
Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Characteristics of Long-term Learning in Soar
and its Application to the Utility Problem

William G. Kennedy BILL.KENNEDY@HQ.DOE.GOV
George Mason University, 9812 Ceralene Drive, Fairfax, VA 22032 USA

Kenneth A. De Jong KDEJONG@GMU.EDU
George Mason University, 4400 University Drive, Fairfax, VA 22030 USA

Abstract
Much of the work in machine learning has
focused on demonstrating the efficacy of
learning techniques using training and testing
phases. On-line learning over the long term
places different demands on symbolic machine
learning techniques and raises a different set of
questions for symbolic learning than for
empirical learning. We have instrumented Soar
to collect data and characterize the long-term
learning behavior of Soar and demonstrate an
effective approach to the utility problem. In this
paper we describe our approach and provide
results.

1. Introduction

It is generally accepted that important advances in
artificial intelligence will require significant amounts of
knowledge. Machine learning techniques have been
developed to help automate the process of acquiring such
knowledge. Much of the work in machine learning has
focused on situations in which there are distinct training
and testing phases. However, Allen Newell stated: “I
believed ... learning was something that went on
continuously and not at the volition of the agent” (Newell
1993). The recent increase in interest in agent-based
systems involving dynamically changing environments
has led to an increased attention to “on-line learning”, i.e.,
systems in which learning mechanisms are always active.

Although on-line empirical learning has been studied in
the machine learning community, running a symbolic
learning system until it reaches steady state has not.
Running a symbolic learner continuously over the long
term places different demands on the learning techniques
and raises a different set of questions than it does for
empirical learning. A desire to understand the
implications of running a symbolic learner long enough to
see steady-state behavior led to exploring long-term
learning in Soar.

Soar is a system developed by John Laird, Paul
Rosenbloom, and Allen Newell (1986) that tightly
couples problem solving and learning. In Soar, long-term
learning is accomplished through solving a long series of
problems. Soar is an established learning and problem-
solving system based on formulating all tasks as searches
of state spaces and using chunking as its only learning
mechanism.

Soar’s basic operation is to decide which operator to
apply to the current state to transform it into another state.
To decide, Soar fires all rules whose conditions are
satisfied. If the result is that Soar has a single operator it
can apply to the current state, it does so. When Soar does
not have enough knowledge immediately available to
decide on the next step, it creates a subgoal to resolve the
“impasse.” Soar learns by converting the results of
successful subgoal problem-solving into a “chunk”
retaining only the initial conditions and results. The
chunk is then added to the knowledge base as another rule
and is retained indefinitely.

Machine learning is based on the expectation of improved
performance due to learning. However, the utility
problem identified by Steve Minton (1988) signaled, in
the long term, a fundamental, dibilating growth in
problem-solving time with the number of rules in the
system. His system, and others, demonstrated degraded
performance in problem-solving time in as little as 9, 20,
52, or 100 problems (Bostrom 1992; Iba 1989;
Markovitch & Scott 1988; Mooney 1989; Minton 1988,
and Tambe, Newell, & Rosenbloom, 1990). That
degraded performance has been addressed for only very
small numbers of problems when compared to what
would be expected in on-line learning. So, is long-term
symbolic learning doomed by the utility problem?

Ten years ago, Bob Doorenbos and his collaborators
provided the first impressions of long-term learning in
Soar (Doorenbos, Tambe & Newell, 1992; Doorenbos
1993). His Dispatcher-Soar system was run for 6,550
problems. His focus was improvements in time to match
the current state to applicable rules. However, he did not

eliminate the utility problem because it does not address
the increased branching factor caused by the additional
rules. However, his foray invited others to look into long-
term learning.

Fundamental questions for long-term learning research
include whether learning will go on forever and how
much of learned knowledge is used. To understand these
issues better, we have instrumented Soar to let us collect
data and characterize its long-term behavior. Then, based
on an understanding of these characteristics, we modified
Soar to address the utility problem. Here we describe our
approach and results.

