
Efficient Value Function Approximation with Unsupervised Hierarchical
Categorization for a Reinforcement Learning Agent

Yongjia Wang & John E. Laird

Computer Science and Engineering, EECS Department

University of Michigan, Ann Arbor, MI 48109, USA
yongjiaw@umich.edu, laird@umich.edu

Abstract

We investigate the problem of reinforcement
learning (RL) in a challenging object-oriented
environment, where the functional diversity of objects
is high, and the agent must learn quickly by
generalizing its experience to novel situations. We
present a novel two-layer architecture, which can
achieve efficient learning of value function for such
environments. The algorithm is implemented by
integrating an unsupervised, hierarchical clustering
component into the Soar cognitive architecture. Our
system coherently incorporates several principles in
machine learning and knowledge representation
including: dimension reduction, competitive learning,
hierarchical representation and sparse coding. We
also explore the types of prior domain knowledge that
can be used to regulate learning based on the
characteristics of environment. The system is
empirically evaluated in an artificial domain
consisting of interacting objects with diverse functional
properties and multiple functional roles. The results
demonstrate that the flexibility of hierarchical
representation naturally integrates with our novel
value function approximation scheme and together
they can significantly improve the speed of RL.

1. Introduction & Background

 In this paper, we consider the problem of how
persistent intelligent agents can learn to make decisions
in environments populated with diverse types of
objects that have multiple functional roles. We assume
that an object’s perceptual features do not necessarily
map directly to the functional utility of the objects.
Thus, the agent must learn how perceptual features
(such as the color and size of an animal) are related to
the functional properties of the objects (such as
whether the animal is dangerous or not), and how those
functional properties relate to taking actions in the

world (such as avoiding the animal or hunting it).
Although these are fundamental characteristics of our
world, environments with such characteristics have not
been studied in machine learning. Furthermore, the
agent’s persistent, ongoing existence limits learning to
be incremental and online.
 Our approach is a unique synthesis of two machine
learning approaches: unsupervised, hierarchical
category learning and behavior adaptation based on
reward signals using reinforcement learning (RL) [1].

1.1. Hierarchical Category Learning

Categorization provides an agent with means for
generalizing its knowledge from a specific instance to
a class of objects. COBWEB [2] and its variants are
incremental hierarchical clustering algorithms, which
have been successfully applied in various category
learning tasks [3, 4]. The algorithm has two important
features. First, it automatically organizes instances of
objects, each represented by a feature vector, into a
hierarchical category structure, as shown in Figure 1.
The hierarchical structure makes the algorithm scale
well with increasing object diversity. Second, the
algorithm is incremental – it learns the hierarchical
structure one instance at a time, and is robust to the
order of inputs as well as noise in the features. These
characteristics make it a good candidate for a persistent
agent’s category learning component. A previous
version of the ICARUS cognitive architecture used a
COBWEB-based system, called LABYRINTH [5] for
its declarative learning and memory.

Figure 1: Example hierarchical category structure

Animals

Vertebrates Invertebrates

?

amphibiansfish reptiles birds mammals

? …

…

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.16

197

To date, hierarchical category structures based on
functional characteristics in the context of an RL agent
has not been empirically investigated. Additionally,
COBWEB did not address functional diversity where
the same object is used for qualitatively different
purposes. For example, an agent can choose to eat an
apple, play with the apple, or throw the apple at its
enemy. It is unlikely that the categorical structure for
the purpose of “playing” is consistent with the
categorical structure for the purpose of “eating”
because they have distinctive, uncorrelated underlying
functional features. Therefore, an agent must have the
option to categorize an object based on specific
functional context.

