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Abstract 
 

We investigate the problem of reinforcement 
learning (RL) in a challenging object-oriented 
environment, where the functional diversity of objects 
is high, and the agent must learn quickly by 
generalizing its experience to novel situations. We 
present a novel two-layer architecture, which can 
achieve efficient learning of value function for such 
environments. The algorithm is implemented by 
integrating an unsupervised, hierarchical clustering 
component into the Soar cognitive architecture. Our 
system coherently incorporates several principles in 
machine learning and knowledge representation 
including: dimension reduction, competitive learning, 
hierarchical representation and sparse coding. We 
also explore the types of prior domain knowledge that 
can be used to regulate learning based on the 
characteristics of environment. The system is 
empirically evaluated in an artificial domain 
consisting of interacting objects with diverse functional 
properties and multiple functional roles. The results 
demonstrate that the flexibility of hierarchical 
representation naturally integrates with our novel 
value function approximation scheme and together 
they can significantly improve the speed of RL. 
 
1. Introduction & Background 
 
 In this paper, we consider the problem of how 
persistent intelligent agents can learn to make decisions 
in environments populated with diverse types of 
objects that have multiple functional roles. We assume 
that an object’s perceptual features do not necessarily 
map directly to the functional utility of the objects. 
Thus, the agent must learn how perceptual features 
(such as the color and size of an animal) are related to 
the functional properties of the objects (such as 
whether the animal is dangerous or not), and how those 
functional properties relate to taking actions in the 

world (such as avoiding the animal or hunting it). 
Although these are fundamental characteristics of our 
world, environments with such characteristics have not 
been studied in machine learning. Furthermore, the 
agent’s persistent, ongoing existence limits learning to 
be incremental and online. 
 Our approach is a unique synthesis of two machine 
learning approaches:  unsupervised, hierarchical 
category learning and behavior adaptation based on 
reward signals using reinforcement learning (RL) [1]. 
  
1.1. Hierarchical Category Learning 
 

Categorization provides an agent with means for 
generalizing its knowledge from a specific instance to 
a class of objects. COBWEB [2] and its variants are 
incremental hierarchical clustering algorithms, which 
have been successfully applied in various category 
learning tasks [3, 4]. The algorithm has two important 
features. First, it automatically organizes instances of 
objects, each represented by a feature vector, into a 
hierarchical category structure, as shown in Figure 1. 
The hierarchical structure makes the algorithm scale 
well with increasing object diversity. Second, the 
algorithm is incremental – it learns the hierarchical 
structure one instance at a time, and is robust to the 
order of inputs as well as noise in the features. These 
characteristics make it a good candidate for a persistent 
agent’s category learning component. A previous 
version of the ICARUS cognitive architecture used a 
COBWEB-based system, called LABYRINTH [5] for 
its declarative learning and memory. 

  

Figure 1: Example hierarchical category structure 
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To date, hierarchical category structures based on 
functional characteristics in the context of an RL agent 
has not been empirically investigated. Additionally, 
COBWEB did not address functional diversity where 
the same object is used for qualitatively different 
purposes. For example, an agent can choose to eat an 
apple, play with the apple, or throw the apple at its 
enemy. It is unlikely that the categorical structure for 
the purpose of “playing” is consistent with the 
categorical structure for the purpose of “eating” 
because they have distinctive, uncorrelated underlying 
functional features. Therefore, an agent must have the 
option to categorize an object based on specific 
functional context. 