2. Approach

Our focus has been to understand better the answers to the
fundamental questions regarding the behavior of Soar
when run for extended periods of time in on-line learning
mode. To address these questions, we reviewed previous
work in long-term symbolic learning, we re-analyzed
previous experimental data when appropriate, and we
conducted new experiments using Soar to provide
additional insights. In particular, we are indebted to Bob
Doorenbos who has made available some of his trace data
from Dispatcher-Soar experiments and provided
assistance in interpreting the data.

The new experiments were conducted using a simple
physics problem domain, the familiar Blocks-World
domain, a concept acquisition system, and a tank warfare
simulation. All of these systems were implemented in
Soar and were available from the Soar Group
(http://ai.eecs.umich.edu/soar/).

The physics problems were of the form: given an initial
acceleration and velocity, what is the average velocity and
distance covered after a given duration. The Blocks-
World problems were to identify the moves necessary to
change one configuration of a set of N named blocks into
another configuration. The Blocks-World domain was
chosen because it was expected to scale up nicely from
small problem spaces to large but finite spaces as the
number of blocks is increased. A Symbolic Concept
Acquisition (SCA) system developed by Craig Miller
(Miller 1993) was exercised with 500 training examples
and 1,000 testing examples drawn from the chess end-
game data (Blake, Keogh, & Merz 1998). The tank
warfare simulation environment, TankSoar, is also
available from the Soar Group. Here a problem was
defined as deciding what action the tank should take next.

For these new experiments, Soar was instrumented to
collect various kinds of internal data. Long-term
behavioral data was then obtained by running Soar in an
on-line learning mode and presenting it with long
sequences of randomly selected problem instances (e.g.,
10,000). We report our findings in the following sections.

3. Will Learning Go on Forever?

If we have a system that is capable of on-line learning, it
seems inevitable that it would eventually learn enough
new knowledge to suffer from the performance
degradation of the utility problem. However, that belief is
based on the expectation that learning continues
indefinitely as Newell (1990) believed. We found Soar
does NOT continue learning indefinitely.

3.1 Previous Research

Only a few researchers have run symbolic learning
systems on long series of problems. The runs that made
Soar famous by correlating its learning with data on
human learning (Rosenbloom & Newell 1986) were 268
and 259 trials, effectively problems.

The first long-term learning experiments were done by
Bob Doorenbos and his collaborators on a message-
routing problem domain in which the task was to identify
how to get a message through an office network to
recipients who were identified by their properties, e.g.,
“everyone involved in marketing for project two.” The
system was set up with 20 problem spaces defining parts
of the overall problem. An external database held a large
collection of problem instances involving different
properties of the potential recipients and their
interconnections. The Dispatcher problems were forced to
be unique, i.e., they were generated randomly but selected
from the problem domain without replacement. This was
done to intentionally force the learning of a large number
of chunks. Doorenbos’ goal was to develop a chunk-
matching algorithm whose overhead scaled better as a
function of the number of chunks in the system. In the
initial experiments, 10,000 chunks were learned
(Doorenbos, Tambe & Newell, 1992). Dispatcher-Soar
was later driven to create 113,938 chunks by working on
6,550 problems (Doorenbos 1993). He also exercised
Soar in six other domains learning over 100,000 chunks in
each (Doorenbos 1995) and demonstrated improvements
in the match time by approximately two orders of
magnitude.

Although identifying the characteristics of long-term
learning was not the goal of Doorenbos’ experiments, it is
possible to reanalyze his data toward this end. By
viewing his message routing experiments as long-term
learning experiments involving 20 different problem
spaces, we found interesting behavior.

Although a relatively constant chunking rate per problem
was seen through the 6,550 problems, chunking in the 20
separate problem spaces varied widely. Chunking in nine
of the problem spaces stopped at different points during
the 6,550 problem solving session ranging from four
stopping within the first 100 problems to four stopping
after about 6,000 problems. Two more problem spaces
were trending toward stopping after working all 6,550
problems. Another seven problem spaces tended toward a

constant number of chunks per problem, also stabilizing
over the full range of problem solving. Finally, two
problem spaces generated no chunks at all.

3.2 New Experimental Results

New experiments investigating the duration and rate of
learning were conducted using the physics, Blocks-World,
SCA, and simple and sophisticated tank domains.
Analysis of the chunking rate in the physics problem
space showed a clear downward trend through 400
problems.