1.2. Reinforcement Learning within an Object
Oriented Environment

RL is an established approach for problems that
require incremental learning of control behavior while
interacting with an environment with uncertainty. The
problem is generally presented as learning an optimal
policy based on reward signals. The policy is
traditionally derived from a value function that maps
state-action pairs to future expected rewards, where the
state is an unstructured feature vector. Value function
approximation in a high dimensional, continuous state
space has been a challenge to RL. In an object-oriented
environment, however, the state representation
contains extra information (constraints) that can be
used to improve learning. Diuk et al. [6] introduced an
object-oriented representation framework to enable
generalization and make reinforcement learning
feasible in domains where the state space is too large
for unstructured representations. However, their focus
is on learning action models, and the framework
assumes predefined object categories. In environments
with diverse functional types of objects, the agent must
continuously expand its category vocabulary, which
presents a unique challenge to traditional
reinforcement learning systems and is one motivation
for integrating category learning with RL.

1.3. Our Approach

 Figure 2 shows the dynamic data flow through the
agent in our general approach. The two dashed boxes
represent the learning components we are investigating
in this paper. During interaction with the external
environment, the category learning system predicts an
object’s functional category based on perceptual
features. The functional category and other features,
such as relational features among objects, are then
composed into the final state representation used by the
RL system for choosing actions.

2. Evaluation Domain

 We present our evaluation domain before describing
our system, so that we can illustrate how the system
works using a concrete example. Unfortunately, there
are no existing benchmark tasks that reflect the
challenge of object diversity we are pursuing.
Therefore, we created an artificial domain to evaluate
our system.
 The domain has a simulated environment with a
discrete time and discrete location grid world. The
agent is equipped with different types of ranged
weapons. To attack a prey, the agent must choose an
appropriate weapon and distance from which to attack.
The efficacy of a weapon depends on the functional
properties of the weapon and the prey, as well as the
distance to the prey. Moreover, the prey may detect the
agent and become alerted before the attack action,
which significantly reduces the success rate of hunting.
In order to get close enough to the prey without
alerting it, the agent can approach the prey from behind
static obstacles. The probability of successfully
moving towards the prey depends on the sensing
capabilities of the prey and the types of obstacles
between the prey and agent.
 This domain captures the characteristics and
challenges that we intend to address using our system.
First, there are multiple interacting objects and
multiple types of interaction: the interaction between
prey and weapons, and the interaction between prey
and obstacles. Second, there is diversity for each object
type: prey, obstacles, and weapons all have diverse
functional properties.
 Figure 3 shows a scenario, where the prey (P) is in
the middle and there are two types of static obstacles:
bush (b) and rock (r), which can coexist in the same
cell (b, r). For simplicity, the agent can only approach
the prey from eight different directions. The first
number for a path indicates bush distance to the prey
and the second number indicates rock distance. 0
indicates that the object is absent or out of effective
range. There is no additive effect from multiple
occurrences of the same obstacle type, so if there are
two bushes at both distance 1 and 2, the effect is the
same as if there is one bush at distance 1.