 
1.2. Reinforcement Learning within an Object 
Oriented Environment 
 

RL is an established approach for problems that 
require incremental learning of control behavior while 
interacting with an environment with uncertainty. The 
problem is generally presented as learning an optimal 
policy based on reward signals. The policy is 
traditionally derived from a value function that maps 
state-action pairs to future expected rewards, where the 
state is an unstructured feature vector. Value function 
approximation in a high dimensional, continuous state 
space has been a challenge to RL. In an object-oriented 
environment, however, the state representation 
contains extra information (constraints) that can be 
used to improve learning. Diuk et al. [6] introduced an 
object-oriented representation framework to enable 
generalization and make reinforcement learning 
feasible in domains where the state space is too large 
for unstructured representations. However, their focus 
is on learning action models, and the framework 
assumes predefined object categories. In environments 
with diverse functional types of objects, the agent must 
continuously expand its category vocabulary, which 
presents a unique challenge to traditional 
reinforcement learning systems and is one motivation 
for integrating category learning with RL. 
 
1.3. Our Approach 
 
 Figure 2 shows the dynamic data flow through the 
agent in our general approach. The two dashed boxes 
represent the learning components we are investigating 
in this paper. During interaction with the external 
environment, the category learning system predicts an 
object’s functional category based on perceptual 
features. The functional category and other features, 
such as relational features among objects, are then 
composed into the final state representation used by the 
RL system for choosing actions. 

2. Evaluation Domain 
 
 We present our evaluation domain before describing 
our system, so that we can illustrate how the system 
works using a concrete example. Unfortunately, there 
are no existing benchmark tasks that reflect the 
challenge of object diversity we are pursuing. 
Therefore, we created an artificial domain to evaluate 
our system.  
 The domain has a simulated environment with a 
discrete time and discrete location grid world. The 
agent is equipped with different types of ranged 
weapons. To attack a prey, the agent must choose an 
appropriate weapon and distance from which to attack. 
The efficacy of a weapon depends on the functional 
properties of the weapon and the prey, as well as the 
distance to the prey. Moreover, the prey may detect the 
agent and become alerted before the attack action, 
which significantly reduces the success rate of hunting. 
In order to get close enough to the prey without 
alerting it, the agent can approach the prey from behind 
static obstacles. The probability of successfully 
moving towards the prey depends on the sensing 
capabilities of the prey and the types of obstacles 
between the prey and agent. 
 This domain captures the characteristics and 
challenges that we intend to address using our system. 
First, there are multiple interacting objects and 
multiple types of interaction: the interaction between 
prey and weapons, and the interaction between prey 
and obstacles. Second, there is diversity for each object 
type: prey, obstacles, and weapons all have diverse 
functional properties. 
 Figure 3 shows a scenario, where the prey (P) is in 
the middle and there are two types of static obstacles: 
bush (b) and rock (r), which can coexist in the same 
cell (b, r). For simplicity, the agent can only approach 
the prey from eight different directions. The first 
number for a path indicates bush distance to the prey 
and the second number indicates rock distance. 0 
indicates that the object is absent or out of effective 
range. There is no additive effect from multiple 
occurrences of the same obstacle type, so if there are 
two bushes at both distance 1 and 2, the effect is the 
same as if there is one bush at distance 1. 