In experiments with a range of Blocks-World problems,
learning clearly did not go on forever. Experiments were
run using five sets of 500 problems randomly generated
with replacement. When running two-block problems, all
problems were solved without learning any chunks.
(With two blocks there are only three configurations and
therefore only nine possible problems.) In experiments
with three-block problems (169 possible problems),
learning ended well before 150 random problems were
attempted and with four-block problems, the longest run
before learning ended was less than 100 problems. The
results are shown in Table 1.

Table 1. End of learning in BlocksWorld Domains

Number of
Blocks

Possible
Problems

Problem at which
Chunking Ended

2 9 No chunking done

3 169 79, 139, 33, 11, 36

4 5,329 76, 13, 69, 73, 17

In the Symbolic Concept Acquisition (SCA) system,
chunking continued throughout the 500 training
examples. This was by design because SCA adds a new
chunk for each training example and repeated examples
result in more specific chunks which the system preferred
in making its classification. In experiments with a simple
learning tank, all learning ended within 200 Soar decision
cycles. For the sophisticated, planning tank, learning
continued through 100,000 tank actions although the
learning rate was decreasing as it had with the physics
problem space.

3.3 Discussion

Two different behaviors were observed. The re-analysis
of Doorenbos’ data and the new experiments with the
Blocks-World problem spaces demonstrated that learning
can end even before all problems could have been seen
due to the generality of Soar's learned chunks. However,
it was also observed that learning can stabilize to a
constant rate when the uniqueness of the problem

instances was being enforced. We think this is a feature
of problem spaces involving perpetual novelty.

Whether learning goes on forever depends in part on
whether the problem space, i.e., the set of possible
problems, is finite or infinite. For small, finite problem
spaces, the intuitive answer is that learning will not go on
forever because eventually every problem will be seen
and solved at the very least by memorization. For a large
finite and infinite problem space, the learning challenge is
whether a system can learn things of a fairly general
nature early enough to effectively solve any problem in
the problem space, or "solve the space" without having
seen and solved every possible problem instance in the
problem space. In either case, there may be pragmatic
reasons for monitoring the effectiveness of learning, and
placing some controls on it (for example, Holder’s
suggestion that learning should be terminated based on
recognition of degraded problem-solving time (Holder
1990).

4. How Much of Learned Knowledge Is Used?

Learning is based the expectation of future use of the
knowledge gained. The validity of that expectation over
long-term learning has not been investigated for symbolic
machine learning. A discussion of how much of Soar’s
chunks are actually used is not found in the literature.
Discussions with other Soar researchers revealed that
many researchers do not operate Soar with learning turned
on because the focus of their efforts is to model a
characteristic of problem solving behavior and chunking
makes it difficult to understand Soar’s behavior.

A possible set of distinct patterns in the use of learned
knowledge is based on when the rules were learned: (1)
rules that are learned early on are used more frequently
than rules learned later; (2) rules learned later (i.e., more
recently) are used more frequently; and (3) rule use is
independent of when a rule was learned. If rule use is
independent of when it was learned, there would be no
way to distinguish which rules should be kept based on
when it was learned. Problem-solving time should then
be related directly only to number of rules retained, i.e.,
memory size. If early learning is the primary basis of
later solutions, then training sets would be more important
than continuous learning. In this case, problem-solving
performance would level off and not be significantly
affected by either experience beyond the training set or by
the size of memory larger than that necessary to hold the
initial learning. On the other hand, if only the most
recently learned rules are used, problem-solving time
could tend to improve with experience as the early
learning is replaced with later learning. In this case, the
number of rules maintained above some threshold should
not significantly affect problem-solving performance and
the threshold for the necessary memory size could be
established operationally.