Figure 2: Abstract view of data flow through an agent

Environment

Environment

Category Learning System

Perceptual features

Action

Agent

Objects

Other state features

RL System

Rewards

Value Function

198

 Figure 4 shows the model for interaction between
objects in the domain. Grey boxes represent physical
objects, white boxes with solid lines represent abstract
quantities, white boxes with dotted lines represent
probabilistic outcomes, large dashed boxes highlight
local interactions among objects. Prey have different
sensing properties which affect how likely it can sense
the agent when blocked by a bush or rock, as
highlighted by the “Prey Obstacle Interaction” box.
The prey also has physical properties that affect how
easily it can be shot and fatally wounded, as
highlighted by the “Prey Weapon Interaction” box.
Finally, distance to the prey affects both types of
interactions. In the task, the agent must choose a
weapon, an attacking path and a shooting distance. If
the hunting is successful, the agent receives a positive
reward
 The functional properties of a prey and weapon are
represented as continuous numbers in our environment
model. We assume the agent can measure and
internally represent these quantities as numeric
features. Prey sensing properties consist of sensitivity
to bush and sensitivity to rock. Prey physical properties
consist of health and size. Weapon properties consist
of power and accuracy. The probabilistic outcomes are
determined by the numeric values of related features.
For example, the probability of successfully
approaching behind a rock is higher if the prey has
higher sensitivity to bush. The probability of fatally
wounding a prey is higher if the weapon has higher
power or the prey has lower health.
 We call the above numeric features functional
features, as they represent an object’s perceivable
functional properties that have intrinsic meanings to
the agent. For many functional features, the values are
“expensive” to obtain in nature because they have to be
tested out by actual interactions with the object. There
are other non-functional perceptual features (not
shown in the figure) of prey that are more easily
perceivable, such as visual, smell, and sound features,
and they can be correlated with certain functional
features. These perceptual features are useful for the
agent to predict the functional features when they are
not directly available. For example, the agent cannot
directly observe a prey’s sensing properties before
choosing the action, and has to make predictions based

on correlated perceptual features such as the size and
shape of eye, nose, and ear.

3. Implementation

 Our approach integrates a category learning (CL)
system based on COBWEB and the RL system within
the Soar cognitive architecture [7, 8]. The RL system
uses the hierarchical structure from the CL system as a
representational basis for value function
approximation.

3.1. Category Learning System

 The default behavior in COBWEB is to create a
single category hierarchy regardless of the functional
context, which leads to poor performance when an
environment is populated with objects with multiple
functional roles. We have extended COBWEB to
support categorization based on functional roles and
functional features. For example, two prey that have
similar health and size can have very different
sensitivity to bush and sensitivity to rock. In our
system, we have the option to equip the agent with
prior knowledge so that it creates multiple functional
category hierarchies for a single object (in this case the
prey). In the hunting domain, the agent can create three
separate hierarchies for: prey sensing categories, prey
physical categories, and weapon categories. In Figure
5, a hierarchy is associated with a specific functional
role, and is learned based on specific functional
features. The hierarchical structure for prey physical
categories is expanded in the figure. Although only two
levels of the hierarchy are shown, the CL system can
create a deeper hierarchy to partition the continuous
multi-dimensional feature space. For integration
purposes, each category node in the hierarchy is
automatically assigned a unique internal identifier. For
example, the prey physical category represented by ‘2’
may have larger size and higher health than the
category represented by ‘1’. ‘2.1’, ‘2.2’ and ‘2.3’
represent three more specific categories under the

Figure 3: A hunting scenario

Figure 4: Interaction model of the domain

P

r

b

b

rr

r

r

b,r

b

b b,rb,r

2,2

1,00,2

2,0

1,1 0,1 1,2

2,1

Attacking
Angle

Sensing
Properties

Weapon

P(Prey not alerted)

P(successful hunt)

Distance to
prey

Agent
decision

P(fatal)
Size

Health

Prey

Accuracy

Power

RewardPrey Obstacle
Interaction

Prey Weapon
Interaction

Physical
Properties

Bush on
Path

Rock on
Path

Sensitivity
to Bush

Sensitivity
to Rock

Agent

P(shot)

199

super-category ‘2’. The identifiers themselves do not
have an intrinsic meaning, and the only requirement for
them is uniqueness. The identifiers are used as state
features in the RL system to acquire semantics in a
specific functional context, a process described in the
next section.
 To recognize the functional category membership of
an input instance, the original COBWEB algorithm
descends the hierarchy to search for the best match
based on its perceptual features. In our system,
category recognition is separated from category
formation as represented by the two large dotted boxes.
All the available perceptual features are used for
recognition, which is based on a supervised Naïve
Bayesian classifier targeting a set of basic categories
[9]. Currently, the algorithm chooses these basic
categories by picking the level where the within-group
total variance of functional features drops below a
predefined threshold.