  
Figure 2: Abstract view of data flow through an agent 

Environment

Environment

Category Learning System

Perceptual features

Action

Agent

Objects

Other state features

RL System

Rewards

Value Function

198



 Figure 4 shows the model for interaction between 
objects in the domain. Grey boxes represent physical 
objects, white boxes with solid lines represent abstract 
quantities, white boxes with dotted lines represent 
probabilistic outcomes, large dashed boxes highlight 
local interactions among objects. Prey have different 
sensing properties which affect how likely it can sense 
the agent when blocked by a bush or rock, as 
highlighted by the “Prey Obstacle Interaction” box. 
The prey also has physical properties that affect how 
easily it can be shot and fatally wounded, as 
highlighted by the “Prey Weapon Interaction” box. 
Finally, distance to the prey affects both types of 
interactions. In the task, the agent must choose a 
weapon, an attacking path and a shooting distance. If 
the hunting is successful, the agent receives a positive 
reward 
 The functional properties of a prey and weapon are 
represented as continuous numbers in our environment 
model. We assume the agent can measure and 
internally represent these quantities as numeric 
features. Prey sensing properties consist of sensitivity 
to bush and sensitivity to rock. Prey physical properties 
consist of health and size. Weapon properties consist 
of power and accuracy. The probabilistic outcomes are 
determined by the numeric values of related features. 
For example, the probability of successfully 
approaching behind a rock is higher if the prey has 
higher sensitivity to bush. The probability of fatally 
wounding a prey is higher if the weapon has higher 
power or the prey has lower health.  
 We call the above numeric features functional 
features, as they represent an object’s perceivable 
functional properties that have intrinsic meanings to 
the agent. For many functional features, the values are 
“expensive” to obtain in nature because they have to be 
tested out by actual interactions with the object. There 
are other non-functional perceptual features (not 
shown in the figure) of prey that are more easily 
perceivable, such as visual, smell, and sound features, 
and they can be correlated with certain functional 
features. These perceptual features are useful for the 
agent to predict the functional features when they are 
not directly available. For example, the agent cannot 
directly observe a prey’s sensing properties before 
choosing the action, and has to make predictions based 

on correlated perceptual features such as the size and 
shape of eye, nose, and ear. 
 
3. Implementation 
 
 Our approach integrates a category learning (CL) 
system based on COBWEB and the RL system within 
the Soar cognitive architecture [7, 8]. The RL system 
uses the hierarchical structure from the CL system as a 
representational basis for value function 
approximation. 
 
3.1. Category Learning System 
 
 The default behavior in COBWEB is to create a 
single category hierarchy regardless of the functional 
context, which leads to poor performance when an 
environment is populated with objects with multiple 
functional roles. We have extended COBWEB to 
support categorization based on functional roles and 
functional features. For example, two prey that have 
similar health and size can have very different 
sensitivity to bush and sensitivity to rock. In our 
system, we have the option to equip the agent with 
prior knowledge so that it creates multiple functional 
category hierarchies for a single object (in this case the 
prey). In the hunting domain, the agent can create three 
separate hierarchies for: prey sensing categories, prey 
physical categories, and weapon categories. In Figure 
5, a hierarchy is associated with a specific functional 
role, and is learned based on specific functional 
features. The hierarchical structure for prey physical 
categories is expanded in the figure. Although only two 
levels of the hierarchy are shown, the CL system can 
create a deeper hierarchy to partition the continuous 
multi-dimensional feature space. For integration 
purposes, each category node in the hierarchy is 
automatically assigned a unique internal identifier. For 
example, the prey physical category represented by ‘2’ 
may have larger size and higher health than the 
category represented by ‘1’. ‘2.1’, ‘2.2’ and ‘2.3’ 
represent three more specific categories under the 

 
Figure 3: A hunting scenario 

 
 

Figure 4: Interaction model of the domain 
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super-category ‘2’. The identifiers themselves do not 
have an intrinsic meaning, and the only requirement for 
them is uniqueness. The identifiers are used as state 
features in the RL system to acquire semantics in a 
specific functional context, a process described in the 
next section.   
 To recognize the functional category membership of 
an input instance, the original COBWEB algorithm 
descends the hierarchy to search for the best match 
based on its perceptual features. In our system, 
category recognition is separated from category 
formation as represented by the two large dotted boxes. 
All the available perceptual features are used for 
recognition, which is based on a supervised Naïve 
Bayesian classifier targeting a set of basic categories 
[9]. Currently, the algorithm chooses these basic 
categories by picking the level where the within-group 
total variance of functional features drops below a 
predefined threshold. 
 