0

25

50

75

100

125

150

175

0 40 80 120 160 200 240 280 320 360 400

Problem Number

Nu
m

be
r o

f C
hu

nk
 U

se
s

0

20

40

60

80

100

120

140

0 600 1,200 1,800 2,400 3,000 3,600 4,200 4,800

Chunk Number

Nu
m

be
r o

f C
hu

nk
 U

se
s

4.1 Previous Work

Selective retention is the effect of the removal of learned
rules based on low demonstrated value in problem
solving, i.e., low utility. In a early paper on robot plans
(Fikes, Hart, & Nilsson 1972), the authors recognized that
continuing to learn plans would cause the problem solver
to be faced with the "danger of being swamped by the
ever-increasing repertoire of stored plans." They stated
that the straightforward approach would be to keep
statistics of the frequency with which plans were used and
then discard those that fell below a specified threshold,
but that could mask the dynamic nature of rule use.
Variations on this approach were implemented but the
utility problem remained.

Steve Minton’s PRODIGY used a two-stage method to
evaluate the utility of new control rules (Minton 1988).
An estimate of the utility of proposed rules was used to
initially decide whether they were worth saving. At the
time of creation of a new rule, PRODIGY used the
training example to estimate the costs and savings. If a
rule represented a net savings, it was tentatively kept.
Later measurements were to be used to decide whether to
continue to keep the rule. In the reported problem space,
of the 69 control rules estimated to be useful, only 19
were found to be useful based on measured use (Minton
1990).

Glenn Iba's MACLEARN (1989) also used a two stage
utility filter to decide which macros were worth keeping.
The initial, static filter performed a heuristic analysis of a
proposed macro. The filter had three tests. The first was
a check for redundancy with previous macros. The
second was an effective-length threshold used to
eliminate long macros. Finally, a domain-dependent test
of specific features could be included. If these tests were
passed, the macro was added to the knowledge base.
Later, after completion of a training set of problems, Iba
manually removed macros based on statistics of the
macros' use. Credit for use was only given to the longest
macros in the solution, not to sub-sequences within the
longest macros. In practice, one use of a macro was
enough to pass the manual dynamic filter.

Because little information was available on how much of
the actual use of learned knowledge, new analysis was
needed specifically to monitor chunk use.

4.2 New Results

Analysis of the previous experiments conducted using
Soar addressed chunk use in simple physics problems,
Blocks-World domains, SCA, and both the simple and
sophisticated tanks.

One measure of the use of learning is a count of the
number of chunks used throughout a long-term problem-
solving run. Table 2 presents counts of overall chunk use
for the physics, SCA, and sophisticated tank domains.

Table 2. Counts of Chunk Use

Count Physics SCA TankSoar

Chunks saved 1,373 500 4,437

Chunks used
at least once 756 228 2,591

Chunks used
at least twice 689 143 1,864

Chunks used
at least thrice 186 107 1,662

Chunks used
more than 10x 31 66 1,130

Note that only about half of all chunks are ever used
(55%, 46%, and 58%) and that a quarter or less are used
more than 10 times (2%, 13%, and 25%).

Another measure of chunk use is the number of chunks
used in solving each problem. In the physics domain, a
near constant number of chunks were used per problem
throughout the long run, as shown in Figure 1. However,
closer examination of the chunk use revealed that which
chunks were used was not at all constant. Figure 2 is one
of a series of plots that indicate which chunks were used
to solve 20 problems during the 400 problem solving run.

Figure 1. Physics chunk use over 400 problems

Figure 2. Physics chunk use on problems 381-400

Three observations are evident from review of plots like
Figure 2 throughout the 400-problem run. First, while
which chunks were used ranged over the entire set of
chunks, the majority of the chunks used were those just
created. The most recently learned chunks show the most
uses because of the look-ahead approach used to evaluate
alternative paths during problem solving. The look-ahead
generates new chunks, which then they fire when the
associated alternative is selected. The second observation
is that chunks learned during the whole history of the
problem solving were used. The experimental protocol of
generating problems at random caused some repetition of
previous conditions fitting the preconditions of previous
chunks. Third, the reason an overall relatively constant
number of chunks observed in Figure 1 is due to the
increasing number of older chunks used and the
decreasing number of new chunks used.

Experiments with three and four Blocks-World problems
yielded similar average chunk use results. However, no
patterns of chunk use over time were as clearly observed.

A third measure of chunk use is the monitoring of the use
of individual chunks throughout the long-term problem
solving experience. Figures 3 and 4 show the individual
chunk uses for single runs in the 4-block Blocks-World
and sophisticated TankSoar domains.