3.2. Reinforcement Learning System

 Soar-RL [8] encodes the value function as a set of
rules, with an expressive syntax equivalent to first-
order logic. The left-hand side of a rule tests state and
action features, while the right-hand side generates the
expected value for the matching state action pair. The
expected value of an action is the sum of the values of
all rules matching the current state and that action.
Figure 6 shows how the CL system is integrated with
the RL system to achieve sparse-coarse coding [10].
The entire system has a two-layer structure to
approximate the utility function of hunting different
prey with different weapons. The first layer represents
the CL system layer as described in Figure 5. Each
hierarchy is shown to have two branches per level for
demonstration purposes. In our system, the branching
factor can be controlled within a specified range, such
as from 2 to 5. When functional features are detected,
the system automatically grows the corresponding
hierarchies. As discussed earlier, functional features
are usually not available when the agent wants to make
a decision, so the recognition process is activated in
such situations to predict the functional category based

on perceptual features. The dark colored nodes in the
hierarchies represent symbolic categories matching
with the input objects. These symbolic categories are
used in the state representation and are matched by
rules in the RL system. Rules are represented as cells
in the coarse-coding layer. Dark colored cells represent
rules that match the current state. The numbers on each
grid indicates the hierarchy levels for component
hierarchies, which will be explained later. The grids
form an emerging lattice structure, and only a 2D
projection of the lattice is shown in the figure. The
complete lattice consists of all three hierarchies and
has a 3D cubic shape instead of being 2D square.

We formally describe the algorithm below. To learn
a target function, the system first maps the input
objects into a vector of functional roles R, which
represents the argument types of the target function.
The vector O represents the input objects binding with
R:

� = (�1, �2, … , ��)
� = (�1, �2, … , ��)

For example, the function is to predict the utility of
hunting some prey with some weapon by shooting
behind a rock from 2 units of distance to the prey. The
inputs are two objects: rabbit and bow. If the system
has no prior knowledge about the objects, then it
creates a single functional role for all objects.
According to our notation, input to the system will
look like R=(generic-object, generic-object),
O=(rabbit, bow). If we know that prey and weapon
play distinctive functional roles with different set of
functional features, then the input will look like
R=(prey, weapon), O=(rabbit, bow). Furthermore, if
we know more details about the interaction model:
there are two components, one is about how to get
close to the prey, the other is about how to choose the
most effective weapon, then the input will look like
R=(prey-sensing, prey-physical, weapon), and

Figure 5: Category learning system

Figure 6: Overall structure of the learning system

viewed as a two-layer network

Prey Physical

Classifier

Functional Features
size

Category
Formation

Category
Recognition Perceptual Features

healthbush

Prey Sensing Weapon

rock power accuracy

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3

1 2 3

Functional
Roles

COBWEB

Prey Physical Weapon

0,0 1,0

2,0
0,1

1,1

2,1
0,2

1,2

2,2

X

utility

Coarse-coding Lattice

Sparse-coding Weights

Prey PhyPh sicallPh WeaponPrey Sensing

bush
rock

power
accuracy

size
health

Rule-based matching

Category Formation/
Hierarchical Clustering

prey weapon

Prey features Weapon features

Structured Input

input
Category recognition

RL
System

CL
System

200

O=(rabbit, rabbit, bow). These different levels of prior
knowledge can be conveniently encoded as rules in our
system. After matching objects with functional roles,
the category learning system incrementally builds a set
of hierarchies H correspondingly:

� = (�1, �2, … , ��)
Let height(hi) denote in the height of the hierarchy hi,
and ki denote a cluster/node within the hierarchy. Let
level(ki) denote the level of cluster ki in hierarchy hi,
with the root level being 0. Cells, grids and their
relations, shown in Figure 6, are defined as following:

	
��� = {	
,
 = (�1, �2, … , ��)|�� � �����
�� �� ��}
����� = {��, � = (�1, �2, . . . , ��)|0 � �� � �
����(��)}