3.2. Reinforcement Learning System 
  
 Soar-RL [8] encodes the value function as a set of 
rules, with an expressive syntax equivalent to first-
order logic. The left-hand side of a rule tests state and 
action features, while the right-hand side generates the 
expected value for the matching state action pair. The 
expected value of an action is the sum of the values of 
all rules matching the current state and that action. 
Figure 6 shows how the CL system is integrated with 
the RL system to achieve sparse-coarse coding [10]. 
The entire system has a two-layer structure to 
approximate the utility function of hunting different 
prey with different weapons. The first layer represents 
the CL system layer as described in Figure 5. Each 
hierarchy is shown to have two branches per level for 
demonstration purposes. In our system, the branching 
factor can be controlled within a specified range, such 
as from 2 to 5. When functional features are detected, 
the system automatically grows the corresponding 
hierarchies. As discussed earlier, functional features 
are usually not available when the agent wants to make 
a decision, so the recognition process is activated in 
such situations to predict the functional category based 

on perceptual features. The dark colored nodes in the 
hierarchies represent symbolic categories matching 
with the input objects. These symbolic categories are 
used in the state representation and are matched by 
rules in the RL system. Rules are represented as cells 
in the coarse-coding layer. Dark colored cells represent 
rules that match the current state. The numbers on each 
grid indicates the hierarchy levels for component 
hierarchies, which will be explained later. The grids 
form an emerging lattice structure, and only a 2D 
projection of the lattice is shown in the figure. The 
complete lattice consists of all three hierarchies and 
has a 3D cubic shape instead of being 2D square.  

We formally describe the algorithm below. To learn 
a target function, the system first maps the input 
objects into a vector of functional roles R, which 
represents the argument types of the target function. 
The vector O represents the input objects binding with 
R: 

� = (�1, �2, … , �� ) 
� =  (�1, �2, … , �� ) 

For example, the function is to predict the utility of 
hunting some prey with some weapon by shooting 
behind a rock from 2 units of distance to the prey. The 
inputs are two objects: rabbit and bow. If the system 
has no prior knowledge about the objects, then it 
creates a single functional role for all objects. 
According to our notation, input to the system will 
look like R=(generic-object, generic-object), 
O=(rabbit, bow). If we know that prey and weapon 
play distinctive functional roles with different set of 
functional features, then the input will look like 
R=(prey, weapon), O=(rabbit, bow). Furthermore, if 
we know more details about the interaction model: 
there are two components, one is about how to get 
close to the prey, the other is about how to choose the 
most effective weapon, then the input will look like 
R=(prey-sensing, prey-physical, weapon), and 

 
 

Figure 5: Category learning system 

 
Figure 6: Overall structure of the learning system 
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O=(rabbit, rabbit, bow). These different levels of prior 
knowledge can be conveniently encoded as rules in our 
system. After matching objects with functional roles, 
the category learning system incrementally builds a set 
of hierarchies H correspondingly: 

� = (�1, �2, … , �� ) 
Let height(hi) denote in the height of the hierarchy hi, 
and ki denote a cluster/node within the hierarchy. Let 
level(ki) denote the level of cluster ki in hierarchy hi, 
with the root level being 0. Cells, grids and their 
relations, shown in Figure 6, are defined as following: 
 
	
��� = {	,  = (�1, �2, … , �� )|�� � �����
�� �� ��} 
����� = {��, � = (�1, �2, . . . , �� )|0 � �� � �
����(�� )} 

	 �
����� �� �� �  �� � [1, �], �
�
�(��) = ��  ��1 �  ��2  �  �� � [1, �], �1� � �2�  
 
More intuitively, each cell represents a rule in our RL 
system. A set of cells are composed into a grid that 
partitions the state space at a specific level of 
resolution. There is a lattice structure among the grids 
with the transitive relation coarser-than ( � ). Then 
given the set of input objects, the activation of a cluster 
ki is denoted as a(ki): 

�(��) =  � 1 �! �� �  ��
 0 �! �� "  ��  

# 
The mapping from oi to ki is achieved via category 
recognition, and only a single path of clusters are 
activated for a particular input as shown in Figure 6. 
a(ki)=1 means an object in the current state, bound to 
the corresponding functional role, is an instance of the 
category represented by that cluster. The activation of a 
cell, a(CK), is defined as: 