Figure 3. Individual chunk use in Blocks-World

Figure 4. Individual chunk use by the sophisticated tank

Not only can frequently and infrequently used chunks be
seen in Figures 3 and 4, but changes in chunk use
throughout the runs can be seen. This shows an
interaction between chunks learned at different points in
the problem-solving experience.

4.3 Discussion

The question being investigated dealt with how much of
the learned chunks were used. For the physics, SCA, and
sophisticated tank domains, approximately half of the
chunks generated were used. For the three-block Blocks-
World problems, all 13 chunks were used during the five
500-problem runs.

For the physics problems, the clear pattern of use was that
the most recently learned chunks made up the bulk of the
chunk use, but this problem space continued learning over
the entire 400 problem solving experience. During the
much shorter learning phase in the Blocks-World
domains, the higher use of more recently learned chunks
may be observable, but it may simply be the effect of the
very small set of chunks used. After learning ended, the
use of chunks did not show a pattern based on when the
chunks were learned.

4.4 Significance

Previous approaches to the utility problem have not
exploited the actual use of the learned knowledge.
Previous researchers have focused on the cost of learning
and the cost of matching and projected. The only use
information involved in previous work was whether or not
the knowledge had been used at all (Iba 1989; Minton
1990). By understanding the nature of the use of learned
knowledge, it should be possible to develop an approach
to the utility problem based on actual, rather than
projected behavior.

This work also has implications for a relationship between
the size of memory and problem-solving time. The
amount of learned knowledge retained for a specified
problem solving performance level (in problem-solving
time and possibly other performance measures) may be
less than the complete retention currently used in many
learning systems including Soar.

5. Addressing the utility problem

We now turn to using the characteristics of long-term
learning to address the utility problem. Because a
primary driver of the degraded performance problem-
solving time is the number of rules in the system, several
candidate approaches to excising chunks were considered.

The benefits of random forgetting were reported by
Markovitch and Scott (1988). This approach uses
information contained only in the first measure of the use
of learned knowledge, that only a fraction is ever used.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500

Problem Number

Ch
un

k
Nu

m
be

r

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 10,000 20,000 30,000 40,000 50,000

Decision Cycles

Ch
un

ks
 N

um
be

r

Excising based on checking for use shortly after the
learning was effectively implemented by Minton (1988)
and Iba (1989), but that approach does not use the
dynamic characteristics of long-term learning. Fikes,
Hart, and Nilsson (1972) suggested keeping track of the
least used knowledge. This approach also does not use
the dynamic characteristics of long-term learning. Gratch
and DeJong (1992) extended Minton’s Prodigy by
considering the interactions between rules in evaluating
their usefulness, but they did not evaluate more data on
actual rule use. Other approaches considered include
removing the least recently used chunks (possibly to
remain below a memory size limit) and removing chunks
based on a gap between uses. Maintaining the necessary
data on the use of each chunk to track least recently used
chunks was expected to be computationally prohibitive
although it may fit psychological models. We chose to
excise chunks based on the gap between uses.

5.1 Projected Impact of Excising based on Use Gaps

Using the data on chunk use, it was possible to project the
impact of excising chunks for different gap sizes. We
analyzed when each chunk was used and plotting the
number of uses that would be missed after the specified
maximum gap in the domain studied. Figures 5 and 6
show a common transitional curve.

Figure 5. Impact of excising chunks in SCA domain

Figure 6. Impact of excising chunks in TankSoar

These figures show another characteristic of chunk use
over the long term, a transition in the use of chunks with
the gap between uses. This is useful because it can be
exploited to excise low-use chunks.

The transition phenomenon was not studied fully to find a
correlation to the problem domain, chunk development, or
other factors. Its existence alone was sufficient to
proceed to testing the idea of excising chunks to address
the utility problem.

5.2 Excising Chunks in Soar based on Gap Size

Excising chunks in Soar based on the characteristics of
chunk use is not easy. Although Soar was intentionally
designed to not provide access to introspective data by the
reasoning mechanisms, the user has access to such data
through the user interface. The user interface also allows
analysis of chunk use and excising of chunks based on
that analysis. Details on how we got Soar to excise
chunks based on a gap between chunk uses is described
elsewhere (Kennedy 2002).