	
 �
����� �� �� � �� � [1, �], �
�
�(��) = �� ��1 � ��2 � �� � [1, �], �1� � �2�

More intuitively, each cell represents a rule in our RL
system. A set of cells are composed into a grid that
partitions the state space at a specific level of
resolution. There is a lattice structure among the grids
with the transitive relation coarser-than (�). Then
given the set of input objects, the activation of a cluster
ki is denoted as a(ki):

�(��) = � 1 �! �� � ��
 0 �! �� " ��

The mapping from oi to ki is achieved via category
recognition, and only a single path of clusters are
activated for a particular input as shown in Figure 6.
a(ki)=1 means an object in the current state, bound to
the corresponding functional role, is an instance of the
category represented by that cluster. The activation of a
cell, a(CK), is defined as:

�(
) = $ �(��)
�

�=1

a(CK)=1 means the rule matches the current state and
will be fired to participate in predating and learning the
target value. The weight, w(CK), from the cell to the
output unit is represented as a numeric value associated
with the rule in the RL system. The learning algorithm
updates the weights according to the delta rule for the
identity activation function used in our RL system,
where � is the learning rate, and t is the target value:

% = & '(
)�(
)
	

*'(
) = +
- �(
)	

(� / %)�(
)
The connection between the coarse-coding layer

and the output unit is always sparse, since, for any
input, only one cell from each grid in the lattice has
non-zero activation. This is due to the competitive
learning nature of the hierarchical clustering layer –
only one cluster is activated at each level.

3.3. Time Complexity Analysis

The time and space cost of our system are
reasonably bounded under practical assumptions. As in
COBWEB, each hierarchy in our system takes O(logN)
time, where N is the number of leaf nodes, for both
predicting and assimilating a new instance, given
bounded branching factor and fixed dimensions in
input features [2]. Rule matching in Soar is in constant
time given bounded changes in working memory. The
remaining time cost is determined by the number of
grids in the lattice, which is:

|�����| = $ �
����(��)
�

�=1

Since there always exists some level beyond which
functional differences are too small to be meaningful,
we can assume a small fixed height by keeping a
limited number of leaf nodes for each hierarchy.
Furthermore, based on the observation that the
cardinality of object interaction is usually small, we
can also assume that the number of functional roles in
a target function is bounded by a small constant, and
therefore the time cost of each update and prediction is
practically constant. The space cost for each hierarchy
is O(N). The space cost for the coarse coding lattice is
O(N|R|) where |R| is the number of functional roles in
the target function. Given the above assumption about
bounded number of leaf nodes and fixed small number
of functional roles, the space cost is also constant.

4. Empirical Evaluation and Analysis

We focus on evaluating two novel features that are

important for our system design. The first is to evaluate
the successful integration of hierarchical
representations in Soar-RL’s existing value function
approximation scheme. The second is to confirm the
importance of supporting multiple functional roles and
functional features, which is part of our extension to
COBWEB. We do not intend to empirically
characterize the category learning system’s capabilities
of incremental learning, noise tolerance, and flexibility
in scaling up with increasing object diversity, as those
have been previously established in research on
COBWEB. Empirically evaluating the entire system by
comparing it to alternative value function
approximation approaches is the subject of future
work. The evaluation task used in this paper is one
specific configuration of the stochastic hunting
environment based on some realistic considerations.
For example, prey with larger sizes tend to have higher
health. Prey with lower sensitivity to bush tend to have

201

higher sensitivity to rock. Weapons with higher power
tend to have lower accuracy. We use sigmoid shaped
functions to generate probabilistic outcomes from
numeric functional features. Although the choice of
parameters is arbitrary, it should not affect the
conclusions of our evaluations, which are based on
qualitative characteristics of the environment: multiple
interacting objects with diverse functional properties
and multiple functional roles. The data has a 3X3
structure as shown in Figure 5 for each hierarchy, and
we do not present the details of the interaction model
and data model.