�(	) =  $ �(��)
�

�=1
 

a(CK)=1 means the rule matches the current state and 
will be fired to participate in predating and learning the 
target value. The weight, w(CK), from the cell to the 
output unit is represented as a numeric value associated 
with the rule in the RL system. The learning algorithm 
updates the weights according to the delta rule for the 
identity activation function used in our RL system, 
where � is the learning rate, and t is the target value: 

% = & '(	)�(	)
	

 

*'(	) =  +
- �(	)	

(� / %)�(	) 
The connection between the coarse-coding layer 

and the output unit is always sparse, since, for any 
input, only one cell from each grid in the lattice has 
non-zero activation. This is due to the competitive 
learning nature of the hierarchical clustering layer – 
only one cluster is activated at each level. 

 
3.3. Time Complexity Analysis 
 

The time and space cost of our system are 
reasonably bounded under practical assumptions. As in 
COBWEB, each hierarchy in our system takes O(logN) 
time, where N is the number of leaf nodes, for both 
predicting and assimilating a new instance, given 
bounded branching factor and fixed dimensions in 
input features [2]. Rule matching in Soar is in constant 
time given bounded changes in working memory. The 
remaining time cost is determined by the number of 
grids in the lattice, which is: 

|�����| = $ �
����(��)
�

�=1
 

Since there always exists some level beyond which 
functional differences are too small to be meaningful, 
we can assume a small fixed height by keeping a 
limited number of leaf nodes for each hierarchy. 
Furthermore, based on the observation that the 
cardinality of object interaction is usually small, we 
can also assume that the number of functional roles in 
a target function is bounded by a small constant, and 
therefore the time cost of each update and prediction is 
practically constant. The space cost for each hierarchy 
is O(N). The space cost for the coarse coding lattice is 
O(N|R|) where |R| is the number of functional roles in 
the target function. Given the above assumption about 
bounded number of leaf nodes and fixed small number 
of functional roles, the space cost is also constant. 

 
4. Empirical Evaluation and Analysis 

 
We focus on evaluating two novel features that are 

important for our system design. The first is to evaluate 
the successful integration of hierarchical 
representations in Soar-RL’s existing value function 
approximation scheme. The second is to confirm the 
importance of supporting multiple functional roles and 
functional features, which is part of our extension to 
COBWEB. We do not intend to empirically 
characterize the category learning system’s capabilities 
of incremental learning, noise tolerance, and flexibility 
in scaling up with increasing object diversity, as those 
have been previously established in research on 
COBWEB. Empirically evaluating the entire system by 
comparing it to alternative value function 
approximation approaches is the subject of future 
work. The evaluation task used in this paper is one 
specific configuration of the stochastic hunting 
environment based on some realistic considerations. 
For example, prey with larger sizes tend to have higher 
health. Prey with lower sensitivity to bush tend to have 
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higher sensitivity to rock. Weapons with higher power 
tend to have lower accuracy. We use sigmoid shaped 
functions to generate probabilistic outcomes from 
numeric functional features. Although the choice of 
parameters is arbitrary, it should not affect the 
conclusions of our evaluations, which are based on 
qualitative characteristics of the environment: multiple 
interacting objects with diverse functional properties 
and multiple functional roles. The data has a 3X3 
structure as shown in Figure 5 for each hierarchy, and 
we do not present the details of the interaction model 
and data model. 
 
4.1. Generalization Effect from Categorization 
 
 To focus on evaluating the performance of value 
function approximation, we simplified the exploration 
strategy of the RL agent: we set exploration rate to be 
100% during training, and set it to 0 during testing. 
Learning rate is set to 0.3. The reward received for 
successful hunting is 1, and for failure it is 0. Each trial 
involves incrementally training the agent and recording 
the average of 100 independent testing episodes at 
different points of training. The final results shown in 
the plots are the average of 100 such independent 
trials. 