Figure 7 presents the number of chunks in the
sophisticated TankSoar system with and without excising
based on a gap of 5,000 decision cycles between uses.

Figure 7. Excising chunks in TankSoar (same seed)

TankSoar has two sources of random behaviors, one in
the TankSoar environment and one within Soar. The
random behavior in the environment was addressed
through the use of seeds for the random number
generator. The random behavior caused by Soar itself
was addressed by analyzing multiple runs.

The effect, in problem-solving time, of the same ten runs
with and without excising chunks is shown in Figure 8.
The mean and standard deviations are shown for the ten
runs with the same seed for the environmental random
variable and the same code with and without excising
being implemented. For TankSoar, deciding which action
the tank should take next was considered a problem. This
figure shows that the cumulative time to solve a long

0

1,000

2,000

3,000

4,000

5,000

6,000

0 2,000 4,000 6,000 8,000 10,000

Tank Actions

C
hu

nk
s

in
 S

oa
r

Without excising

With excising
0

200

400

600

800

0 200 400 600 800 1,000

Gap Size (in Problems)

M
is

se
d

C
hu

nk
 F

ir
in

gs

0

20,000

40,000

60,000

80,000

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Gap Size (in Decision Cycles)

M
is

se
d

C
hu

nk
 F

ir
in

gs

series of problems was statically significantly lower with
excising implemented than without (using a t-test with a
confidence factor of 99 percent).

Note that we are excising only learned chunks and not the
basic domain knowledge the system is started with.
Therefore, the problem-solving capability of the system is
unaffected.

Figure 8. Cumulative problem-solving time with & without
excising (same seed)

6. Conclusions and Further Research

This work is the first characterization of the behavior of
long-term, on-line learning in Soar. We found was that
learning does not go on forever (finite domains) and can
end before all unique problems have been seen (based on
the generality Soar’s learned chunks). We also found that
Soar’s chunking can settle to a constant rate when novelty
is guaranteed or forced (large or infinite domains).

On the use of learned knowledge, we found that many (as
much as a half) of Soar’s chunks are never used and
although the overall chunking rate may be relatively
constant, which chunks are used is not. Soar tends to use
the most recently learned chunks more frequently, but
also uses chunks from over the whole range of learning
experience. (We also found some instances where
previously useful learned knowledge can become useless
because it has been replaced and postulated, but did not
find, cases where learned knowledge is subsumed.)

The understanding of these characteristics of long-term
learning in Soar allowed us to develop an approach to the
utility problem based on excising low-use chunks. A
characteristic curve based on the gap between chunk uses
provided a basis for setting a threshold for excising low-
use chunks. The improvement in Soar’s problem-solving
time, comparing with and without excising, was
statistically significant.

Hopefully, these results will invigorate research into on-
line learning. This work suggests a number of areas of
future research In Machine Learning and in Cognitive
Science.

Specific to Soar, the learning of low-use chunks, patterns
in the use of chunks, and a more complete understanding
of the transition in missed uses based on gap sizes need
more thorough investigation. The modification of Soar to
support forgetting, i.e., to support rule analysis and rule-
based excising, is under consideration for a future version
of Soar.

Beyond Soar, we hope other symbolic learning systems
will be investigated to see if their long-term learning
behavior has similar characteristics indicating
fundamental characteristics of symbolic learning systems.
In another direction, research into problem
representations may be able to convert what are normally
viewed as large problem spaces into effectively small
ones. Finally, Allen Newell's premise concerning the
retention of all knowledge as basic part of Soar as a
Unified Theory of Cognition needs to be reconsidered.
Forgetting may be necessary to overcome the utility
problem and may be a fundamental part of cognition.

Acknowledgements

The authors would like to acknowledge the Bob
Doorenbos who provided the raw data from his first
excursion into long-term learning with Soar; Craig Miller
who made his SCA system available; the Soar Group for
their welcome and shared experiences; and certainly John
Laird who leads the Group, maintains the culture of
academic openness and sharing, and who volunteered the
result of his most difficult Soar programming effort, the
very sophisticated, planning TankSoar bot. The authors
would also like to thank the ICML 2003 reviewers who
provided many suggestions for improvements.