4.1. Generalization Effect from Categorization

 To focus on evaluating the performance of value
function approximation, we simplified the exploration
strategy of the RL agent: we set exploration rate to be
100% during training, and set it to 0 during testing.
Learning rate is set to 0.3. The reward received for
successful hunting is 1, and for failure it is 0. Each trial
involves incrementally training the agent and recording
the average of 100 independent testing episodes at
different points of training. The final results shown in
the plots are the average of 100 such independent
trials.

 In Figure 7, we compare the learning performance of
an agent using hierarchical categorization of objects
with a baseline agent that uses the raw functional
features without categorization. When there are only 9
unique instances for each hierarchy, a 2-level 3- branch
structure is sufficient, and the baseline agent is
equivalent to only using the gird G(2,2,2). The results
demonstrate that hierarchical categorization leads to
faster learning because the coarser grids capture shared
information and aid generalization. When there are
more unique instances (more than 9) for each
hierarchy, “hierarchical categorization” is not affected,
while the baseline is worse.

4.2. Flexibility of Hierarchical Representation

 An advantage of using a hierarchy compared to flat
categorization, such as k-means clustering, is the

flexibility of representing categorical boundaries at
different resolution levels, without forcing the system
to make categorization decisions that are either over-
general or over-specific. The next experiment tests
whether such flexibility is naturally incorporated into
our value function approximation scheme, in which all
matched rules with different levels of generality are
simultaneously updated.

 Figure 8 compares using hierarchical categorization
to a baseline using single-level flat categorizations. In
the baseline, the number of categories is set to 3 so that
it is equivalent to only using grid G(1,1,1). Since such
categorization does not capture detailed differences
within each general category, it cannot improve
performance beyond a certain point. We can choose to
make a finer-grained flat categorization, which will
lead to better asymptotic performance. However, that
will inevitably lead to a worse improvement rate in the
initial stage. In the extreme case, it will be the same as
the performance generated by “no categorization”
shown in Figure 7. In conclusion, using hierarchical
categorization in our value function approximation
scheme, reconciles the tradeoff between over-general
and over-specific categorizations.

4.3. Importance of Functional Roles and
Functional Features

 To test if using functional roles and functional
features can be beneficial, Figure 9 compares with a
baseline using only a single functional role for prey
and a monolithic category hierarchy based on all
perceptual features of prey. The single hierarchy
creates four levels with three branches at each level to
represent all 81 types of prey – combinations of 9
sensing types and 9 physical types.
 In Figure 9, the reason for poorer performance using
the single monolithic hierarchy is that irrelevant
perceptual features are included in the category
formation process. These features act as noise and
disrupt learning of the optimal category structure. By
providing information about functional roles and
functional features, there is less noise in categorization,
leading to better performance. Our system supports this
capability via domain specific rules.

Figure 7: Comparing hierarchical categorization with

no categorization

Figure 8: Comparing categorization with and

without hierarchical structure

0 10000 20000 30000 40000 5000

0.
0

0.
2

0.
4

0.
6

Episodes

Su
cc

es
s

R
at

e

hierarchical categorization
no categorization

0 10000 20000 30000 40000 5000

0.
0

0.
2

0.
4

0.
6

Episodes

Su
cc

es
s

R
at

e

hierarchical categorization
flat categorization

202

4.4. Summary of Results and Analysis

 Comparing all three figures, even using the
monolithic hierarchy (lower line in Figure 9) leads to
faster initial learning than no categorization at all
(lower line in Figure 7), as well as better asymptotic
performance than flat categorization (lower line in
Figure 8). This is because the monolithic hierarchy still
captures certain amount of functional similarity. With
the help of functional roles and functional features, the
learned category hierarchies more accurately reflect
functional similarities and leads to better performance.