 In Figure 7, we compare the learning performance of 
an agent using hierarchical categorization of objects 
with a baseline agent that uses the raw functional 
features without categorization. When there are only 9 
unique instances for each hierarchy, a 2-level 3- branch 
structure is sufficient, and the baseline agent is 
equivalent to only using the gird G(2,2,2). The results 
demonstrate that hierarchical categorization leads to 
faster learning because the coarser grids capture shared 
information and aid generalization. When there are 
more unique instances (more than 9) for each 
hierarchy, “hierarchical categorization” is not affected, 
while the baseline is worse. 
 
4.2. Flexibility of Hierarchical Representation 
 
 An advantage of using a hierarchy compared to flat 
categorization, such as k-means clustering, is the 

flexibility of representing categorical boundaries at 
different resolution levels, without forcing the system 
to make categorization decisions that are either over-
general or over-specific. The next experiment tests 
whether such flexibility is naturally incorporated into 
our value function approximation scheme, in which all 
matched rules with different levels of generality are 
simultaneously updated. 

 Figure 8 compares using hierarchical categorization 
to a baseline using single-level flat categorizations. In 
the baseline, the number of categories is set to 3 so that 
it is equivalent to only using grid G(1,1,1). Since such 
categorization does not capture detailed differences 
within each general category, it cannot improve 
performance beyond a certain point. We can choose to 
make a finer-grained flat categorization, which will 
lead to better asymptotic performance. However, that 
will inevitably lead to a worse improvement rate in the 
initial stage. In the extreme case, it will be the same as 
the performance generated by “no categorization” 
shown in Figure 7. In conclusion, using hierarchical 
categorization in our value function approximation 
scheme, reconciles the tradeoff between over-general 
and over-specific categorizations. 
 
4.3. Importance of Functional Roles and 
Functional Features 

 
 To test if using functional roles and functional 
features can be beneficial, Figure 9 compares with a 
baseline using only a single functional role for prey 
and a monolithic category hierarchy based on all 
perceptual features of prey. The single hierarchy 
creates four levels with three branches at each level to 
represent all 81 types of prey – combinations of 9 
sensing types and 9 physical types. 
 In Figure 9, the reason for poorer performance using 
the single monolithic hierarchy is that irrelevant 
perceptual features are included in the category 
formation process. These features act as noise and 
disrupt learning of the optimal category structure. By 
providing information about functional roles and 
functional features, there is less noise in categorization, 
leading to better performance. Our system supports this 
capability via domain specific rules. 

 
Figure 7: Comparing hierarchical categorization with 

no categorization 
 

 
Figure 8: Comparing categorization with and 

without hierarchical structure 
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4.4. Summary of Results and Analysis 
 
 Comparing all three figures, even using the 
monolithic hierarchy (lower line in Figure 9) leads to 
faster initial learning than no categorization at all 
(lower line in Figure 7), as well as better asymptotic 
performance than flat categorization (lower line in 
Figure 8). This is because the monolithic hierarchy still 
captures certain amount of functional similarity. With 
the help of functional roles and functional features, the 
learned category hierarchies more accurately reflect 
functional similarities and leads to better performance. 

 
5. Discussion 

 
We created a complex domain that stresses the 

types of challenges we are trying to address. There are 
many parameters to configure in the evaluation 
environment, including the underlying functions 
defining the probabilistic outcomes as well as the 
detailed data model. The results are based on a 
particular setting of the parameters, and part of the 
future work is to do evaluations in the space of 
possible environments. For example, when the 
differences among subtypes of functional categories 
are smaller in terms of determining the probabilistic 
outcomes, the performance differences between using 
full hierarchy and using flat categorization will shrink. 
We can also increase the object diversity by adding 
more noise to functional features, which will result in 
deeper as well as more dynamically changing 
hierarchies (we developed techniques to keep track of 
category identifiers during dynamic growth of the 
hierarchy, but that is not evaluated here). However, 
these quantitative changes are not expected to 
qualitatively change our conclusions. 