References

Blake, C., Keogh, E., & Merz, C.J. (1998). UCI
Repository of machine learning databases (http://
www.ics.uci.edu/~mlearn/MLRepository.html).
Department of Information and Computer Science,
University of California, Irvine, CA.

Bostrom, H. 1992. Eliminating Redundancy in
Explanation-Based Learning. Machine Learning:
Proceedings of the Ninth International Workshop (pp
37-42). San Mateo: Morgan Kaufmann.

Doorenbos, R. (1993). Matching 100,000 Learned Rules,
Proceedings of the Eleventh National Conference on
Artificial Intelligence (pp 290-296). Menlo Park: AAAI
Press.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 2,000 4,000 6,000 8,000 10,000
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 2,000 4,000 6,000 8,000 10,000

Tank Actions

To
ta

l T
im

e
(c

um
ul

at
iv

e
se

co
nd

s)

Without excising

With excising

+/- 1 std dev

Doorenbos, R. B. (1995). Production Matching for Large
Learning Systems, Doctoral Dissertation, Computer
Science Department, Carnegie Mellon Univ.

Doorenbos, R., Tambe, T., & Newell, A. (1992).
Learning 10,000 Chunks: What’s it Like Out There?,
Proceedings of the Tenth National Conference on
Artificial Intelligence (pp 830-836). Menlo Park: AAAI
Press/The MIT Press.

Fikes, R.E., Hart, P.E., & Nilsson, N.J. (1972). Learning
and executing generalized robot plans, Artificial
Intelligence 3:251-288.

Gratch, J., & DeJong, G. (1992). COMPOSER: A
probabilistic solution to the utility problem in speed-up
learning. Proceedings of the Tenth National Conference
on Artificial Intelligence (pp 235-240). San Jose: AAAI
Press.

Holder, L. B. (1990). The General Utility Problem in
Machine Learning, Proceedings of the Seventh
International Conference on Machine Learning (pp
402-410). San Mateo: Morgan Kaufmann.

Iba, G. A. (1989). A heuristic approach to the discovery
of macro operators, Machine Learning 3:285-317.

Kennedy, W. G. (2002). Long-Term Learning in Soar
and its Application to the Utility Problem, Doctoral
Dissertation, School of Information Technology and
Engineering, George Mason Univ.

Korf, R. E. (1985). Macro-Operators: A Weak Method
for Learning, Artificial Intelligence 26:35-77.

Laird, J. E., Congdon, C. B., Altmann, E., & Doorenbos,
R. (1993). Soar Users Manual, Version 6, The Soar
Group, School of Computer Science, Carnegie Mellon
Univ.

Markovitch, S. & Scott, P.D. (1988). The role of
forgetting in learning. Proceedings of the Fifth
International Conference on Machine Learning (pp
459-465). Morgan Kaufmann.

Minton, S. (1988). Learning Effective Search Control
Knowledge: An Explanation-based Approach, Doctoral
Dissertation, Department of Computer Science,
Carnegie Mellon Univ.

Minton, S. (1990). “Quantitative results concerning the
utility of explanation-based learning," Artificial
Intelligence 42:363-392.

Mooney, R. (1989). The Effect of Rule Use on the Utility
of Explanation-Based Learning. Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence (pp 725-730). Los Altos: Morgan
Kaufmann.

Newell, A. (1990). Unified theories of cognition.
Cambridge: Harvard University Press.

Newell, A. (1993). “Allen Newell, Interviewed by B.
Crandrasekaran,” IEEE Expert, June 1993: 5-12.

Rosenbloom, P. & Newell, A. (1986). The Chunking of
Goal Hierarchies, A Generalized Model of Practice. In
Machine Learning, Vol. 2, R.S. Michalski, J.G.
Carbonell, & T.M. Mitchell (Eds.) Los Altos: Morgan
Kaufmann.

Tambe, M., Newell, A., & Rosenbloom, P.S. (1990). The
problem of expensive chunks and its solution by
restricting expressiveness. Machine Learning, V: 299-
348.