5. Discussion

We created a complex domain that stresses the

types of challenges we are trying to address. There are
many parameters to configure in the evaluation
environment, including the underlying functions
defining the probabilistic outcomes as well as the
detailed data model. The results are based on a
particular setting of the parameters, and part of the
future work is to do evaluations in the space of
possible environments. For example, when the
differences among subtypes of functional categories
are smaller in terms of determining the probabilistic
outcomes, the performance differences between using
full hierarchy and using flat categorization will shrink.
We can also increase the object diversity by adding
more noise to functional features, which will result in
deeper as well as more dynamically changing
hierarchies (we developed techniques to keep track of
category identifiers during dynamic growth of the
hierarchy, but that is not evaluated here). However,
these quantitative changes are not expected to
qualitatively change our conclusions.

Supporting the use of functional roles and
functional features as a form of prior knowledge in our
system can be practically useful despite its overhead.
The observation is that only a relatively small set of
functional roles and functional features are required to
connect categorization with the general goals and basic

needs of an agent. The benefit of providing such
knowledge is that categorization more accurately
reflects the functional similarities of objects without
distractions from perceptual noise, and leads to
significant improvement in RL. The origin of these
functional roles and features is a more profound issue,
and how to automatically learn them in a utility-driven
manner is an important topic for future research.

6. Related Work

Our novel approach combines sparse coarse-coding

and hierarchical structure in the context of object-
oriented state representations. Like tile-coding based
value function approximation [10], our approach relies
on learning piecewise-constant local basis functions.
The advantage of using local basis function
approximators, compared to a global function
approximator such as the classic multi-layer perceptron
(MLP) or linear models [11], is better stability and
convergence when used in TD learning [10]. This is
because global function approximators are designed to
fit relatively smooth functions, with linear model being
the extreme case. Although MLP is a universal
function approximator, its performance degrades when
there are increasingly more intensive interference
among nearby regions in the input feature space.
Interference is the negative side-effect of
generalization and can be catastrophic for learning
arbitrarily non-smooth functions [12]. Having sparser
connections in MLP can reduce interference. However,
French [13] has noted that reducing overlap avoids
catastrophic interference at the cost of a dramatic
reduction in the exploitation of shared structure. The
insight is that we need some structure in the
connections. Our approach can be viewed as one
approach to reconciling interference and generalization
by combining competitive learning, hierarchical
representation and sparse-coding in a multi-layer
network, which can be further regulated by rule-based
symbolic domain knowledge. Competitive learning via
hierarchical clustering generates symbolic categories,
which server as primitive structures to restrict
interferences within local regions. On the other hand,
sparse-coding with a hierarchical representation results
in an emerging lattice structure, which regulates
generalization by keeping the necessary connectivity,
and at the same time minimizing interferences among
unrelated regions. Such quicker and more stable
learning inevitably shifts the cost to somewhere else:
comparing to a fully connected MLP, more units (cells)
are required in our system to achieve higher resolution
in the value function approximation, although we have
shown it is not a practical concern.

Figure 9: Comparing hierarchies obtained with and

without functional features

0 10000 20000 30000 40000 5000

0.
0

0.
2

0.
4

0.
6

Episodes

Su
cc

es
s

R
at

e

two functional category hiearchies for prey
one category hiearchy for prey

203

There are other approaches to combining hierarchy
with local approximators, such as in kd-Q-Learning
[14] and adaptive tile-coding [15]. However, these
approaches lack the regulating structures in our
approach because they are not designed for object-
oriented state representations. Furthermore, these
approaches face the “curse of dimensionality”. For
environments involving objects, each object is
represented by multi-dimensional features, and the
total dimension of the feature space can easily become
prohibitively expensive for learning if using
unstructured state vectors that concatenate all the
features. Our Category learning system performs
perceptual processing and dimension reduction: each
hierarchy reduces the multi-dimensional subspace of
corresponding functional features into a single
dimension of hierarchical structure. Prior domain
knowledge about functional roles and functional
features helps to regulate such dimension reductions
for object-based representations.