Supporting the use of functional roles and 
functional features as a form of prior knowledge in our 
system can be practically useful despite its overhead. 
The observation is that only a relatively small set of 
functional roles and functional features are required to 
connect categorization with the general goals and basic 

needs of an agent. The benefit of providing such 
knowledge is that categorization more accurately 
reflects the functional similarities of objects without 
distractions from perceptual noise, and leads to 
significant improvement in RL. The origin of these 
functional roles and features is a more profound issue, 
and how to automatically learn them in a utility-driven 
manner is an important topic for future research. 

 
6. Related Work 

 
Our novel approach combines sparse coarse-coding 

and hierarchical structure in the context of object-
oriented state representations. Like tile-coding based 
value function approximation [10], our approach relies 
on learning piecewise-constant local basis functions. 
The advantage of using local basis function 
approximators, compared to a global function 
approximator such as the classic multi-layer perceptron 
(MLP) or linear models [11], is better stability and 
convergence when used in TD learning [10]. This is 
because global function approximators are designed to 
fit relatively smooth functions, with linear model being 
the extreme case. Although MLP is a universal 
function approximator, its performance degrades when 
there are increasingly more intensive interference 
among nearby regions in the input feature space. 
Interference is the negative side-effect of 
generalization and can be catastrophic for learning 
arbitrarily non-smooth functions [12]. Having sparser 
connections in MLP can reduce interference. However, 
French [13] has noted that reducing overlap avoids 
catastrophic interference at the cost of a dramatic 
reduction in the exploitation of shared structure. The 
insight is that we need some structure in the 
connections. Our approach can be viewed as one 
approach to reconciling interference and generalization 
by combining competitive learning, hierarchical 
representation and sparse-coding in a multi-layer 
network, which can be further regulated by rule-based 
symbolic domain knowledge. Competitive learning via 
hierarchical clustering generates symbolic categories, 
which server as primitive structures to restrict 
interferences within local regions. On the other hand, 
sparse-coding with a hierarchical representation results 
in an emerging lattice structure, which regulates 
generalization by keeping the necessary connectivity, 
and at the same time minimizing interferences among 
unrelated regions. Such quicker and more stable 
learning inevitably shifts the cost to somewhere else:  
comparing to a fully connected MLP, more units (cells) 
are required in our system to achieve higher resolution 
in the value function approximation, although we have 
shown it is not a practical concern. 

 
Figure 9: Comparing hierarchies obtained with and 

without functional features 
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There are other approaches to combining hierarchy 
with local approximators, such as in kd-Q-Learning 
[14] and adaptive tile-coding [15]. However, these 
approaches lack the regulating structures in our 
approach because they are not designed for object-
oriented state representations. Furthermore, these 
approaches face the “curse of dimensionality”. For 
environments involving objects, each object is 
represented by multi-dimensional features, and the 
total dimension of the feature space can easily become 
prohibitively expensive for learning if using 
unstructured state vectors that concatenate all the 
features. Our Category learning system performs 
perceptual processing and dimension reduction: each 
hierarchy reduces the multi-dimensional subspace of 
corresponding functional features into a single 
dimension of hierarchical structure. Prior domain 
knowledge about functional roles and functional 
features helps to regulate such dimension reductions 
for object-based representations. 

 
7. Conclusion 
 

We presented a novel, two-layer architecture for 
efficient value function approximation by integrating 
unsupervised hierarchical categorization with the 
existing RL system in Soar. Our system has two unique 
features. First, the value function approximation 
algorithm utilizes hierarchical structures to smoothly 
reconcile the tradeoff between over-specific and over-
general categorizations, so that learning can be quicker 
and more accurate at the same time. Second, our 
system supports the use of prior domain knowledge 
about functional roles and functional features of 
objects to regulate learning. These properties are 
valuable for autonomous learning agents in a novel, 
complex, object-oriented environment. The empirical 
results have confirmed our hypothesis and point out 
promising paths for future research. 
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