle on s2, s3, and s4 at different times.
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Figure 8: Route switching rate.

and learning, the operator of choosing route is directly reached through an average of a little
more than 1 time state transition. In this case, themap from current state to goal state is almost
finished directly in the decision-making process.

No matter how perfect the initial rules of SOAR agent are, it is still impossible to
contain all the rules to be used in the decision-making process. The initial rules and operators
are difficult to be set exactly the same with the actual situation, so rules can be added or
revised in the learning process, and chunking is the most important learning mechanism in
SOAR. Figure 10 shows the average chunking times in each decision-making process of all
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the chosen agents. The average chunking times of each decision-making is 3 in the beginning
of the simulation, which indicate that the initial rules are insufficient to support choosing
downstream route, so impasse may happen with a very high probability. The success of
chunking rapidly increases the rules of agents to support decision-making. Therefore, the
number of chunking decreases fast and gradually towards 0 along the decision-making
process. This is consistent with the decreasing tendency of state transition times in Figure 9.
When the goal state can be reached by one state transition, this indicates that the map from
the perception of external traffic situation and the guidance information shown on VMS to
the operator of choosing the downstream route is finished directly, and the chunking times
are 0 in this mapping process.
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Figure 11: Route switching rate of old drivers when new drivers are added.

6.2.3. The Effect of New Drivers Adding

The above simulation experiments investigate the changing laws of the guidance compliance
behaviors of drivers on s1 after adding VMS. In the beginning of simulation, all the agents are
newly added, and they are unaware of the guidance system. After several decision-making
processes after passing VMS, a set of cognitive experience about VMS is formed, and agents
finish choosing downstream route based on this cognitive experience. In our simulation, in
order to finish repeated decision-making process all the agents queue again to enter s1 after
they exit from s7. Thus, very few new agents are added under this condition. Based on the
simulation situation of the previous 30 days, 4 more simulation experiments are conducted to
simulate the traffic guidance situations from 5 am to 10 am of each day from the 30th to 60th
days. 1/6, 2/6, 3/6, and 4/6 of new agents are added to the four simulations, respectively
from the 35th day to inspect the effect of adding new agents on the guidance compliance
behavior of the old ones. Figure 11 shows the variation of the route switching rates of the old
agents after different percentages of new ones are added.

Adding 1/6 of new agents has little impact on the guidance compliance behavior of
old ones, their route switching rate still keeps stable. When the percentage increases to 3/6,
the interferences of new agents to the decision-making process of old ones are obvious, and
when 4/6 are added, the old agents almost recomplete one learning process, which is similar
to the learning of new agents (Figure 8). Their largest route switching rate approaches 0.5
and it takes 10 simulation days to reach stability. The above results indicate that the guidance
compliance behaviors of drivers have a certain anti-interference ability when the guidance
system reaches stability; however, in order to maintain stability, the adding proportion of
new drivers should be lower than 1/2 in this simulation.

7. Conclusions

In this paper, the formation mechanism and variation law of drivers’ guidance compliance
behavior are studied based on SOAR cognitive architecture. Traffic guidance system is a very
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large and complex system, and the study of guidance compliance behavior is a fundamental
problem in achieving the functions and goals of guidance system. This paper begins with
the analysis of individual driver, wherein the perception, memory, decision-making, and
learning of drivers’ guidance compliance behavior are described in detail based on SOAR
architecture. The guidance effect, guidance compliance law, learning law, and the anti-
interference ability of the behavior are analyzed through simulation. As there are many
factors affecting the guidance compliance behavior of drivers, apart from the impact of
driver individual described in this paper, the release mode and display approach of guidance
information, and the position of VMS all have a significant effect on guidance compliance
behavior, and further research on these aspects will be conducted in the future.
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