7. Conclusion

We presented a novel, two-layer architecture for
efficient value function approximation by integrating
unsupervised hierarchical categorization with the
existing RL system in Soar. Our system has two unique
features. First, the value function approximation
algorithm utilizes hierarchical structures to smoothly
reconcile the tradeoff between over-specific and over-
general categorizations, so that learning can be quicker
and more accurate at the same time. Second, our
system supports the use of prior domain knowledge
about functional roles and functional features of
objects to regulate learning. These properties are
valuable for autonomous learning agents in a novel,
complex, object-oriented environment. The empirical
results have confirmed our hypothesis and point out
promising paths for future research.

8. Acknowledgement

This research was supported in part by the Ground
Robotics Reliability Center (GRRC) at the University
of Michigan, with funding from government contract
DoD-DoA W56H2V-04-2-0001 through the Joint
Center for Robotics.

9. References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, MIT Press, 1998.

[2] D. H. Fisher, “Knowledge Acquisition via Incremental
Conceptual Clustering,” Machine Learning, vol. 2, no. 2, pp.
139-172, 1987.

[3] W. F. Iba, and P. Langley, “Unsupervised Learning of
Probabilistic Concept Hierarchies,” Machine Learning and
Its Applications, Lecture Notes in Computer Science, vol.
2049, pp. 39-70, 2001.

[4] N. Sahoo, and G. Duncan, “Incremental Hierarchical
Clustering of Text Documents,” in 16th Conf. on Information
and Knowledge Management, 2006, pp. 357-366.

[5] P. Langley, K.B. McKusick, J.A. Allen, W.F. Iba, and K.
Thompson, “A Design for the ICARUS Architecture,”
SIGART Bull., vol. 2, no. 4, pp. 104-109, 1991.

[6] C. Diuk, A. Cohen, and M.L. Littman, “An Object-
Oriented Representation for Efficient Reinforcement
Learning,” in Proc. 25th Int. Conf. on Machine learning,
2008, pp. 240-247.

[7] J. E. Laird, “Extending the Soar Cognitive Architecture,”
in Proc.1st Artificial General Intelligence Conf., 2008, pp.
224-235.

[8] S. Nason, and J. E. Laird, “Soar-RL: Integrating
Reinforcement Learning with Soar,” Cognitive Systems
Research, vol. 6, no. 1, pp. 51-59, 2005.

[9] E. Rosch, “Principles of Categorization,” in Cognition
and Categorization, John Wiley & Sons Inc, 1978, pp. 27-48.

[10] R.S. Sutton, “Generalization in Reinforcement Learning:
Successful Examples Using Sparse Coarse Coding,” in
Advances in Neural Information Processing Systems 8, pp.
1038-1044, MIT Press, 1996

[11] S.J, Bradtke, and A.G. Barto, “Linear Least-Squares
Algorithms for Temporal Difference Learning,” Machine
Learning, vol. 22, no. 1, pp. 33-57, 1996

[12] J. L. McClelland, B. L. McNaughton, and R. C.
O'Reilly, “Why there are Complementary Learning Systems
in the Hippocampus and Neocortex,” Psych Review, vol. 102,
no. 3, pp. 419-457, 1995

[13] R. M. French, “Using Semi-Distributed Representations
to Overcome Catastrophic Forgetting in Connectionist
Networks,” in Proc. 13th Annual Cognitive Science Conf.,
1991, pp.173-178,.

[14] H. Vollbrecht, “Hierarchic Function Approximation in
kd-Q-Learning,” in Proc. 4th Int. Conf. on Knowledge-Based
Intelligent Engineering Systems and Allied Technologies,
2000, pp. 466-469

[15] S. Whiteson, M. E. Taylor, and P. Stone, “Adaptive Tile
Coding for Value Function Approximation,” AI Tech Report
AI-TR-07-339, University of Texas at Austin, 2007.

204

